E. Alpaydın AERFAISS

Size: px
Start display at page:

Download "E. Alpaydın AERFAISS"

Transcription

1

2 E. Alpaydın AERFAISS 00

3 Introduction Questions: Is the error rate of y classifier less than %? Is k-nn ore accurate than MLP? Does having PCA before iprove accuracy? Which kernel leads to highest accuracy with SVM? E. Alpaydın AERFAISS 00 3

4 Material Training/validation/test sets Resapling ethods Coparing ultiple algoriths on a single data set Coparison on ultiple data sets E. Alpaydın AERFAISS 00 4

5 Algorith Preference Criteria (Application-dependent): Misclassification error, or risk (loss functions) Training tie/space coplexity Testing tie/space coplexity Interpretability Easy prograability Cost-sensitive learning E. Alpaydın AERFAISS 00 5

6 Experient Design: Factors and Response Controllable factors: -Learning algorith -Hyperparaeters -Input representation Uncontrollable factors: -Noise in data -Randoness in splitting -Randoness in optiization Arrive to conclusions not affected by chance, i.e., statistically significant. E. Alpaydın AERFAISS 00 6

7 Strategies of Experientation Response surface design E. Alpaydın AERFAISS 00 7

8 Basic Principles of Experiental Design. Randoization: Independence of results, unaffected by order. Replication: Average over chance and uncontrollable factors (k-fold cv) 3. Blocking: Reduce or eliinate the variability due to nuisance factors: Paired tests E. Alpaydın AERFAISS 00 8

9 Guidelines for ML experients A. Ai of the study: Copare hyperparaeters or two or ore algoriths Single/ultiple data sets B. Selection of the response variable Accuracy/precision-recall/loss function Cost-conscious fraework C. Choice of factors and levels What are the factors to be played with? What are the factor levels? E. Alpaydın AERFAISS 00 9

10 Guidelines (cont d) D. Choice of experiental design Factorial design (grid search) How any replicates? E. Perforing the experient Unbiased in experientation, a separate tester Good code and docuentation F. Statistical Analysis of the Data Hypothesis testing Visualization of results: Histogras, plots G. Conclusions and Recoendations Draw obective conclusions E. Alpaydın AERFAISS 00 0

11 Splitting Data The need for training, validation, and test sets Training set: Optiize paraeters Validation set: Optiize hyperparaeters Test set: Measure generalization perforance Use data once. E. Alpaydın AERFAISS 00

12 The need for ultiple training/validation sets { i,v i } i : Training/validation sets of fold i Stratification -fold cross-validation: Divide into k, i,i=,..., T i share - parts Resapling and -Fold Cross-Validation 3 3 T V T V T V E. Alpaydın AERFAISS 00

13 5 Cross-Validation (Dietterich, 998, Neural Coputation) V T V T V T V T V T V T E. Alpaydın AERFAISS 00 3

14 Bootstrapping Draw instances fro a dataset with replaceent Prob that we do not pick an instance after N draws N N e that is, only 36.8% is new! E. Alpaydın AERFAISS 00 4

15 Making Decisions and Error Classifier predicts + if P(+ x)>q and predicts otherwise E. Alpaydın AERFAISS 00 5

16 Measures of Perforance E. Alpaydın AERFAISS 00 6

17 E. Alpaydın AERFAISS 00 7

18 Precision and Recall fp tp fn Retrieved but not relevant Relevant but not retrieved E. Alpaydın AERFAISS 00 8

19 ROC Precision/Recall Curves E. Alpaydın AERFAISS 00 9

20 E. Alpaydın AERFAISS 00 0

21 Statistics Review: Sapling = { x t } t where x t ~ N ( μ, σ ) ~ N ( μ, σ /N) Iplication for odel cobination Ulaş et al (009), Info Sci E. Alpaydın AERFAISS 00

22 Interval Estiation N z N z P N N P N P N / / ~ Z E. Alpaydın AERFAISS 00 00(- α) percent confidence interval

23 N z P N P N P.... E. Alpaydın AERFAISS 00 3

24 E. Alpaydın AERFAISS 00 4 N S t N S t P t S N N x S N N N t t, /, / ~ / When σ is not known:

25 Hypothesis Testing Reect a null hypothesis if not supported by the saple with enough confidence E. Alpaydın AERFAISS 00 5

26 H 0 : μ = μ 0 vs. H : μ μ 0 Accept H 0 with level of significance α if μ 0 is in the 00(- α) confidence interval Two-sided test Type II error N 0 z z /, / How large a saple? E. Alpaydın AERFAISS 00 6

27 One-sided test: H 0 : μ μ 0 vs. H : μ > μ 0 Accept if N 0, z Variance unknown: Use t, instead of z Accept H 0 : μ = μ 0 if N 0 S t t /, N, /, N E. Alpaydın AERFAISS 00 7

28 Assessing Error: H 0 : p p 0 vs. H : p > p 0 Single training/validation set: Binoial Test If error prob is p 0, prob that there are e errors or ore P N N 0 0 e e p p N Reect if this prob is less than α α N=00, e=0 E. Alpaydın AERFAISS 00 8

29 Noral Approxiation to the Binoial H 0 : < 0 vs. H : > 0 Nuber of errors is approx Noral (CLT) with ean Np 0 and var Np 0 (-p 0 ) z e Np Np 0 0 p 0 ~ Z Reect if z > z α α E. Alpaydın AERFAISS 00 9

30 t Test Multiple training/validation sets x t i = if instance t isclassified on fold i t Error rate of fold i: xi p i N t With and s average and var of p i, we reect p 0 or less error if p0 ~ t S is greater than t α,- N E. Alpaydın AERFAISS 00 30

31 Coparing Classifiers: H 0 : μ = μ vs. H : μ μ Single training/validation set: McNear s Test Under H 0, we expect e 0 = e 0 =(e 0 + e 0 )/ Accept if < α, e0 e0 e 0 e 0 ~ E. Alpaydın AERFAISS 00 3

32 -Fold CV Paired t Test i i i i t t t s s p s p H H, /, /, ~ : : in if Accept vs. E. Alpaydın AERFAISS 00 3 Use -fold cv to get training/validation folds p i, p i : Errors of classifiers and on fold i p i = p i p i : Paired difference on fold i The null hypothesis is whether p i has ean 0

33 5 cv Paired t Test (Dietterich, 998, Neural Coputation) Use 5 cv to get folds of 5 tra/val replications p i () : difference btw errors of and on fold =, of replication i=,...,5 p i p p / s p i i p i 5 i s i p p i / 5 Two-sided test: Accept H 0 : μ 0 = μ if in (-t α/,5,t α/,5 ) One-sided test: Accept H 0 : μ 0 μ if < t α,5 ~ t 5 i i p i E. Alpaydın AERFAISS 00 33

34 5 cv Paired F Test (Alpaydın, 999, Neural Coputation) 5 i 5 i s p i i ~ F 0, 5 Two-sided test: Reect H 0 : μ 0 = μ if > F α,0,5 E. Alpaydın AERFAISS 00 34

35 Coparing L> Algoriths: Analysis of Variance (Anova) H : 0 L Errors of L algoriths on folds i We construct two estiators to σ. One is valid if H 0 is true, the other is always valid. We reect H 0,,,..., L, i,..., ~ N if the two estiators disagree. E. Alpaydın AERFAISS 00 35

36 0 0 L L L L i i SSb H SSb L S L S L H N ~ ~ / ˆ /, ~ : we have is true, So when, naely, is Thus anestiatorof is true If E. Alpaydın AERFAISS 00 36

37 0 0 L L L L L L i i i i L i i F H F L SSw L SSb L SSw L SSb SSw S SSw L L S S S H,,, : ~ / / / / / ~ ~ ˆ if Reect : group variances average of is the secondestiator to our Regardlessof E. Alpaydın AERFAISS 00 37

38 ANOVA table E. Alpaydın AERFAISS If ANOVA reects, we do pairwise posthoc tests ) ( ~ : vs : 0 L w i i i t t H H

39 More on Coparing Multiple Populations Range tests: Newan-euls test Contrasts: Check if significant difference between, and 3,4,5. H 0 : (μ + μ )/ = (μ 3 + μ 4 + μ 5 )/3 vs. H : (μ + μ )/ (μ 3 + μ 4 + μ 5 )/3 E. Alpaydın AERFAISS 00 39

40 MultiTest: Coparison of L> algoriths (Yıldız and Alpaydın, 006, IEEE T Pai) Generate a full ordering using pairwise tests and prior ordering Order algoriths in decreasing order of prior preference (e.g., based on coplexity) For a directed graph using pairwise one-sided tests with i preferred over If the test reects, we add a edge fro i to, to show that is to be preferred over i. E. Alpaydın AERFAISS 00 40

41 MultiTest: Pseudo-code E. Alpaydın AERFAISS 00 4

42 MultiTest E. Alpaydın AERFAISS 00 4

43 E. Alpaydın AERFAISS 00 43

44 E. Alpaydın AERFAISS 00 44

45 Nonparaetric Tests If the norality assuption does not hold, it does not ake sense to take or copare averages Coparison of training ties, eory needs, and so on Coparison over ultiple data sets We can use order and rank inforation E. Alpaydın AERFAISS 00 45

46 Sign test Coparing two algoriths: Sign test: Count how any ties A beats B over N datasets, and check if this could have been by chance if A and B did have the sae error rate Wilcoxon signed rank test E. Alpaydın AERFAISS 00 46

47 ruskal-wallis Test Coparing ultiple algoriths ruskal-wallis test: Calculate the average rank of all algoriths on M datasets, and check if these could have been by chance if they all had equal error If W reects, we do pairwise posthoc tests Tukey s test: E. Alpaydın AERFAISS 00 47

48 Critical Difference diagras (Desar, 006, JMLR) Friedan s test followed by Neenyi s posthoc test for pairwise coparisons E. Alpaydın AERFAISS 00 48

49 Conclusions See first, think later, then test. But always see first. Otherwise you will only see what you were expecting. - Douglas Adas So long and thanks for all the fish Testing is not a separate step done after all runs are copleted, but the whole experiental process should be designed beforehand. E. Alpaydın AERFAISS 00 49

50 References Alpaydın, E. 00. Introduction to Machine Learning, nd edition, The MIT Press. This presentation is based on Chapter 9 of this book. Desar, J ``Statistical Coparison of Classifiers over Multiple Data Sets.'' Journal of Machine Learning Research 7: Dietterich, T. G ``Approxiate Statistical Tests for Coparing Supervised Classification Learning Algoriths.'' Neural Coputation 0: Fawcett, T ``An Introduction to ROC Analysis.'' Pattern Recognition Letters 7: Montgoery, D. C Design and Analysis of Experients. 6th ed., New York: Wiley. Yıldız, O. T., and E. Alpaydın ``Ordering and Finding the Best of > Supervised Learning Algoriths.'' IEEE Transactions on Pattern Analysis and Machine Intelligence 8: E. Alpaydın AERFAISS 00 50

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecture Slides for INTRODUCTION TO Machine Learning ETHEM ALPAYDIN The MIT Press, 2004 alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml CHAPTER 14: Assessing and Comparing Classification Algorithms

More information

Machine Learning. Lecture Slides for. ETHEM ALPAYDIN The MIT Press, h1p://www.cmpe.boun.edu.

Machine Learning. Lecture Slides for. ETHEM ALPAYDIN The MIT Press, h1p://www.cmpe.boun.edu. Lecture Slides for INTRODUCTION TO Machine Learning ETHEM ALPAYDIN The MIT Press, 2010 alpaydin@boun.edu.tr h1p://www.cmpe.boun.edu.tr/~ethem/i2ml2e CHAPTER 19: Design and Analysis of Machine Learning

More information

Lecture Slides for. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for. ETHEM ALPAYDIN The MIT Press, ecture Sldes for ETHEM APAYDI The MIT Press, 00 alpaydn@boun.edu.tr http://www.cpe.boun.edu.tr/~ethe/le Introducton Questons: Assessent of the expected error of a learnng algorth: Is the error rate of

More information

Combining Classifiers

Combining Classifiers Cobining Classifiers Generic ethods of generating and cobining ultiple classifiers Bagging Boosting References: Duda, Hart & Stork, pg 475-480. Hastie, Tibsharini, Friedan, pg 246-256 and Chapter 10. http://www.boosting.org/

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Smart Home Health Analytics Information Systems University of Maryland Baltimore County

Smart Home Health Analytics Information Systems University of Maryland Baltimore County Smart Home Health Analytics Information Systems University of Maryland Baltimore County 1 IEEE Expert, October 1996 2 Given sample S from all possible examples D Learner L learns hypothesis h based on

More information

A MESHSIZE BOOSTING ALGORITHM IN KERNEL DENSITY ESTIMATION

A MESHSIZE BOOSTING ALGORITHM IN KERNEL DENSITY ESTIMATION A eshsize boosting algorith in kernel density estiation A MESHSIZE BOOSTING ALGORITHM IN KERNEL DENSITY ESTIMATION C.C. Ishiekwene, S.M. Ogbonwan and J.E. Osewenkhae Departent of Matheatics, University

More information

Ensemble Based on Data Envelopment Analysis

Ensemble Based on Data Envelopment Analysis Enseble Based on Data Envelopent Analysis So Young Sohn & Hong Choi Departent of Coputer Science & Industrial Systes Engineering, Yonsei University, Seoul, Korea Tel) 82-2-223-404, Fax) 82-2- 364-7807

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

A Smoothed Boosting Algorithm Using Probabilistic Output Codes

A Smoothed Boosting Algorithm Using Probabilistic Output Codes A Soothed Boosting Algorith Using Probabilistic Output Codes Rong Jin rongjin@cse.su.edu Dept. of Coputer Science and Engineering, Michigan State University, MI 48824, USA Jian Zhang jian.zhang@cs.cu.edu

More information

Hypothesis Evaluation

Hypothesis Evaluation Hypothesis Evaluation Machine Learning Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Hypothesis Evaluation Fall 1395 1 / 31 Table of contents 1 Introduction

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Lecture 12: Ensemble Methods. Introduction. Weighted Majority. Mixture of Experts/Committee. Σ k α k =1. Isabelle Guyon

Lecture 12: Ensemble Methods. Introduction. Weighted Majority. Mixture of Experts/Committee. Σ k α k =1. Isabelle Guyon Lecture 2: Enseble Methods Isabelle Guyon guyoni@inf.ethz.ch Introduction Book Chapter 7 Weighted Majority Mixture of Experts/Coittee Assue K experts f, f 2, f K (base learners) x f (x) Each expert akes

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Soft-margin SVM can address linearly separable problems with outliers

Soft-margin SVM can address linearly separable problems with outliers Non-linear Support Vector Machines Non-linearly separable probles Hard-argin SVM can address linearly separable probles Soft-argin SVM can address linearly separable probles with outliers Non-linearly

More information

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China 6th International Conference on Machinery, Materials, Environent, Biotechnology and Coputer (MMEBC 06) Solving Multi-Sensor Multi-Target Assignent Proble Based on Copositive Cobat Efficiency and QPSO Algorith

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 CptS 570 Machine Learning School of EECS Washington State University CptS 570 - Machine Learning 1 IEEE Expert, October 1996 CptS 570 - Machine Learning 2 Given sample S from all possible examples D Learner

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

An improved self-adaptive harmony search algorithm for joint replenishment problems

An improved self-adaptive harmony search algorithm for joint replenishment problems An iproved self-adaptive harony search algorith for joint replenishent probles Lin Wang School of Manageent, Huazhong University of Science & Technology zhoulearner@gail.co Xiaojian Zhou School of Manageent,

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

Estimation of the Mean of the Exponential Distribution Using Maximum Ranked Set Sampling with Unequal Samples

Estimation of the Mean of the Exponential Distribution Using Maximum Ranked Set Sampling with Unequal Samples Open Journal of Statistics, 4, 4, 64-649 Published Online Septeber 4 in SciRes http//wwwscirporg/ournal/os http//ddoiorg/436/os4486 Estiation of the Mean of the Eponential Distribution Using Maiu Ranked

More information

Testing equality of variances for multiple univariate normal populations

Testing equality of variances for multiple univariate normal populations University of Wollongong Research Online Centre for Statistical & Survey Methodology Working Paper Series Faculty of Engineering and Inforation Sciences 0 esting equality of variances for ultiple univariate

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

Supervised Baysian SAR image Classification Using The Full Polarimetric Data

Supervised Baysian SAR image Classification Using The Full Polarimetric Data Supervised Baysian SAR iage Classification Using The Full Polarietric Data (1) () Ziad BELHADJ (1) SUPCOM, Route de Raoued 3.5 083 El Ghazala - TUNSA () ENT, BP. 37, 100 Tunis Belvedere, TUNSA Abstract

More information

Lecture 9: Multi Kernel SVM

Lecture 9: Multi Kernel SVM Lecture 9: Multi Kernel SVM Stéphane Canu stephane.canu@litislab.eu Sao Paulo 204 April 6, 204 Roadap Tuning the kernel: MKL The ultiple kernel proble Sparse kernel achines for regression: SVR SipleMKL:

More information

Domain-Adversarial Neural Networks

Domain-Adversarial Neural Networks Doain-Adversarial Neural Networks Hana Ajakan, Pascal Gerain 2, Hugo Larochelle 3, François Laviolette 2, Mario Marchand 2,2 Départeent d inforatique et de génie logiciel, Université Laval, Québec, Canada

More information

UNIVERSITY OF TRENTO ON THE USE OF SVM FOR ELECTROMAGNETIC SUBSURFACE SENSING. A. Boni, M. Conci, A. Massa, and S. Piffer.

UNIVERSITY OF TRENTO ON THE USE OF SVM FOR ELECTROMAGNETIC SUBSURFACE SENSING. A. Boni, M. Conci, A. Massa, and S. Piffer. UIVRSITY OF TRTO DIPARTITO DI IGGRIA SCIZA DLL IFORAZIO 3823 Povo Trento (Italy) Via Soarive 4 http://www.disi.unitn.it O TH US OF SV FOR LCTROAGTIC SUBSURFAC SSIG A. Boni. Conci A. assa and S. Piffer

More information

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms 03/Feb/2010 VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms Presented by Andriy Temko Department of Electrical and Electronic Engineering Page 2 of

More information

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS A Thesis Presented to The Faculty of the Departent of Matheatics San Jose State University In Partial Fulfillent of the Requireents

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

Nonmonotonic Networks. a. IRST, I Povo (Trento) Italy, b. Univ. of Trento, Physics Dept., I Povo (Trento) Italy

Nonmonotonic Networks. a. IRST, I Povo (Trento) Italy, b. Univ. of Trento, Physics Dept., I Povo (Trento) Italy Storage Capacity and Dynaics of Nononotonic Networks Bruno Crespi a and Ignazio Lazzizzera b a. IRST, I-38050 Povo (Trento) Italy, b. Univ. of Trento, Physics Dept., I-38050 Povo (Trento) Italy INFN Gruppo

More information

Warning System of Dangerous Chemical Gas in Factory Based on Wireless Sensor Network

Warning System of Dangerous Chemical Gas in Factory Based on Wireless Sensor Network 565 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 07 Guest Editors: Zhuo Yang, Junie Ba, Jing Pan Copyright 07, AIDIC Servizi S.r.l. ISBN 978-88-95608-49-5; ISSN 83-96 The Italian Association

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Soft Coputing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Beverly Rivera 1,2, Irbis Gallegos 1, and Vladik Kreinovich 2 1 Regional Cyber and Energy Security Center RCES

More information

Bayesian Learning. Chapter 6: Bayesian Learning. Bayes Theorem. Roles for Bayesian Methods. CS 536: Machine Learning Littman (Wu, TA)

Bayesian Learning. Chapter 6: Bayesian Learning. Bayes Theorem. Roles for Bayesian Methods. CS 536: Machine Learning Littman (Wu, TA) Bayesian Learning Chapter 6: Bayesian Learning CS 536: Machine Learning Littan (Wu, TA) [Read Ch. 6, except 6.3] [Suggested exercises: 6.1, 6.2, 6.6] Bayes Theore MAP, ML hypotheses MAP learners Miniu

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

arxiv: v2 [cs.lg] 30 Mar 2017

arxiv: v2 [cs.lg] 30 Mar 2017 Batch Renoralization: Towards Reducing Minibatch Dependence in Batch-Noralized Models Sergey Ioffe Google Inc., sioffe@google.co arxiv:1702.03275v2 [cs.lg] 30 Mar 2017 Abstract Batch Noralization is quite

More information

Evaluation. Andrea Passerini Machine Learning. Evaluation

Evaluation. Andrea Passerini Machine Learning. Evaluation Andrea Passerini passerini@disi.unitn.it Machine Learning Basic concepts requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain

More information

A Note on the Applied Use of MDL Approximations

A Note on the Applied Use of MDL Approximations A Note on the Applied Use of MDL Approxiations Daniel J. Navarro Departent of Psychology Ohio State University Abstract An applied proble is discussed in which two nested psychological odels of retention

More information

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES S. E. Ahed, R. J. Tokins and A. I. Volodin Departent of Matheatics and Statistics University of Regina Regina,

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

Tracking using CONDENSATION: Conditional Density Propagation

Tracking using CONDENSATION: Conditional Density Propagation Tracking using CONDENSATION: Conditional Density Propagation Goal Model-based visual tracking in dense clutter at near video frae rates M. Isard and A. Blake, CONDENSATION Conditional density propagation

More information

RAFIA(MBA) TUTOR S UPLOADED FILE Course STA301: Statistics and Probability Lecture No 1 to 5

RAFIA(MBA) TUTOR S UPLOADED FILE Course STA301: Statistics and Probability Lecture No 1 to 5 Course STA0: Statistics and Probability Lecture No to 5 Multiple Choice Questions:. Statistics deals with: a) Observations b) Aggregates of facts*** c) Individuals d) Isolated ites. A nuber of students

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 2: PAC Learning and VC Theory I Fro Adversarial Online to Statistical Three reasons to ove fro worst-case deterinistic

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

A remark on a success rate model for DPA and CPA

A remark on a success rate model for DPA and CPA A reark on a success rate odel for DPA and CPA A. Wieers, BSI Version 0.5 andreas.wieers@bsi.bund.de Septeber 5, 2018 Abstract The success rate is the ost coon evaluation etric for easuring the perforance

More information

Support Vector Machines. Goals for the lecture

Support Vector Machines. Goals for the lecture Support Vector Machines Mark Craven and David Page Coputer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Soe of the slides in these lectures have been adapted/borrowed fro aterials developed

More information

Meta-Analytic Interval Estimation for Bivariate Correlations

Meta-Analytic Interval Estimation for Bivariate Correlations Psychological Methods 2008, Vol. 13, No. 3, 173 181 Copyright 2008 by the Aerican Psychological Association 1082-989X/08/$12.00 DOI: 10.1037/a0012868 Meta-Analytic Interval Estiation for Bivariate Correlations

More information

Estimation of the Population Variance Using. Ranked Set Sampling with Auxiliary Variable

Estimation of the Population Variance Using. Ranked Set Sampling with Auxiliary Variable Int. J. Contep. Math. Sciences, Vol. 5, 00, no. 5, 567-576 Estiation of the Population Variance Using Ranked Set Sapling with Auiliar Variable Said Ali Al-Hadhrai College of Applied Sciences, Nizwa, Oan

More information

ZISC Neural Network Base Indicator for Classification Complexity Estimation

ZISC Neural Network Base Indicator for Classification Complexity Estimation ZISC Neural Network Base Indicator for Classification Coplexity Estiation Ivan Budnyk, Abdennasser Сhebira and Kurosh Madani Iages, Signals and Intelligent Systes Laboratory (LISSI / EA 3956) PARIS XII

More information

VI. Backpropagation Neural Networks (BPNN)

VI. Backpropagation Neural Networks (BPNN) VI. Backpropagation Neural Networks (BPNN) Review of Adaline Newton s ethod Backpropagation algorith definition derivative coputation weight/bias coputation function approxiation exaple network generalization

More information

Biostatistics Department Technical Report

Biostatistics Department Technical Report Biostatistics Departent Technical Report BST006-00 Estiation of Prevalence by Pool Screening With Equal Sized Pools and a egative Binoial Sapling Model Charles R. Katholi, Ph.D. Eeritus Professor Departent

More information

Multi-view Discriminative Manifold Embedding for Pattern Classification

Multi-view Discriminative Manifold Embedding for Pattern Classification Multi-view Discriinative Manifold Ebedding for Pattern Classification X. Wang Departen of Inforation Zhenghzou 450053, China Y. Guo Departent of Digestive Zhengzhou 450053, China Z. Wang Henan University

More information

Methods and Criteria for Model Selection. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Methods and Criteria for Model Selection. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Methods and Criteria for Model Selection CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Introduce classifier evaluation criteria } Introduce Bias x Variance duality } Model Assessment }

More information

A Semi-Parametric Approach to Account for Complex. Designs in Multiple Imputation

A Semi-Parametric Approach to Account for Complex. Designs in Multiple Imputation A Sei-Paraetric Approach to Account for Coplex Designs in ultiple Iputation Hanzhi Zhou, Trivellore E. Raghunathan and ichael R. Elliott Progra in Survey ethodology, University of ichigan Departent of

More information

NBN Algorithm Introduction Computational Fundamentals. Bogdan M. Wilamoswki Auburn University. Hao Yu Auburn University

NBN Algorithm Introduction Computational Fundamentals. Bogdan M. Wilamoswki Auburn University. Hao Yu Auburn University NBN Algorith Bogdan M. Wilaoswki Auburn University Hao Yu Auburn University Nicholas Cotton Auburn University. Introduction. -. Coputational Fundaentals - Definition of Basic Concepts in Neural Network

More information

A Unified Approach to Universal Prediction: Generalized Upper and Lower Bounds

A Unified Approach to Universal Prediction: Generalized Upper and Lower Bounds 646 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL 6, NO 3, MARCH 05 A Unified Approach to Universal Prediction: Generalized Upper and Lower Bounds Nuri Denizcan Vanli and Suleyan S Kozat,

More information

Predictive Vaccinology: Optimisation of Predictions Using Support Vector Machine Classifiers

Predictive Vaccinology: Optimisation of Predictions Using Support Vector Machine Classifiers Predictive Vaccinology: Optiisation of Predictions Using Support Vector Machine Classifiers Ivana Bozic,2, Guang Lan Zhang 2,3, and Vladiir Brusic 2,4 Faculty of Matheatics, University of Belgrade, Belgrade,

More information

Gene Selection for Colon Cancer Classification using Bayesian Model Averaging of Linear and Quadratic Discriminants

Gene Selection for Colon Cancer Classification using Bayesian Model Averaging of Linear and Quadratic Discriminants Gene Selection for Colon Cancer Classification using Bayesian Model Averaging of Linear and Quadratic Discriinants Oyebayo Ridwan Olaniran*, Mohd Asrul Affendi Abdullah Departent of Matheatics and Statistics,

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

Statistical Logic Cell Delay Analysis Using a Current-based Model

Statistical Logic Cell Delay Analysis Using a Current-based Model Statistical Logic Cell Delay Analysis Using a Current-based Model Hanif Fatei Shahin Nazarian Massoud Pedra Dept. of EE-Systes, University of Southern California, Los Angeles, CA 90089 {fatei, shahin,

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Correcting a Significance Test for Clustering in Designs With Two Levels of Nesting

Correcting a Significance Test for Clustering in Designs With Two Levels of Nesting Institute for Policy Research Northwestern University Working Paper Series WP-07-4 orrecting a Significance est for lustering in Designs With wo Levels of Nesting Larry V. Hedges Faculty Fellow, Institute

More information

1 Rademacher Complexity Bounds

1 Rademacher Complexity Bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #10 Scribe: Max Goer March 07, 2013 1 Radeacher Coplexity Bounds Recall the following theore fro last lecture: Theore 1. With probability

More information

Inference in the Presence of Likelihood Monotonicity for Polytomous and Logistic Regression

Inference in the Presence of Likelihood Monotonicity for Polytomous and Logistic Regression Advances in Pure Matheatics, 206, 6, 33-34 Published Online April 206 in SciRes. http://www.scirp.org/journal/ap http://dx.doi.org/0.4236/ap.206.65024 Inference in the Presence of Likelihood Monotonicity

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

What is Probability? (again)

What is Probability? (again) INRODUCTION TO ROBBILITY Basic Concepts and Definitions n experient is any process that generates well-defined outcoes. Experient: Record an age Experient: Toss a die Experient: Record an opinion yes,

More information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information Cite as: Straub D. (2014). Value of inforation analysis with structural reliability ethods. Structural Safety, 49: 75-86. Value of Inforation Analysis with Structural Reliability Methods Daniel Straub

More information

Best Procedures For Sample-Free Item Analysis

Best Procedures For Sample-Free Item Analysis Best Procedures For Saple-Free Ite Analysis Benjain D. Wright University of Chicago Graha A. Douglas University of Western Australia Wright s (1969) widely used "unconditional" procedure for Rasch saple-free

More information

Bayesian Approach for Fatigue Life Prediction from Field Inspection

Bayesian Approach for Fatigue Life Prediction from Field Inspection Bayesian Approach for Fatigue Life Prediction fro Field Inspection Dawn An and Jooho Choi School of Aerospace & Mechanical Engineering, Korea Aerospace University, Goyang, Seoul, Korea Srira Pattabhiraan

More information

An Introduction to Meta-Analysis

An Introduction to Meta-Analysis An Introduction to Meta-Analysis Douglas G. Bonett University of California, Santa Cruz How to cite this work: Bonett, D.G. (2016) An Introduction to Meta-analysis. Retrieved fro http://people.ucsc.edu/~dgbonett/eta.htl

More information

Evaluation requires to define performance measures to be optimized

Evaluation requires to define performance measures to be optimized Evaluation Basic concepts Evaluation requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain (generalization error) approximation

More information

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes Radeacher Coplexity Margin Bounds for Learning with a Large Nuber of Classes Vitaly Kuznetsov Courant Institute of Matheatical Sciences, 25 Mercer street, New York, NY, 002 Mehryar Mohri Courant Institute

More information

Efficient Filter Banks And Interpolators

Efficient Filter Banks And Interpolators Efficient Filter Banks And Interpolators A. G. DEMPSTER AND N. P. MURPHY Departent of Electronic Systes University of Westinster 115 New Cavendish St, London W1M 8JS United Kingdo Abstract: - Graphical

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space

Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space Journal of Machine Learning Research 3 (2003) 1333-1356 Subitted 5/02; Published 3/03 Grafting: Fast, Increental Feature Selection by Gradient Descent in Function Space Sion Perkins Space and Reote Sensing

More information

PAC-Bayes Analysis Of Maximum Entropy Learning

PAC-Bayes Analysis Of Maximum Entropy Learning PAC-Bayes Analysis Of Maxiu Entropy Learning John Shawe-Taylor and David R. Hardoon Centre for Coputational Statistics and Machine Learning Departent of Coputer Science University College London, UK, WC1E

More information

Training an RBM: Contrastive Divergence. Sargur N. Srihari

Training an RBM: Contrastive Divergence. Sargur N. Srihari Training an RBM: Contrastive Divergence Sargur N. srihari@cedar.buffalo.edu Topics in Partition Function Definition of Partition Function 1. The log-likelihood gradient 2. Stochastic axiu likelihood and

More information

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are,

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are, Page of 8 Suppleentary Materials: A ultiple testing procedure for ulti-diensional pairwise coparisons with application to gene expression studies Anjana Grandhi, Wenge Guo, Shyaal D. Peddada S Notations

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

State Estimation Problem for the Action Potential Modeling in Purkinje Fibers

State Estimation Problem for the Action Potential Modeling in Purkinje Fibers APCOM & ISCM -4 th Deceber, 203, Singapore State Estiation Proble for the Action Potential Modeling in Purinje Fibers *D. C. Estuano¹, H. R. B.Orlande and M. J.Colaço Federal University of Rio de Janeiro

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Multiple Testing Issues & K-Means Clustering. Definitions related to the significance level (or type I error) of multiple tests

Multiple Testing Issues & K-Means Clustering. Definitions related to the significance level (or type I error) of multiple tests StatsM254 Statistical Methods in Coputational Biology Lecture 3-04/08/204 Multiple Testing Issues & K-Means Clustering Lecturer: Jingyi Jessica Li Scribe: Arturo Rairez Multiple Testing Issues When trying

More information

The Algorithms Optimization of Artificial Neural Network Based on Particle Swarm

The Algorithms Optimization of Artificial Neural Network Based on Particle Swarm Send Orders for Reprints to reprints@benthascience.ae The Open Cybernetics & Systeics Journal, 04, 8, 59-54 59 Open Access The Algoriths Optiization of Artificial Neural Network Based on Particle Swar

More information

arxiv: v1 [cs.lg] 8 Jan 2019

arxiv: v1 [cs.lg] 8 Jan 2019 Data Masking with Privacy Guarantees Anh T. Pha Oregon State University phatheanhbka@gail.co Shalini Ghosh Sasung Research shalini.ghosh@gail.co Vinod Yegneswaran SRI international vinod@csl.sri.co arxiv:90.085v

More information