ENTROPY GENERATION OF CONVECTION HEAT TRANSFER IN AN ASYMMETRICALLY HEATED PACKED DUCT

Size: px
Start display at page:

Download "ENTROPY GENERATION OF CONVECTION HEAT TRANSFER IN AN ASYMMETRICALLY HEATED PACKED DUCT"

Transcription

1 University of Nebraska - Lincoln From the SelectedWorks of YASAR DEMIREL 1997 ENTROPY GENERATION OF CONVECTION HEAT TRANSFER IN AN ASYMMETRICALLY HEATED PACKED DUCT YASAR DEMIREL H.H. Ali B.A. Abu-Al-Saud Available at:

2 Pergamon Int. Comm. Heat Mass Transfer, Vol. 24, No. 3, pp , 1997 Copyright 1997 Elsevier Science Ltd Printed m the USA. AU rights reserved ,/97 $ PII S (97) ENTROPY GENERATION OF CONVECTION HEAT TRANSFER IN AN ASYMMETRICALLY HEATED PACKED DUCT Y. Demirel, H. H. A1-Ali and B. A. Abu-AI-Saud Department of Chemical Engineering King Fahd University of Petroleum & Minerals, Dhahran Saudi Arabia (Communicated by J.P. Hartnett and W.J. Minkowycz) ABSTRACT An expression for the volumetric rate of entropy generation has been derived and displayed graphically to analyze the convection heat transfer for a fully established flow in a rectangular packed duct with LAt=I6 and H/W= The top and bottom walls of the duct are heated by constant, asymmetric heat fluxes, while the other walls are insulated that is the L2 thermal boundary conditions. Entropy generation maps reveal the regions where excessive entropy generation occurs due to physical and geometric parameters for a specified task within the system. Copyright 1997 Elsevier Science Ltd Introduction In an early study, CoIburn [ 1 ] reported that the rate of forced convection heat transfer from uniformly heated wall to air through a packed tube is about eight times higher than that of empty tube. Experimental investigation in a rectangular packed duct with unequal wall temperatures has also shown considerable increase in heat-transfer rate: Demirel [2] reported an increase of about twice in an air flow passage with L/H=8.3, and packed with Raschig ring, and Chrysler and Simons [3] found about ten times increase for liquid fluorocarbon-77 in a packed channel of spheres with L/H = 4.62, while, in a recent study, Hwang et al [4] reported an increase of three times for Freon-113 in a duct with L/H=9.0, H/W= and spherical packing Asymmetric thermal boundary conditions are common in thermal engineering and especially in electronic cooling [3], and all the possible thermal boundary conditions of convection heat transfer in a rectangular duct with constant heat flux are detailed by Gao and Hartnett [5]. In a recent study, Demirel and A1-AIi [6] derived an equation for the volumetric rate of entropy generation for fully developed flow in a packed channel with single surface heated by a constant 381

3 382 Y. Demirel, H.H. AI-Ali and B.A. Abu-Al-Saud Vol. 24, No. 3 heat flux (1L). This study concerns the effect of the asymmetric heating on the entropy generation in a packed air flow passage when two large surfaces (2L) are heated with constant, asymmetric heat fluxes. Entropy Generation The non equilibrium phenomenon of exchange of energy and momentum within the fluid and at the solid boundaries causes of continuous generation of entropy in the flow field. Local entropy generations per unit volume S'" of an incompressible Newtonian fluid for a twodimensional channel are represented by [7]: T2Lk.,~xJ +(~) +T 2(--~) showing the entropy generations due to finite temperature difference, and fluid friction by the first and second term respectively. Entropy generation profiles may be generated using equation (1) if the velocity and temperature fields are known in the heat transfer medium The duct under consideration is shown in Fig. 1,,,1/ Q~ y=h dy T ds"' T+dT dx Q2 y=o FIG. 1 Control volume of the rectangular duct It is assumed that the difference of wall-to-fluid bulk temperature is small enough, and there is no considerable change in physical properties of the fluid, no axial conduction, and no natural convection. Slug flow conditions (u = %) prevail through the cross section of the packed flow passage. The differential energy equation is

4 Vol. 24, No. 3 ENTROPY GENERATION IN A HEATED PACKED DUCT 383 (2> The heated walls are subjected to constant, asymmetric heat fluxes, which provide the necessary boundary conditions: at y = 0 at y = H -ke(c~t/oy) = Q2 = constant ke(cti'/oy) = Q1- constant The linearity of the energy equation (2) suggests that superposition methods may be employed to build solutions for asymmetric heating by adding the two fundamental solutions: (i) the surface one heated with the other insulated and (ii) the surface two heated with the other insulated. Hence the temperature profile for the system shown in Fig. 1 may be expressed by: where T= 1~(1+ r,4) (3) A = (hh/ 2k~)[(n + 1)Y 2-2nY 1] + (n + 1)(StX + 1) Y=y/H ; X=x/H ; ~=Q1/(hTo) ; n=q2/qt The effective thermal conductivity k e be expressed by: ke=k f e+(l-c) 0.2 3kp) P\I+--~ 2-) (4) which combines the static and dynamic contributions, shown by the first and second terms, respectively [8] The volumetric rate of entropy generation for the packed duct under consideration may be reduced from equation (1) and given by: Here the first term shows the entropy generated due to finite temperature difference S~r, while the entropy generated due to fluid friction S~ is shown by the second term. The ratio of these is: 0 = / (6) After inserting the velocity and temperature gradients which are detailed elsewhere [6] an expression for the volumetric rate of entropy generation may be derived and given by:

5 384 Y. Demirel, H.H. Al-Ali and B.A. Abu-AI-Saud Vol. 24, No. 3 (7) where K-00- ) I' e3pd2q ~ ~- o~sdpcpatb ; D = Dp/H In equation (7) local entropy generation has been expressed in terms of n, ~, Y, X and D including the properties of the fluid 9 and Cp The non dimensional volumetric rate of entropy generation J can be obtained as: key3 J= S'" Q21 =Jar+J~ (8) The dimensionless rate of entropy generation over the cross section, J' may be calculated by integration: 1 J'= [ Jdr (9) 0 In order to determine the total entropy generation in the duct, equation (8) must be integrated over the entire duct length. Results and Discussions In the calculations Prandtl number is assumed as 0.7 for the air flow. Y has changed between 0.02 and 0.98, while X varied between 3.0 and 16.0 as an attempt to lessen the entrance and the wall effects. A spherical packing of 4.8 cm in diameter with the void fraction of 0.58 is used. The top and bottom walls of the duct are heated by constant, unequal heat fluxes. For this thermal boundary condition of L2, the Nusselt number for a fully established flow between the parallel plates is given by Kays and Crawford [9]: 5385 Nu - (10) n Where n is the ratio of unequal constant heat fluxes satisfying the condition n<29 It was assumed that the average heat transfer coefficient is about three times higher than those given by the equation (9) after Hwang et al., [4] and Demirel [2] when the spherical packing is introduced into the air flow passage. With this assumption the temperature profiles for the packed duct have

6 Vol. 24, No. 3 ENTROPY GENERATION IN A HEATED PACKED DUCT 385 been estimated for Re=1867, St=0.013, Q1=43.9 W/m 2, To=300.4 K, n = 0.2 and 06, and shown in Fig ~ yo ~ 0.8~/~J/ " I,~,,. 5 1 ~ /,. 0 ~ 7 yo, 60.8~'~ FIG. 2 Temperature profiles for the rectangular packed duct (a) n=q2 " (b) n=0.6. Effect of the asymmetric heating is apparent in the region where the fluid temperature is minimum, and position of the minimum changes according to n. Figure 3 shows the maps of the dimensionless volumetric rate of entropy generation J for n=o2 and 0.6

7 386 Y. Demirel, H.H. AI-Ali and B.A. Abu-AI-Saud Vol. 24, No J O. <~> ~ 0.~'2"---. I/ y0"6 0.8~ ~ 0. 8 ~ 0.6 J O. y0.6 FIG. 3 The distribution of volumetric rate of entropy generation J for the rectangular packed duct packing: (a) n=02 " (b) n=0.6 The trends in the temperature and entropy distributions are similar. The values of J also show a minimum where temperature profiles indicate a minimum, and J is high near the heated walls. In such regions the values of qb are minimum and entropy generation due to heat transfer dominates as seen in Fig. 4.

8 Vol. 24, No. 3 ENTROPY GENERATION IN A HEATED PACKED DUCT 387 o ~ (a) 20.40"~ ~ (b) yo. 60~ FIG 4 Distributions of ratio of entropy generations due to finite pressure and temperature,b: (a) n=0.2 ; (b) n=0,6 However, according to the values of n, qb produces maximum where the temperature profile reaches minimum, hence the heat transfer is minimum. As the total heat input increase, the peak value ofdp decreases, as seen in Fig. 4b. In Fig. 5 the effects of Re on J' are shown for n=02 and 0.6. The cross-sectional entropy generation decreases as Re increases at low values of X

9 388 Y. Demirel, H.H. AI-Ali and B.A. Abu-AI-Saud Vol. 24, No. 3 j, 0.2, 0.21 (a) Re FIG. 5 Effect of Re on cross-sectional entropy generation, J' for the duct (a) n=0.2 (b) n=0.6. Conclusions An expression for the volumetric rate of entropy generation of convection heat transfer in an asymmetrically heated rectangular packed duct has been derived and displayed graphically for a fully developed velocity and temperature profiles. The effect of asymmetric thermal conditions on the entropy generation have been shown. The maps of the volumetric entropy generation reveal the thermodynamic behavior of the transfer system and leads to a better understanding and design of such systems for a specified heat transfer task.

10 Vol. 24, No. 3 ENTROPY GENERATION IN A HEATED PACKED DUCT 389 Acknowledgments The authors wish to acknowledge King Fahd University of Petroleum & Minerals for funding the research project No. CHE/HEATFLUX/173 that resulted in generating this research. A Nomenclature parameter given by equation (2), dimensionless Cp specific heat at constant temperature, J kg "1 K -1 D Dp~ D e equivalent diameter of duct, m I3.57 (WH)21 '3 L W+HI h average heat transfer coefficient, W m -2 K "1 H depth of duct, m S"' kei z dimensionless J' cross-sectional entropy generation, dimensionles kf thermal conductivity &fluid, W m -l K -l k e effective thermal conductivity of fluid, W m -1 K -I L flow path length, m n Q2/Q1 Nu Nusselt number, Nu=hDe/kf Q heat flux rate, W m "2 X x/h (;Dp Rep Reynolds number, Re -- ju Re Reynolds number, Re -- GI) ~ (1 - s)p S*tp St T U W X volumetric rate of entropy generation, W m -3 K-I Stanton number, St - temperature, K velocity, m s -1 width of duct, m direction of fluid flow h pll~, C p

11 390 Y. Demirel, H.H. AI-AIi and B.A. Abu-AI-Saud Vol. 24, No. 3 y direction normal to the flow direction o~ effective thermal diffusivity, m s 2 e void fraction la Newtonian fluid viscosity, kg m "l s -1 p density, kg m -3 d~ ratio of entropy generation by friction to that of heat transfer "t entrance temperature number, ~ = Q l/(hto), dimensionles References 1. A.P. Colburn, Heat transfer and pressure drop in empty, baffled, and packed tubes, Ind. Eng. Chem. 23, (1931). 2. Y. Demirel, Experimental investigation of heat transfer in a packed duct with unequal wall temperatures, Exp. Thermal & Fluid Science, 2, (1989). 3. G. M Chrysler and R E. Simons, An experimental investigation of the forced convection heat transfer characteristics of Fluorocarbon liquid flowing through a packed-bed for immersion cooling of microelectronic heat sources, ASME Symp. HTD 131, (1990). 4. T.H. Hwang, Y Cai and P. Cheng, An experimental study of forced convection in a packed channel with asymmetric heating, Int. J. Heat Mass Transfer, 35, (1992). 5. S.X. Gao and J. P Hartnett, Analytical Nusselt number predictions for slug flow in rectangular duct, Int. Comm. Heat Mass Transfer, 20, (1993). 6. Y. Demirel and H. H. AI-AIi, Performance Analysis of Convective Heat Transfer in a Packed Duct with Asymmetrical Wall Temperatures, Int. J. Heat Mass Transfer, in press. 7. A. Bejan, Advancedengmeering lhermodynamics, p John Wiley, New York (1988). 8. D. Kulkarni and L. K Doraiswamy, Estimation of effective transport properties in packed bed reactors, Catal. Rev. Sci. Eng., 22, (1980). 9 W.M. Kays and M. E Crawford, Convective Heat andmass Transfer, 2nd Ed p McGraw-Hill, New York (1980). Received August l 7, 1996

Thermodynamic analysis of convective heat transfer in an annular packed bed

Thermodynamic analysis of convective heat transfer in an annular packed bed University of Nebraska - Lincoln From the SelectedWorks of YASAR DEMIREL 000 Thermodynamic analysis of convective heat transfer in an annular packed bed YASAR DEMIREL R Kahraman Available at: https://works.bepress.com/yasar_demirel/38/

More information

Packing size anetric heating

Packing size anetric heating University of Nebraska - Lincoln From the SelectedWorks of YASAR DEMIREL 1999 Packing size anetric heating YASAR DEMIREL B.A. Abu Al-Saud H.H. Ali Y. Makkawi Available at: https://works.bepress.com/yasar_demirel/39/

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux Korean Chem. Eng. Res., 52(3), 294-301 (2014) http://dx.doi.org/10.9713/kcer.2014.52.3.294 PISSN 0304-128X, EISSN 2233-9558 Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed

More information

Entropy ISSN

Entropy ISSN 344, 344 363 Entropy ISSN 1099-4300 www.mdpi.org/entropy/ Thermal Analysis in Pipe Flow: Influence of Variable Viscosity on Entropy Generation I. T. Al-Zaharnah 1 and B. S. Yilbas 1 Mechanical Engineering

More information

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations 1 Ganapathi Harish, 2 C.Mahesh, 3 K.Siva Krishna 1 M.Tech in Thermal Engineering, Mechanical Department, V.R Siddhartha Engineering

More information

Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis. S.A. Abdel-Moneim and R.K. Ali*

Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis. S.A. Abdel-Moneim and R.K. Ali* Int. J. Exergy, Vol. 4, No. 4, 2007 401 Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis S.A. Abdel-Moneim and R.K. Ali* Faculty of Engineering (Shoubra),

More information

Analytical solutions of heat transfer for laminar flow in rectangular channels

Analytical solutions of heat transfer for laminar flow in rectangular channels archives of thermodynamics Vol. 35(2014), No. 4, 29 42 DOI: 10.2478/aoter-2014-0031 Analytical solutions of heat transfer for laminar flow in rectangular channels WITOLD RYBIŃSKI 1 JAROSŁAW MIKIELEWICZ

More information

Journal of Solid and Fluid Mechanics. An approximate model for slug flow heat transfer in channels of arbitrary cross section

Journal of Solid and Fluid Mechanics. An approximate model for slug flow heat transfer in channels of arbitrary cross section Vol. 2, No. 3, 2012, 1 7 Journal of Solid and Fluid Mechanics Shahrood University of Technology An approximate model for slug flow heat transfer in channels of arbitrary cross section M. Kalteh 1,*, A.

More information

MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD EFFECT AND VARIATION IN BRINKMAN NUMBER

MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD EFFECT AND VARIATION IN BRINKMAN NUMBER Bulletin of Engineering Tome VII [14] ISSN: 67 389 1. Rasul ALIZADEH,. Alireza DARVISH BAHAMBARI, 3. Komeil RAHMDEL MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD

More information

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel The Effect Of MH On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel Rasul alizadeh,alireza darvish behanbar epartment of Mechanic, Faculty of Engineering Science &

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Characteristics of forced convection heat transfer in vertical internally finned tube B

Characteristics of forced convection heat transfer in vertical internally finned tube B International Communications in Heat and Mass Transfer 32 (2005) 557 564 www.elsevier.com/locate/ichmt Characteristics of forced convection heat transfer in vertical internally finned tube B A. Al-Sarkhi*,

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Entropy 011, 13, 100-1033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

ENTROPY GENERATION DUE TO EXTERNAL FLUID FLOW AND HEAT TRANSFER FROM A CYLINDER BETWEEN PARALLEL PLANES

ENTROPY GENERATION DUE TO EXTERNAL FLUID FLOW AND HEAT TRANSFER FROM A CYLINDER BETWEEN PARALLEL PLANES ENTROPY GENERATION UE TO EXTERNAL FLUI FLOW AN HEAT TRANSFER FROM A CYLINER BETWEEN PARALLEL PLANES Omar A. MELHEM, Ahmet Z. SAHIN*, and Bekir S. YILBAS Mechanical Engineering epartment King Fahd University

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 25-27, 2008

5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 25-27, 2008 Numerical Determination of Temperature and Velocity Profiles for Forced and Mixed Convection Flow through Narrow Vertical Rectangular Channels ABDALLA S. HANAFI Mechanical power department Cairo university

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR)

SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) SIMULATION OF FLOW IN A RADIAL FLOW FIXED BED REACTOR (RFBR) Aqeel A. KAREERI, Habib H. ZUGHBI, *, and Habib H. AL-ALI * Ras Tanura Refinery, SAUDI ARAMCO, Saudi Arabia * Department of Chemical Engineering,

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

ANALYSIS OF UNIDIRECTIONAL AND BI-DIRECTIONAL FLOW HEAT EXCHANGERS

ANALYSIS OF UNIDIRECTIONAL AND BI-DIRECTIONAL FLOW HEAT EXCHANGERS ANALYSIS OF UNIDIRECTIONAL AND BI-DIRECTIONAL FLOW HEAT EXCHANGERS K.SURESH 1, P.SRINIVASULU 2 AND P.RAJU 3 1 M.Tech (TE) Student, Dept.of Mechanical Engineering, Vaagdevi College of Engineering, Bollikunta,

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL

THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL Nader POURMAHMOUD, Hosseinali SOLTANIPOUR *1,, Iraj MIRZAEE Department of Mechanical Engineering,

More information

Dipak P. Saksena Assistant Professor, Mechancial Engg. Dept.Institute of Diploma Studies.Nirmaunieversity

Dipak P. Saksena Assistant Professor, Mechancial Engg. Dept.Institute of Diploma Studies.Nirmaunieversity International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 7 ǁ July. 2013 ǁ PP.17-29 Entropy generation analysis for fully developed laminar

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

A problem of entropy generation in a channel filled with a porous medium

A problem of entropy generation in a channel filled with a porous medium CREATIVE MATH. & INF. 7 (8), No. 3, 357-36 Online version at http://creative-mathematics.ubm.ro/ Print Edition: ISSN 584-86X Online Edition: ISSN 843-44X Dedicated to Professor Iulian Coroian on the occasion

More information

The Effect of Suction and Injection on the Unsteady Flow Between two Parallel Plates with Variable Properties

The Effect of Suction and Injection on the Unsteady Flow Between two Parallel Plates with Variable Properties Tamkang Journal of Science and Engineering, Vol. 8, No 1, pp. 17 (005) 17 The Effect of Suction and Injection on the Unsteady Flow Between two Parallel Plates with Variable Properties Hazem Ali Attia Department

More information

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab)

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab) Important Heat Transfer Parameters CBE 150A Midterm #3 Review Sheet General Parameters: q or or Heat transfer rate Heat flux (per unit area) Cp Specific heat capacity k Thermal conductivity h Convective

More information

Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels

Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels Jian Yang Min Zeng Qiuwang Wang 1 e-mail: wangqw@mail.xjtu.edu.cn State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi an Jiaotong University, Xi an,

More information

MHD Couette Flow with Temperature Dependent Viscosity and the Ion Slip

MHD Couette Flow with Temperature Dependent Viscosity and the Ion Slip Tamkang Journal of Science and Engineering, Vol. 8, No 1, pp. 11 16 (005) 11 MHD Couette Flow with Temperature Dependent Viscosity and the Ion Slip Hazem Ali Attia Department of Mathematics, College of

More information

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate Physics Letters A 37 007) 33 38 www.elsevier.com/locate/pla Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate M. Esmaeilpour, D.D. Ganji

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(2): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(2): Research Article Available online www.jsaer.com, 2014, 1(2):35-43 Research Article ISSN: 2394-2630 ODEN(USA): JSERBR Thermo-economic design and optimization of Parallel-plates ounter flow eat exchanger Mustafa S. Ahmed

More information

Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger

Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger Proceedings of the World Congress on Engineering 202 Vol III WCE 202, July 4-6, 202, London, U.K. Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger Nilesh K. Patil and

More information

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime SINZIANA RADULESCU*, IRENA LOREDANA NEGOITA, ION ONUTU University Petroleum-Gas of Ploiesti, Department

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1 Course plan 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume nalysis 4. Differential nalysis of Fluid Flow

More information

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 143 Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

More information

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer Thermal Engineering and Environment Athens Greece August 5-7 007 49 Laminar Mixed Convection in the Entrance Region of Horizontal Quarter

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani* 1 1 Department of Industrial Engineering - University of Parma Parco Area delle Scienze 181/A I-43124 Parma,

More information

7LAMINAR CONVECTIVE HEAT TRANSFER FOR IN-PLANE SPIRAL COILS OF NON-CIRCULAR CROSS-SECTIONS DUCTS A Computational Fluid Dynamics Study

7LAMINAR CONVECTIVE HEAT TRANSFER FOR IN-PLANE SPIRAL COILS OF NON-CIRCULAR CROSS-SECTIONS DUCTS A Computational Fluid Dynamics Study THERMAL SCIENCE, Year 2012, Vol. 16, No. 1, pp. 109-118 109 7LAMINAR CONVECTIVE HEAT TRANSFER FOR IN-PLANE SPIRAL COILS OF NON-CIRCULAR CROSS-SECTIONS DUCTS A Computational Fluid Dynamics Study by Jundika

More information

Heat Transfer Augmentation through Electric Fan Heater Using Computational Fluid Dynamics

Heat Transfer Augmentation through Electric Fan Heater Using Computational Fluid Dynamics Pa. J. Engg. & Appl. Sci. Vol. 0, Jan., 0 (p. -) eat ransfer Augmentation through Electric Fan eater Using Computational Fluid ynamics M Ahmad, M Shafiq and I. A. Chaudhry 3. search Scholar Mathematics

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

ME-662 CONVECTIVE HEAT AND MASS TRANSFER

ME-662 CONVECTIVE HEAT AND MASS TRANSFER ME-66 CONVECTIVE HEAT AND MASS TRANSFER A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India LECTURE- INTRODUCTION () March 7, 00 / 7 LECTURE- INTRODUCTION

More information

Heat Transfer Enhancement of Solar Air Heater By Using Artificial Roughness double inclined ribs

Heat Transfer Enhancement of Solar Air Heater By Using Artificial Roughness double inclined ribs Heat Transfer Enhancement of Solar Air Heater By Using Artificial Roughness double inclined ribs Faisal mujib¹, Ravindra mohan² ¹Research Scholar, ²Assistant Professor, Mechanical Engineering Dept. IES

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II External Flows 1 Introduction In this chapter we will consider several fundamental flows, namely: the flat plate, the cylinder, the sphere, several other body shapes, and banks

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM S. M. M. EL-Kabeir and A. M. Rashad Department of Mathematics, South Valley University, Faculty

More information

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions Advanced Computational Methods in Heat Transfer X 25 Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions F. Selimovic & B. Sundén

More information

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf

More information

Using LBM to Investigate the Effects of Solid-Porous Block in Channel

Using LBM to Investigate the Effects of Solid-Porous Block in Channel International Journal of Modern Physics and Applications Vol. 1, No. 3, 015, pp. 45-51 http://www.aiscience.org/journal/ijmpa Using LBM to Investigate the Effects of Solid-Porous Bloc in Channel Neda Janzadeh,

More information

Exergy Losses Relation with Driving Forces for Heat Transfer Process on Hot Plates Using Mathematical Programming

Exergy Losses Relation with Driving Forces for Heat Transfer Process on Hot Plates Using Mathematical Programming Proceedings of the 3 rd International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 16) Ottawa, Canada May 2 3, 2016 Paper No. 103 Exergy Losses Relation with Driving Forces for Heat Transfer

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

More information

EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES

EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES THERMAL SCIENCE, Year 015, Vol. 19, No. 5, pp. 161-163 161 EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES by Mahmoud

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

Analysis and Comparison of the Performance of Concurrent and Countercurrent Flow Heat Exchangers

Analysis and Comparison of the Performance of Concurrent and Countercurrent Flow Heat Exchangers Analysis and Comparison of the Performance of Concurrent and Countercurrent Flow Heat Exchangers by David Onarheim An Engineering Project Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute

More information

Second law optimization of a solar air heater having chamfered rib groove roughness on absorber plate

Second law optimization of a solar air heater having chamfered rib groove roughness on absorber plate Renewable Energy 3 (007) 1967 1980 www.elsevier.com/locate/renene Second law optimization of a solar air heater having chamfered rib groove roughness on absorber plate Apurba Layek a,, J.S. Saini b, S.C.

More information

Research Article Second Law Analysis of Laminar Flow in a Circular Pipe Immersed in an Isothermal Fluid

Research Article Second Law Analysis of Laminar Flow in a Circular Pipe Immersed in an Isothermal Fluid Thermodynamics Volume 23, Article ID 234264, pages http://dx.doi.org/.55/23/234264 search Article Second Law Analysis of Laminar Flow in a Circular Pipe Immersed in an Isothermal Fluid Vishal Anand and

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

Parallel Plate Heat Exchanger

Parallel Plate Heat Exchanger Parallel Plate Heat Exchanger Parallel Plate Heat Exchangers are use in a number of thermal processing applications. The characteristics are that the fluids flow in the narrow gap, between two parallel

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

More information

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids International Journal of Energy Science and Engineering Vol. 2, No. 3, 2016, pp. 13-22 http://www.aiscience.org/journal/ijese ISSN: 2381-7267 (Print); ISSN: 2381-7275 (Online) Experimental and Theoretical

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices

Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices Journal of Mathematics and Statistics Original Research Paper Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices 1 Withada Jedsadaratanachai and 2 Amnart Boonloi 1 Department

More information

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID THERMAL SCIENCE: Year 2016, Vol. 20, No. 1, pp. 89-97 89 HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID by Adnan M. HUSSEIN a*, Rosli Abu BAKAR b, Kumaran KADIRGAMA

More information

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10

HEFAT th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics September 2005, Cairo, Egypt AA10 HEFAT5 4 th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 9- September 5, Cairo, Egypt AA Numerical Study of Natural Convection Heat Transfer in Enclosures with Conducting

More information

IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY PART A, VOL. 20, NO. 4, DECEMBER

IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY PART A, VOL. 20, NO. 4, DECEMBER IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY PART A, VOL. 20, NO. 4, DECEMBER 1997 463 Pressure Loss Modeling for Surface Mounted Cuboid-Shaped Packages in Channel Flow Pete

More information

Analysis of Variants Within the Porous Media Transport Models

Analysis of Variants Within the Porous Media Transport Models Analysis of Variants Within the Porous Media Transport Models B. Alazmi K. Vafai e-mail: Vafai.1@osu.edu Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210 An investigation

More information

Temperature and Internal Heat Generation in a Porous Medium

Temperature and Internal Heat Generation in a Porous Medium TECHNISCHE MECHANIK, Band 21, Heft 4, (20011313318 Manuskripteingang: 20. September 200] Free Convection over 3 Vertical Flat Plate with a Variable Wall Temperature and Internal Heat Generation in a Porous

More information

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles Journal of Mathematics and Statistics Original Research Paper Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles 1 Amnart Boonloi and 2 Withada

More information

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Tamkang Journal of Science and Engineering, Vol. 13, No. 4, pp. 405 412 (2010) 405 Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Ho-Ming Yeh Energy and Opto-Electronic

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information

Steady-state Green s function solution for moving media with axial conduction

Steady-state Green s function solution for moving media with axial conduction University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical & Materials Engineering Faculty Publications Mechanical & Materials Engineering, Department of 6-2010 Steady-state

More information

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects Journal of Applied Fluid Mechanics, Vol. 9, Special Issue 1, pp. 139-145, 016. Selected papers from the 7 th International Exergy, Energy and Environment Symposium, IEEE7-015 Available online at www.jafmonline.net,

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

Thermodynamics, Fluid Dynamics, and Heat Transfer

Thermodynamics, Fluid Dynamics, and Heat Transfer Chapter 2 Thermodynamics, Fluid Dynamics, and Heat Transfer 2. Introduction In this chapter we will review fundamental concepts from Thermodynamics, Fluid Dynamics, and Heat Transfer. Each section first

More information

Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation Minimization

Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation Minimization Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation

More information

ISSN Article

ISSN Article Entropy 23, 5, 28-299; doi:.339/e5628 OPEN ACCESS entropy ISSN 99-43 www.mdpi.com/journal/entropy Article Analysis of Entropy Generation Rate in an Unsteady Porous Channel Flow with Navier Slip and Convective

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

This file contains the author's copy of:

This file contains the author's copy of: This file contains the author's copy of: Tasnim, S.H., and Collins, M.R., "Suppressing Natural Convection in a Differentially Heated Square Cavity with an Arc Shaped Baffle", International Communications

More information

UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS

UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS THERMAL SCIENCE, Year 2015, Vol. 19, No. 5, pp. 1761-1768 1761 UNSTEADY MIXED CONVECTION IN A POROUS MEDIA FILLED LID-DRIVEN CAVITY HEATED BY A SEMI-CIRCULAR HEATERS by Md Mustafizur RAHMAN a,c, Hakan

More information

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Gulshan Singh Baghel 1, Dr. A R Jaurker 2 1. Student, M.E. (Heat Power engineering), Jabalpur

More information

Heat and Mass Transfer in Tray Drying

Heat and Mass Transfer in Tray Drying Heat and Mass Transfer in Tray Drying Group # 11: Sami Marchand (GL), Chase Kairdolf (WR), Tiffany Robinson (OR) Instructor: Dr. Wetzel Objective: The objective of this experiment is to exhibit how accurately

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Constructal design of forced convection cooled microchannel heat sinks and heat exchangers

Constructal design of forced convection cooled microchannel heat sinks and heat exchangers International Journal of Heat and Mass Transfer 48 (2005) 3119 3127 www.elsevier.com/locate/ijhmt Constructal design of forced convection cooled microchannel heat sinks and heat exchangers Y.S. Muzychka

More information

International Journal of Heat and Mass Transfer

International Journal of Heat and Mass Transfer International Journal of Heat and Mass Transfer 54 (2011) 1441 1447 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS

3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS 3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS Ali S.* and Baccar M. *Author for correspondence Department of Mechanical Engineering, National Engineering School

More information

Numerical Study of Heat Transfer of Water Flow through Pipe with Property Variations. By Amjad Ali Pasha A. Mushtaq Khalid A.

Numerical Study of Heat Transfer of Water Flow through Pipe with Property Variations. By Amjad Ali Pasha A. Mushtaq Khalid A. Numerical Study of Heat Transfer of Water Flow through Pipe with Property Variations By Amjad Ali Pasha A. Mushtaq Khalid A. Juhany Microchannels, with their small size and high heat dissipation capacity,

More information