6340(Print), ISSN (Online) Volume 3, Issue 3, Sep- Dec (2012) IAEME AND TECHNOLOGY (IJMET)

Size: px
Start display at page:

Download "6340(Print), ISSN (Online) Volume 3, Issue 3, Sep- Dec (2012) IAEME AND TECHNOLOGY (IJMET)"

Transcription

1 INTERNATIONAL International Journal of Mechanical JOURNAL Engineering OF MECHANICAL and Technology (IJMET), ENGINEERING ISSN 0976 AND TECHNOLOGY (IJMET) ISSN (Print) ISSN (Online) Volume 3, Issue 3, September - December (2012), pp IAEME: Journal Impact Factor (2012): (Calculated by GISI) IJMET I A E M E A PRACTICAL APPROACH TO DESIGN AND OPTIMIZATION OF SINGLE PHASE LIQUID TO LIQUID SHELL AND TUBE HEAT EXCHANGER Ajeet Kumar Rai * and Mustafa S Mahdi** *Deptt of Mech. Engg. SSET, SHIATS-DU Allahabad (U.P.) INDIA **Deptt of Mech. Engg. University of Diyala, Republic of Iraq E mail-raiajeet@rediffmail.com, Mustafa.sabah@yahoo.com ABSTRACT In this paper a method for thermal-hydraulic design of single phase liquid to liquid shell and tube heat exchanger is established based on Tinker method. Modification suggested by Kern and Kakac are also incorporated. A computer program has been developed to ease the design procedure. The program determines the overall dimensions of the shell, the tube bundle, and optimum heat transfer surface area required to meet the specified heat load by utilizing the allowable shell-side pressure drop and other optimum parameters like fixed tube side velocity and fixed baffle cut. The capability of the proposed model was verified through a case study of a shell and tube heat exchanger used in a locomotive for cooling of the lubricating oil of the engine. The design shows a comparable result with the case study with deviation of 10%. Keywords: Heat exchanger; Shell and tube; Sizing; Single-phase flow INTRODUCTION Shell and tube heat exchanger have a wide application, it is worth noting that more than ninety percent of heat exchangers used in industry are of the shell and tube heat exchanger type as these heat exchangers are capable of handling a quite high load in a moderate size, they offer a great flexibility to meet almost any service requirement, they can be designed for handling high pressures and they can be easily cleaned. Consequently many researches and investigation are done towards establishing better and efficient design procedures with optimization with its characteristics and cost. Kern [1] provided a simple method for calculating shell side pressure drop and heat transfer coefficient. However, this method cannot adequately account the baffle to shell and tube to baffle leakage. The concept of considering the various streams through the exchangers was originally proposed by Tinker 378

2 [2]. He suggested a schematic flow pattern, which divided the shell side flow in a number of individual streams. Tinker s original analysis was quite complex and hard to understand but it presents a much better approximation than the analysis given by Kern, a simplified form of Tinker s analysis is present by Frass [3], which is suitable for computer program, which has been depended on this work for thermal and hydraulic design. In the context of development of new design technique, this work presents a design and optimization procedure integrate with an practical design guidelines with the help of simple user friendly computer program. METHOD Design strategy: Shell and tube heat exchanger design is an inherently iterative process; the main steps can be summarized as follows: (1) Obtain an initial configuration for the heat exchanger. (2) Obtain a thermal and hydraulic design which is suitable for given data. (3) Iterate until acceptable design is obtained. (4) Optimize the design by testing all the design parameters to get an optimum and economic design; this can be done by using the computer program that has been developed in this work. Thermal and hydraulic design: In thermal design, the heat exchanger is sized, which means that all the principal construction parameters such as shell diameter, number of tubes, tube length, tube, baffle spacing and cut, are determined as the following procedure: 1- Calculate the total number of tubes = 1.11 Use 2.25 m/s as a fluid velocity in tube side which is the most efficient velocity to utilize the allowable pressure drop to heat transfer coefficient for determination of Reynolds number that required for determination of friction factor[4]. 2- Calculate the tube matrix diameter and shell inside diameter [5]. = [ ( ) ]. = Calculate nozzles diameter [1]. = Calculation of correction factors to allow the deviation from ideality for shell side, each baffle cut has a particular correction factors [3], however in present work the baffle cut is fixed to 25% as it s the most efficient cut so the correction factors is: M = 0.88, = 0.54, Y = 4.7, = 0.3 =(1+ ) =(0.8+ ) 5- Calculate the coefficients and which use in calculation of, h and. this step adopted from the experimental work of Tinker [2]. = h. Where for this step 379

3 24 h= ( ). And = And for = 0.8. And = 6- Calculate the logarithmic mean temperature difference. = = ( ) = +1 ln (1 ) (1 ) ( 1) 2 (+1 +1) 2 (+1+ +1) 7- Calculate shell side mass flow rate through the tube bundle 1.86 = ( ) ( ). (1 ) (1+( )) h is the ratio of overall heat transfer coefficient to shell side heat transfer for first design it can be approximate to unity from the fact that the most shell and tube heat exchangers are employing organic liquid in the shell side and cooling water is insensitive to the tube side h this makes possible a simplifying approximation [3]. 8- Calculate Reynolds number for shell side that modified to the calculation of friction factor and heat transfer coefficient [2]. = = 9- Calculate shell side friction factor = 10- Calculate shell side heat transfer coefficient h = 11- Calculate of baffle spacing =. ( ) ( ) 380

4 12- Calculate baffles number 2 =. (1.075 (1 ) (1+( )) ( ). 13- Calculate tube length of the heat exchanger = This is the step to check the value of the assumed length, which it was necessary to assumed it to precede the calculation; it is provide the bases for the second trail, where the second assumed value should be closer and higher to the value of calculated length. 14- Calculate tube side heat transfer coefficient. h = 15- Calculate tube side mass flow rate. = Calculate tube side pressure drop = Calculate the overall heat transfer coefficient =( 1 h + 1 h + 1 ) 19- Calculate the total heat transfer area, for the purpose of cost estimation = Following above steps are the calculations of thermal design, which find the dimensions of the heat exchanger and the quantity of some feature, such as nozzles, baffles, shell and tubes. As it seems very lengthy and the error is not avoidable in manual calculation and the iteration is required to get the final and optimum design of given data which makes the design very lengthy. Therefore a computer program is developed in present work to ease the calculation and minimize the time. This would make the design an enjoyable task to get the optimum design with the help of computer. A C code is developed based on the method described above. Baffle cut is fixed to 25% as it s the most efficient cut and for simplicity. The program allows the user to choose the different fluid for shell and tube side. The flow diagram of the computer program is illustrated in the Fig. 1. RESULT AND DISCUSSION The performance of the proposed model is illustrated through the analysis of the results obtained in an example of design tasks and comparing the solution reached with a shell and tube heat exchanger that employed in a locomotive for cooling the lubricating oil of the engine, the data had taken from diesel locomotive works, Varanasi. And the heat exchanger is employing to maintain the lubricating oil temperature between 65.6 C and 60 C. The requirement data to design the shell and tube heat exchanger is illustrated in table (1). Table (2) shows three columns. Run1 (with the same data of locomotive heat exchanger column) gives the acceptable design for a given data that the length assumed was 1.4 m and the 381

5 calculated length is 1.37 m which it is quite close to the assumed one. The last column show the result of real heat exchanger (DLW, Varanasi) the design result is comparable with a deviation of 5-10%. Run2 contains the result of different input data (different in tube diameters only in Run1=0.019, in Run2=0.025) and is an example of how the designers (users) can use the program and examine the variable input parameters to get an optimum design for a particular task, following are the difference observed between Run1 and Run2: (1)The heat exchanger first cost has increased due to the increase in the heat transfer area. (2)Tube side heat transfer coefficient is not much affected with the change due to the fact that the velocity in tubes in both cases had been fixed at 2.25 m/s. (3)Shell side heat transfer coefficient is decreased. (4)Tube side pressure drop is less in Run2. (5)The overall heat transfer coefficient has decreased in Run2. This comparison shows that Run1 is the optimum design, which has a better utilization of allowable pressure drop to heat transfer coefficient, which Leads to a more economic design (less heat transfer area or the smaller heat exchanger) for a particular heat load. Table 1 Data of case study Heat load = Flow configuration = Matrix geometry = Tube size (m) = W 2 passes triangular pitch 0.019m outside diameter, inside diameter shell Fluid oil water Temperature in ( ) Temperature out ( ) Allowable pressure drop (Pa) Density (/ ) Heat capacity (.) Viscosity (Pa. s) Thermal conductivity (.) Total flow rate (kg/s) tube 382

6 Figure 1 Flow chart of the program Table 2 Thermal-hydraulic result Geometry present work Run1 present work Run2 Locomotive SHTH no. of tubes shell diameter (m) nozzles diameter (m) N.A. baffle spacing (m) baffle cut 25% 25% 34% baffle number tube length (m) heat transfer area ( ) N.A. tube side pressure drop (Pa) N.A. tube side heat coefficient (. ) N.A. shell side heat coefficient(. ) N.A. over all heat coefficient(. ) N.A. (N.A.= not available) 383

7 CONCLUSION The design strategy is based mainly on Tinker method which provides a good prediction for shell side flow. The design model was very close to the ideality. The optimization strategy is based on two things, (i) assumptions made for tube side velocity, utilization of all shell side pressure drop, and the fixed baffle cut. And (ii) the need of a computer aided design, that can be used to examine all the design parameters for a given heat load to get the economic design. This work and specially the computer program is useful for both the customers and the designers. A customer can get a first idea about the size and the component of the required heat exchanger and can select it from hundreds of the heat exchangers provided in manufacturer s catalogues. And for the designer to test all the design parameters to get an economical design, and this can be made easily with the help of the computer program. NOMENCLATURE Q Heat load () A The area of heat transfer ( ) Total number of tubes Total flow rate (/) Flow friction factor Tube length () Tube inside diameter () Tube outside diameter () Number of tube side passes Diameter of circle circumscribed () Reynolds number Reynolds number for pressure drop calculations Reynolds number for heat transfer coefficient calculations Shell diameter () Nozzle diameter () Ratio of the effective flow passage area for cross flow through the tube matrix to the total flow passage area A factor which when multiplied by gives the ratio of the baffle window pressure drop to the tube matrix pressure drop for the shell side flow Tube spacing () Fraction of the shell side flow passing through the tube matrix for the determination of the pressure drop Factors used in the calculation of Fraction of the shell side flow passing through the tube matrix for the determination of the heat transfer coefficient Factors used in the calculation of 384

8 Shell side mass flow rate for the determination of pressure drop ( ) Shell side mass flow rate for the determination of heat transfer coefficient ( ) Coefficient in step 5 Coefficient in step 5 h Heat transfer coefficient ( ) The logarithmic mean temperature difference between the hot and cold fluids ( ) Correction factor applied to calculate Specific heat ( ) The temperature difference at shell side ( ) Baffle spacing () The square root of (average number of tubes per transverse row/number of tubes rows) Mass flow rate ( ) Baffles number Nusslet number Thermal conductivity ( ) Prandtl number Tube conductance obtained by dividing the thermal conductivity of the wall by the tube thickness ( ) Overall heat transfer coefficient ( ) Tube-wall t thickness () Tube-wall conductivity ( ) Fluid velocity ( ) Greek symbols Fluid viscosity () Pressure drop () Fluid density ( ) REFRENCES 1. Kern D.Q. (1950), Process heat transfer, McGraw Hill, New York. 2. Tinker T. (1951) Shell-side characteristic of shell-and-tube heat exchangers, Parts II, III, and I, in: Proceedings of General Discussion on Heat Transfer, Institute of Mechanical Engineers and American Society of Mechanical Engineers, London, New York, pp Frass A.P. (1989), Heat Exchanger Design, John Wiley & sons, New York. 4. Bell K. J. Delaware method for shell-side design, in: Serth R.W., Process heat transfer principles and applications, Elsevier Science & Technology Books, 2007, pp Kakac S., Hongtan L. (2002), Heat exchangers selection, rating and thermal design, CRC Press. 385

9 6. El-Fawal, Fahmy and Taher. (2011), Modelling of Economical Design of Shell and Tube Type Heat Exchanger Using Specified Pressure Drop, Journal of American Science, Vol 7, pp Polley G.T., Shahi M.H. and Nunez M.P. (1991), Rapid design algorithms for shell and tube and compact heat exchangers, Trans Chem, Vol. 69(A), November, pp Kara Y. A., Guraras O. (2004), A computer program for designing of shell-and-tube heat exchangers, Elsevier Applied Thermal Engineering, Vol. 24, PP Adelaja, Ojolo and Sobamowo M. G. (2012), Computer Aided Analysis of Thermal and Mechanical Design of Shell and Tube Heat Exchangers, Advanced Materials Research, Vol. 367, pp LEONG K. C., TOH K. C. (1998), Shell and Tube Heat Exchanger Design Software for Educational Applications, Int. J. Engng Ed. Vol. 14[3], pp Incropera F.P., Dewitt D.P. (1988), Fundamentals of heat transfer, John Wiley & sons, New York. 12. Serth R.W. (2007), Process heat transfer principles and applications, Elsevier Science & Technology Books. 13. Poddar T.K. and Polley G.T. (1996), Heat Exchanger Design through Parameter Plotting, Transactions of the Institution of Chemical Engineers, Vol. 74[A], pp

COMPARATIVE THERMAL ANALYSIS OF CONVENTIONAL TUBULAR HEAT EXCHANGER WITH HELIXCHANGER USING BELL-DELAWARE METHOD

COMPARATIVE THERMAL ANALYSIS OF CONVENTIONAL TUBULAR HEAT EXCHANGER WITH HELIXCHANGER USING BELL-DELAWARE METHOD COMPARATIVE THERMAL ANALYSIS OF CONVENTIONAL TUBULAR HEAT EXCHANGER WITH HELIXCHANGER USING BELL-DELAWARE METHOD Prof.S.S.SHINDE 1*, P.V.HADGEKAR 2, Dr.S.PAVITRAN 3 1 Department of Mechanical Engineering

More information

SHELL-AND-TUBE TEST PROBLEMS

SHELL-AND-TUBE TEST PROBLEMS SHELL-AND-TUBE TEST PROBLEMS The problems that have been used to validate some of the capabilities in INSTED for the analysis of shell-and-tube heat exchanger are discussed in this chapter. You should

More information

Design and rating of Shell and tube heat Exchangers Bell-Delaware method

Design and rating of Shell and tube heat Exchangers Bell-Delaware method King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Design and rating of Shell and tube heat Exchangers Bell-Delaware method 1 April 2018 Bell Delaware method for

More information

DESIGN AND EXPERIMENTAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER (U-TUBE)

DESIGN AND EXPERIMENTAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER (U-TUBE) DESIGN AND EXPERIMENTAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER (U-TUBE) Divyesh B. Patel 1, Jayesh R. Parekh 2 Assistant professor, Mechanical Department, SNPIT&RC, Umrakh, Gujarat, India 1 Assistant

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EXPERIENTIAL INVESTIGATION OF SHELL AND TUBE HEAT EXCHANGER USING KERN METHOD K

More information

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER DESIGN OF A SHELL AND TUBE HEAT EXCHANGER Swarnotpal Kashyap Department of Chemical Engineering, IIT Guwahati, Assam, India 781039 ABSTRACT Often, in process industries the feed stream has to be preheated

More information

CONCENTRIC EXCHANGER TEST PROBLEMS

CONCENTRIC EXCHANGER TEST PROBLEMS CONCENTRIC EXCHANGER TEST PROBLEMS Introduction The tests used to validate INSTED analysis of concentric exchanger module are presented here. You may need to consult the original sources of the various

More information

A computer program for designing of shell-and-tube heat exchangers

A computer program for designing of shell-and-tube heat exchangers Applied Thermal Engineering 24(2004) 1797 1805 www.elsevier.com/locate/apthermeng A computer program for designing of shell-and-tube heat exchangers Yusuf Ali Kara *, Ozbilen G uraras Department of Mechanical

More information

Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers

Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers Advanced Computational Methods in Heat Transfer IX 33 Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers 3 4 S. K. Bhatti,

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) FUZZY FINITE ELEMENT ANALYSIS OF A CONDUCTION HEAT TRANSFER PROBLEM

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) FUZZY FINITE ELEMENT ANALYSIS OF A CONDUCTION HEAT TRANSFER PROBLEM INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 Arun Kumar Tiwari 1 Department of Mechanical Engineering, Institute of Engineering & Technology, GLA University, Mathura, 281004,

More information

NUMERICAL INVESTIGATION OF COUNTER FLOW ISOSCELES RIGHT TRIANGULAR MICROCHANNEL HEAT EXCHANGER

NUMERICAL INVESTIGATION OF COUNTER FLOW ISOSCELES RIGHT TRIANGULAR MICROCHANNEL HEAT EXCHANGER International Journal of Mechanical Engineering and Technology IJMET) Volume 8, Issue 1, January 217, pp. 81 87, Article ID: IJMET_8_1_9 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=1

More information

Designing Steps for a Heat Exchanger ABSTRACT

Designing Steps for a Heat Exchanger ABSTRACT Designing Steps for a Heat Exchanger Reetika Saxena M.Tech. Student in I.F.T.M. University, Moradabad Sanjay Yadav 2 Asst. Prof. in I.F.T.M. University, Moradabad ABSTRACT Distillation is a common method

More information

THERMAL ANALYSIS OF TUBE-FIN CROSS FLOW HEAT EXCHANGER

THERMAL ANALYSIS OF TUBE-FIN CROSS FLOW HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 5, September October 2016, pp.398 406, Article ID: IJMET_07_05_039 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=5

More information

LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS

LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS Hesam Mirgolbabaei ia, Hessam Taherian b a Khajenasir University of Technology, Department of Mechanical Engineering, Tehran,

More information

NEW SIMPLE EQUATIONS FOR DESIGNING OF FINITE FULL JOURNAL BEARING

NEW SIMPLE EQUATIONS FOR DESIGNING OF FINITE FULL JOURNAL BEARING INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

PERFORMANCE ANALYSIS OF SHELL AND TUBE HEAT EXCHANGERS USING AN EDUCATIONAL APPLICATION

PERFORMANCE ANALYSIS OF SHELL AND TUBE HEAT EXCHANGERS USING AN EDUCATIONAL APPLICATION Fundamental J. Thermal Science and Engineering, Vol. 2, Issue 1, 2012, Pages 37-52 Published online at http://www.frdint.com/ PERFORMANCE ANALYSIS OF SHELL AND TUBE HEAT EXCHANGERS USING AN EDUCATIONAL

More information

Modelling of Economical Design of Shell and Tube Type Heat Exchanger Using Specified Pressure Drop

Modelling of Economical Design of Shell and Tube Type Heat Exchanger Using Specified Pressure Drop Modelling of Economical Design of Shell and Tube Type Heat Exchanger Using Specified Pressure Drop M. M. El-Fawal *1, A. A. Fahmy 2 and B. M. Taher 3 1 National Center for Nuclear Safety and Radiation

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): 2321-0613 Performance of Rectangular Baffle Plate Shell and Tube Heat Exchanger using Computational

More information

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations 1 Ganapathi Harish, 2 C.Mahesh, 3 K.Siva Krishna 1 M.Tech in Thermal Engineering, Mechanical Department, V.R Siddhartha Engineering

More information

Simplified and approximated relations of heat transfer effectiveness for a steam condenser

Simplified and approximated relations of heat transfer effectiveness for a steam condenser Open Access Journal Journal of Power Technologies 92 (4) (2012) 258 265 journal homepage:papers.itc.pw.edu.pl Simplified and approximated relations of heat transfer effectiveness for a steam condenser

More information

Effect of tube pitch on heat transfer in shell-and-tube heat exchangers new simulation software

Effect of tube pitch on heat transfer in shell-and-tube heat exchangers new simulation software Heat Mass Transfer (2006) 42: 263 270 DOI 0.007/s0023-005-0002-9 ORIGINAL A. Karno Æ S. Ajib Effect of tube pitch on heat transfer in shell-and-tube heat exchangers new simulation software Received: 9

More information

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 03, March 2019, pp. 555-566. Article ID: IJMET_10_03_057 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=3

More information

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction HEAT TRANSFER Mechanisms of Heat Transfer: (1) Conduction where Q is the amount of heat, Btu, transferred in time t, h k is the thermal conductivity, Btu/[h ft 2 ( o F/ft)] A is the area of heat transfer

More information

Journal of Heat and Mass Transfer Research

Journal of Heat and Mass Transfer Research Journal of Heat and Mass Transfer Research 4 (016) 83-90 Journal of Heat and Mass Transfer Research Journal homepage: http://jhmtr.journals.semnan.ac.ir Effect of baffle on shell-and-tube heat exchanger

More information

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime SINZIANA RADULESCU*, IRENA LOREDANA NEGOITA, ION ONUTU University Petroleum-Gas of Ploiesti, Department

More information

Heat Transfer Equipment

Heat Transfer Equipment Università di Pisa Facoltà di Ingegneria Heat Transfer Equipment Unit Operation I Prof. Cristiano Nicolella Typical overall heat transfer coefficients Fouling factors Frank nomograph Fouling factors Exchanger

More information

Thermal Design of Shell and tube heat Exchanger

Thermal Design of Shell and tube heat Exchanger King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Thermal Design of Shell and tube heat Exchanger March 2018 1 Contents 1-Introduction 2-Basic components Shell types

More information

Numerical Simulation of the Shell-and-Tube Heat Exchanger: Influence of the Lower Flows and the Baffles on a Fluid Dynamics

Numerical Simulation of the Shell-and-Tube Heat Exchanger: Influence of the Lower Flows and the Baffles on a Fluid Dynamics Advances in Chemical Engineering and cience, 017, 7, 349-361 http://www.scirp.org/journal/aces IN Online: 160-0406 IN Print: 160-039 Numerical imulation of the hell-and-tube Heat Exchanger: Influence of

More information

The Effect of Mass Flow Rate on the Effectiveness of Plate Heat Exchanger

The Effect of Mass Flow Rate on the Effectiveness of Plate Heat Exchanger The Effect of Mass Flow Rate on the of Plate Heat Exchanger Wasi ur rahman Department of Chemical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 222,

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information

8.1 Technically Feasible Design of a Heat Exchanger

8.1 Technically Feasible Design of a Heat Exchanger 328 Technically Feasible Design Case Studies T 2 q 2 ρ 2 C p2 T F q ρ C p T q ρ C p T 2F q 2 ρ 2 C p2 Figure 3.5. Countercurrent double-pipe exchanger. 8. Technically Feasible Design of a Heat Exchanger

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS طراحی مبدل های حرارتی مهدي کریمی ترم بهار 96-97 HEAT TRANSFER CALCULATIONS ١ TEMPERATURE DIFFERENCE For any transfer the driving force is needed General heat transfer equation : Q = U.A. T What T should

More information

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced.

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced. 1 Heat Transfer F12-ENG-135 - Lab #4 Forced convection School of Engineering, UC Merced. October 23, 2012 1 General purpose of the Laboratory To gain a physical understanding of the behavior of the average

More information

TUBE BANKS TEST PROBLEMS

TUBE BANKS TEST PROBLEMS TUBE BANKS TEST PROBLEMS The non-proprietary tests used to validate INSTED analysis of flow and heat transfer over tube banks are presented in this section. You may need to consult the original sources

More information

6340(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013) IAEME AND TECHNOLOGY (IJMET)

6340(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013) IAEME AND TECHNOLOGY (IJMET) INTERNATIONAL International Journal of Mechanical JOURNAL Engineering OF MECHANICAL and Technology (IJMET), ENGINEERING ISSN 0976 AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

GRAVITY EFFECT ON THE DISTRIBUTION OF REFRIGERANT FLOW IN A MULTI-CIRCUITED CONDENSER

GRAVITY EFFECT ON THE DISTRIBUTION OF REFRIGERANT FLOW IN A MULTI-CIRCUITED CONDENSER Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Eds. R.K. Shah, M. Ishizuka, T.M. Rudy, and V.V. Wadekar, Engineering

More information

Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes

Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes Adesh Dhope 1, Omkar Desai 2, Prof. V. Verma 3 1 Student, Department of Mechanical Engineering,Smt. KashibaiNavale college of

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 10- Shell and Tube Heat Exchanger Design Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Steps in Shell and tube heat exchanger Example Review Shell and tube

More information

Enhancement in heat transfer coefficient of water by using nano-fluids for corrugated plate heat exchanger

Enhancement in heat transfer coefficient of water by using nano-fluids for corrugated plate heat exchanger Enhancement in heat transfer coefficient of water by using nano-fluids for corrugated plate heat exchanger #1 Mr. M. C. Shinde, #2 Dr. P. A. Patil #12 Mechanical Engineering Department, Jayawantrao Sawant

More information

ORC Condenser Heat Exchanger Design and Modelling

ORC Condenser Heat Exchanger Design and Modelling ORC Condenser Heat Exchanger Design and Modelling Shadreck M. Situmbeko University of Botswana, Gaborone, Botswana; University of KwaZulu-Natal, Durban, RSA; Freddie L. Inambao University of KwaZulu-Natal,

More information

Performance Optimization of Air Cooled Heat Exchanger Applying Analytical Approach

Performance Optimization of Air Cooled Heat Exchanger Applying Analytical Approach e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 355 359 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Optimization of Air Cooled Heat Exchanger Applying Analytical Approach

More information

Introduction to Heat and Mass Transfer

Introduction to Heat and Mass Transfer Introduction to Heat and Mass Transfer Week 16 Merry X mas! Happy New Year 2019! Final Exam When? Thursday, January 10th What time? 3:10-5 pm Where? 91203 What? Lecture materials from Week 1 to 16 (before

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

FLOW DISTRIBUTION ANALYSIS IN A HEAT EXCHANGER WITH DIFFERENT HEADER CONFIGURATIONS

FLOW DISTRIBUTION ANALYSIS IN A HEAT EXCHANGER WITH DIFFERENT HEADER CONFIGURATIONS FLOW DISTRIBUTION ANALYSIS IN A HEAT EXCHANGER WITH DIFFERENT HEADER CONFIGURATIONS M. M. Matheswaran 1, S. Karthikeyan 2 and N. Rajiv Kumar 2 1 Department of Mechanical Engineering, Jansons Institute

More information

SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW

SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW THERMAL SCIENCE: Year 2012, Vol. 16, No. 4, pp. 1165-1174 1165 SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW by Rajagapal

More information

Investigation of Heat Transfer on Smooth and Enhanced Tube in Heat Exchanger

Investigation of Heat Transfer on Smooth and Enhanced Tube in Heat Exchanger International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Investigation

More information

Design of Heat Transfer Equipment

Design of Heat Transfer Equipment Design of Heat Transfer Equipment Types of heat transfer equipment Type service Double pipe exchanger Heating and cooling Shell and tube exchanger All applications Plate heat exchanger Plate-fin exchanger

More information

NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER

NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER 1 Ajay Pagare, 2 Kamalnayan Tripathi, 3 Nitin Choudhary 1 Asst.Profesor at Indore institute of science and technology Indore, 2 Student at Indore institute

More information

arxiv: v1 [physics.app-ph] 25 Mar 2018

arxiv: v1 [physics.app-ph] 25 Mar 2018 Improvement of heat exchanger efficiency by using hydraulic and thermal entrance regions arxiv:1803.09255v1 [physics.app-ph] 25 Mar 2018 Abstract Alexey Andrianov a, Alexander Ustinov a, Dmitry Loginov

More information

PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS

PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS PERIODICA POLYTECHNICA SER. CHEM. ENG. VOL. 45, NO. 1, PP. 35 40 (2001) PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS Ágnes BÁLINT Department of Chemical Technology Budapest University

More information

[Pandita*, 4.(6): June, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Pandita*, 4.(6): June, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CFD ANALYSIS OF A SINGLE SHELL AND SINGLE TUBE HEAT EXCHANGER AND DETERMINING THE EFFECT OF BAFFLE ANGLE ON HEAT TRANSFER Manoj

More information

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 20 CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 3.1 INTRODUCTION A Shell and Tube Heat Exchanger is usually used for higher pressure applications, which consists of a series of tubes, through which one of the

More information

Design and study of pressure drop and temperature distribution characteristics in a shell and tube heat exchanger using Computational Fluid Dynamics.

Design and study of pressure drop and temperature distribution characteristics in a shell and tube heat exchanger using Computational Fluid Dynamics. Design and study of pressure drop and temperature distribution characteristics in a shell and tube heat exchanger using Computational Fluid Dynamics. Sunilakumar. Biradar. B.L.D.E.A s V.P.Dr.P.G.H College

More information

Analysis of Frictional Pressure Drop based on Flow Regimes of Oil-water Flow in Pipeline

Analysis of Frictional Pressure Drop based on Flow Regimes of Oil-water Flow in Pipeline Journal of Scientific & Industrial Research Vol. 74, March 2015, pp. 180-184 Analysis of Frictional Pressure Drop based on Flow Regimes of Oil-water Flow in Pipeline K R Naidu 1, T K Mandal 2 and S K Majumder

More information

Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes. ISSN : 2248-9622, Vol. 4, Issue 12( Part 3), December 214, pp.6-11 RESEARCH ARTICLE OPEN ACCESS Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes. Dhanraj S.Pimple 1,Shreeshail.B.H

More information

Thermal Analysis of Cross Flow Heat Exchangers

Thermal Analysis of Cross Flow Heat Exchangers Website: www.ijetae.com (ISSN 225-2459, ISO 9:28 Certified Journal, Volume 4, Special Issue 9, September 24) hermal Analysis of Cross Flow Heat Exchangers Shreyas Muralidharan & B. Gokul Maharaj School

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10

Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10 Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10 Wu Xinxin 1), Xu Zhao ) 1) Professor, INET, Tsinghua University, Beijing, P.R.China (xinxin@mail.tsinghua.edu.cn)

More information

ANALYSIS OF UNIDIRECTIONAL AND BI-DIRECTIONAL FLOW HEAT EXCHANGERS

ANALYSIS OF UNIDIRECTIONAL AND BI-DIRECTIONAL FLOW HEAT EXCHANGERS ANALYSIS OF UNIDIRECTIONAL AND BI-DIRECTIONAL FLOW HEAT EXCHANGERS K.SURESH 1, P.SRINIVASULU 2 AND P.RAJU 3 1 M.Tech (TE) Student, Dept.of Mechanical Engineering, Vaagdevi College of Engineering, Bollikunta,

More information

EFFECTIVENESS OF HEAT TRANSFER INTENSIFIERS IN A FLUID CHANNEL

EFFECTIVENESS OF HEAT TRANSFER INTENSIFIERS IN A FLUID CHANNEL International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 9, September 2018, pp. 58 62, Article ID: IJMET_09_09_007 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=9

More information

Analytical solutions of heat transfer for laminar flow in rectangular channels

Analytical solutions of heat transfer for laminar flow in rectangular channels archives of thermodynamics Vol. 35(2014), No. 4, 29 42 DOI: 10.2478/aoter-2014-0031 Analytical solutions of heat transfer for laminar flow in rectangular channels WITOLD RYBIŃSKI 1 JAROSŁAW MIKIELEWICZ

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 177 Numerical Analysis of One-Dimensional Unsteady State Heat Transfer Through a Plane Wall Using Visual Basic

More information

ME-662 CONVECTIVE HEAT AND MASS TRANSFER

ME-662 CONVECTIVE HEAT AND MASS TRANSFER ME-66 CONVECTIVE HEAT AND MASS TRANSFER A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India LECTURE- INTRODUCTION () March 7, 00 / 7 LECTURE- INTRODUCTION

More information

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD International Journal of Thermal Technologies ISSN 2277-4114 213 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Research Article Numerical Analysis of a Helical Coiled

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(2): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(2): Research Article Available online www.jsaer.com, 2014, 1(2):35-43 Research Article ISSN: 2394-2630 ODEN(USA): JSERBR Thermo-economic design and optimization of Parallel-plates ounter flow eat exchanger Mustafa S. Ahmed

More information

ENTROPY GENERATION OF CONVECTION HEAT TRANSFER IN AN ASYMMETRICALLY HEATED PACKED DUCT

ENTROPY GENERATION OF CONVECTION HEAT TRANSFER IN AN ASYMMETRICALLY HEATED PACKED DUCT University of Nebraska - Lincoln From the SelectedWorks of YASAR DEMIREL 1997 ENTROPY GENERATION OF CONVECTION HEAT TRANSFER IN AN ASYMMETRICALLY HEATED PACKED DUCT YASAR DEMIREL H.H. Ali B.A. Abu-Al-Saud

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

COMPARISON OF MEASURED AND ANALYTICAL PERFORMANCE OF SHELL-AND-TUBE HEAT EXCHANGERS COOLING AND HEATING SUPERCRITICAL CARBON DIOXIDE

COMPARISON OF MEASURED AND ANALYTICAL PERFORMANCE OF SHELL-AND-TUBE HEAT EXCHANGERS COOLING AND HEATING SUPERCRITICAL CARBON DIOXIDE The 4th International Symposium - Supercritical CO Power Cycles September 9-10, 014, Pittsburgh, Pennsylvania COMPARISON OF MEASURED AND ANALYTICAL PERFORMANCE OF SHELL-AND-TUBE HEAT EXCHANGERS COOLING

More information

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 717 724, Article ID: IJMET_09_05_079 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study Nityanand Pawar Mechanical Engineering, Sardar Patel College of Engineering, Mumbai, Maharashtra, India nitya.pawar@gmail.com

More information

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works? HEAT EXCHANGERS 1 INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants How it works? 2 WHAT ARE THEY USED FOR? Classification according to service. Heat

More information

HEAT EXCHANGER. Objectives

HEAT EXCHANGER. Objectives HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers

More information

A COMPARISON OF HEAT TRANSFER AROUND A SINGLE SERRATED FINNED TUBE AND A PLAIN FINNED TUBE

A COMPARISON OF HEAT TRANSFER AROUND A SINGLE SERRATED FINNED TUBE AND A PLAIN FINNED TUBE IJRRAS 2 (2) February A COMPARISON OF HEAT TRANSFER AROUND A SINGLE SERRATED FINNED TUBE AND A PLAIN FINNED TUBE S. R. MCILWAIN School of Engineering, University of the West of Scotland, Hamilton, Scotland

More information

Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser Jan Havlík 1,*, Tomáš Dlouhý 1 1 Czech Technical University in Prague, Faculty of Mechanical Engineering, Department

More information

AN INVESTIGATION OF CAVITATION PHENOMENONN DUE FLOW PAST OBSTACLES IN CHANNELS

AN INVESTIGATION OF CAVITATION PHENOMENONN DUE FLOW PAST OBSTACLES IN CHANNELS International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 13, December 2018, pp.449 455, Article ID: IJCIET_09_13_0444 Available online at http://www.ia aeme.com/ijciet/issues.asp?jtype=ijciet&vtype=

More information

Characteristics of forced convection heat transfer in vertical internally finned tube B

Characteristics of forced convection heat transfer in vertical internally finned tube B International Communications in Heat and Mass Transfer 32 (2005) 557 564 www.elsevier.com/locate/ichmt Characteristics of forced convection heat transfer in vertical internally finned tube B A. Al-Sarkhi*,

More information

WTS Table of contents. Layout

WTS Table of contents. Layout Table of contents Thermal and hydraulic design of shell and tube heat exchangers... 2 Tube sheet data... 4 Properties of Water and Steam... 6 Properties of Water and Steam... 7 Heat transfer in pipe flow...

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Heat Exchanger Design

Heat Exchanger Design Heat Exchanger Design Heat Exchanger Design Methodology Design is an activity aimed at providing complete descriptions of an engineering system, part of a system, or just a single system component. These

More information

Key words: heat exchanger, longitudinal conduction, heat in-leak, helium liquefier, helium refrigerator

Key words: heat exchanger, longitudinal conduction, heat in-leak, helium liquefier, helium refrigerator INFLUENCE OF HEAT IN-LEAK, LONGITUDINAL CONDUCTION AND PROPERTY VARIATIONS ON THE PERFORMANCE OF CRYOGENIC PLATE-FIN HEAT EXCHANGERS BASED ON DISTRIBUTED PARAMETER MODEL Qingfeng Jiang a,b,*, Ming Zhuang

More information

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Vol. 2, No. 4 Modern Applied Science Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Dr. Kaliannan Saravanan Professor & Head, Department of Chemical Engineering Kongu Engineering

More information

Dipak P. Saksena Assistant Professor, Mechancial Engg. Dept.Institute of Diploma Studies.Nirmaunieversity

Dipak P. Saksena Assistant Professor, Mechancial Engg. Dept.Institute of Diploma Studies.Nirmaunieversity International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 7 ǁ July. 2013 ǁ PP.17-29 Entropy generation analysis for fully developed laminar

More information

Performance Analysis of Compact Heat Exchanger

Performance Analysis of Compact Heat Exchanger IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Performance Analysis of Compact Heat Exchanger Manju Singh Department of

More information

Thermo-Hydraulic Performance of a Roughened Square Duct Having Inclined Ribs with a Gap on Two Opposite Walls

Thermo-Hydraulic Performance of a Roughened Square Duct Having Inclined Ribs with a Gap on Two Opposite Walls International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 10 (July 2013), PP. 55-63 Thermo-Hydraulic Performance of a Roughened Square

More information

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Jayant Deshmukh Department of Mechanical Engineering Sagar Institute of Research and Technology, Bhopal, M.P., India D.K. Mudaiya

More information

HEAT TRANSFER AND EXCHANGERS

HEAT TRANSFER AND EXCHANGERS HEAT TRANSFER AND EXCHANGERS Although heat-transfer rates can be computed with reasonable accuracy for clean or new pipe, the effect of dirty or corroded pipe surfaces cannot he satisfactorily estimated.

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

A Comparative Second Law Analysis of Microchannel Evaporator with R-134A & R-22 Refrigerants

A Comparative Second Law Analysis of Microchannel Evaporator with R-134A & R-22 Refrigerants International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 A Comparative Second Law Analysis of Microchannel Evaporator with R-134A & R-22 Refrigerants Suhel Khan, Dr.Suwarna

More information

Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger

Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger Proceedings of the World Congress on Engineering 202 Vol III WCE 202, July 4-6, 202, London, U.K. Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger Nilesh K. Patil and

More information

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Optimization

More information

EFFECTS OF GEOMETRIC PARAMETERS ON ENTROPY GENERATION IN FIRE-TUBE STEAM BOILER S HEAT EXCHANGER

EFFECTS OF GEOMETRIC PARAMETERS ON ENTROPY GENERATION IN FIRE-TUBE STEAM BOILER S HEAT EXCHANGER Journal of Engineering Studies and Research Volume 21 (2015) No. 4 35 EFFECTS OF GEOMETRIC PARAMETERS ON ENTROPY GENERATION IN FIRE-TUBE STEAM BOILER S HEAT EXCHANGER OLUMUYIWA LASODE 1, JOSEPH OYEKALE

More information

Pressure Losses for Fluid Flow Through Abrupt Area. Contraction in Compact Heat Exchangers

Pressure Losses for Fluid Flow Through Abrupt Area. Contraction in Compact Heat Exchangers Pressure Losses for Fluid Flow Through Abrupt Area Contraction in Compact Heat Exchangers Undergraduate Research Spring 004 By Bryan J. Johnson Under Direction of Rehnberg Professor of Ch.E. Bruce A. Finlayson

More information

Axial profiles of heat transfer coefficients in a liquid film evaporator

Axial profiles of heat transfer coefficients in a liquid film evaporator Axial profiles of heat transfer coefficients in a liquid film evaporator Pavel Timár, Ján Stopka, Vladimír Báleš Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology,

More information

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID THERMAL SCIENCE: Year 2016, Vol. 20, No. 1, pp. 89-97 89 HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID by Adnan M. HUSSEIN a*, Rosli Abu BAKAR b, Kumaran KADIRGAMA

More information

A note on critical flow section in collector channels

A note on critical flow section in collector channels Sādhan ā, Vol. 26, Part 5, October 2001, pp. 439 445. Printed in India A note on critical flow section in collector channels 1. Introduction SUBHASISH DEY Department of Civil Engineering, Indian Institute

More information

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption International Journal of Fluid Mechanics & Thermal Sciences 217; 3(5): 52-61 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.21735.12 ISSN: 2469-815 (Print); ISSN: 2469-8113 (Online)

More information