Bayesian Ingredients. Hedibert Freitas Lopes

Size: px
Start display at page:

Download "Bayesian Ingredients. Hedibert Freitas Lopes"

Transcription

1 Normal Prior s Ingredients Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL hlopes@chicagobooth.edu

2 Normal Prior s 1 Example i. 2 Normal Outline 3 Prior s 4 5 6

3 Normal Prior s Example i. John claims some discomfort and goes to the doctor. The doctor believes John may have the disease A. θ = 1: John has disease A; θ = 0: he does not. The doctor claims, based on his expertise (H), that P(θ = 1 H) = 0.70 Examination X is related to θ as follows { P(X = 1 θ = 0) = 0.40, positive test given no disease P(X = 1 θ = 1) = 0.95, positive test given disease

4 Normal Prior s Exam s result: X = 1 Observe X = 1 P(θ = 1 X = 1) P(X = 1 θ = 1)P(θ = 1) (0.95)(0.70) = P(θ = 0 X = 1) P(X = 1 θ = 0)P(θ = 0) Consequently (0.40)(0.30) = P(θ = 0 X = 1) = 0.120/0.785 = and P(θ = 1 X = 1) = 0.665/0.785 = The information X = 1 increases, for the doctor, the probability that John has the disease A from 70% to 84.71%.

5 Normal Prior s John undertakes the test Y, which relates to θ as follows 1 P(Y = 1 θ = 1) = 0.99 and P(Y = 1 θ = 0) = 0.04 Then, the of Y = 0 given X = 1 is given by P(Y = 0 X = 1) = P(Y = 0 X = 1, θ = 0)P(θ = 0 X = 1) + P(Y = 0 X = 1, θ = 1)P(θ = 1 X = 1) = P(Y = 0 θ = 0)P(θ = 0 X = 1) + P(Y = 0 θ = 1)P(θ = 1 X = 1) = (0.96)( ) + (0.01)( ) = 15.52% Key condition: X and Y are conditionally independent given θ. 1 Recall that P(X = 1 θ = 1) = 0.95 and P(X = 1 θ = 0) = 0.40.

6 Normal Prior s Model criticism Suppose the observed result was Y = 0. This is a reasonably unexpected result as the doctor only gave it roughly 15% chance. He should at least consider rethinking the based on this result. In particular, he might want to ask himself 1 Did 0.7 adequately reflect his P(θ = 1 H)? 2 Is test X really so unreliable? 3 Is the sample of X correct? 4 Is the test Y so powerful? 5 Have the tests been carried out properly?

7 Normal Prior s Observe Y = 0 Let H 2 = {X = 1, Y = 0}. Then, Bayes theorem leads to P(θ = 1 H 2 ) P(Y = 0 θ = 1)P(θ = 1 X = 1) (0.01)( ) = P(θ = 0 H 2 ) P(Y = 0 θ = 0)P(θ = 0 X = 1) Therefore, P(θ = 1 X = 1, Y = 0) = (0.96)( ) = P(Y = 0, θ = 1 X = 1) P(Y = 0 X = 1) = , H 0 : before X and Y P(θ = 1 H i ) = , H 1 : after X=1 and before Y , H 2 : after X=1 and Y=0

8 Normal Prior s Normal and normal Let us now consider a simple measurement error with normal for the unobserved measurement. X θ N(θ, σ 2 ) θ N(θ 0, τ 2 0 ) with σ 2, θ 0 and τ0 2 known for now. It is easy to show that the posterior of θ given X = x is also normal. More precisely, (θ X = x) N(θ 1, τ 2 1 ) where θ 1 = wθ 0 + (1 w)x τ1 2 = τ0 2 + σ 2 w = τ0 2 2 /(τ0 + σ 2 ) w measures the relative information contained in the with respect to the total information ( plus likelihood).

9 Normal Prior s Example from Box & Tiao (1973) Prior A: Physicist A (large experience): θ N(900, (20) 2 ) Prior B: Physicist B (not so experienced): θ N(800, (80) 2 ). Model: (X θ) N(θ, (40) 2 ). Observation: X = 850 (θ X = 850, H A ) N(890, (17.9) 2 ) (θ X = 850, H B ) N(840, (35.7) 2 ) Information (precision) Physicist A: from to (an increase of 25%) Physicist B: from to (an increase of 400%)

10 Normal Prior s Physicist A: Physicist B: Likelihood Physicist A: posterior Physicist B: posterior θ

11 Normal Prior s Two additional examples Observations x, parameters θ and history H. Likelihood functions/s - p(x θ, H) Example iii : x i θ, H N(θz i ; σ 2 ) i = 1,..., n Example iv : x t θ, H N(0; e θt ) t = 1,..., T Prior s - p(θ H) Example iii : θ H N(θ 0, τ 2 0 ) Example iv : θ t H N(α + βθ t 1, σ 2 ) t = 1,..., T Assume, for now, that (z 1,..., z n, σ 2, ν 0, θ 0, τ 2 0 ) and (α, β, σ 2, θ 0 ) are known and belong to H.

12 Normal Prior s (Bayes Theorem): p(θ x, H) = p(θ, x H) p(x H) = p(x θ, H)p(θ H) p(x H) p(x θ, H)p(θ H) Prior : p(x H) = p(x θ, H)p(θ H) dθ = E θ [p(x θ, H)] Θ

13 Normal Prior s Let y be a new set of observations conditionally independent of x given θ. Then, p(y x, H) = p(y, θ x, H)dθ = p(y θ, x, H)p(θ x, H)dθ Θ Θ = p(y θ, H)p(θ x, H)dθ = E θ x [p(y θ, H)] Θ Note 1: In general, but not always (time series, for example) x and y are independent given θ. Note 2: It might be more useful to concentrate on prediction rather than on estimation since the former is verifiable. In other words, x and y can be observed; not θ.

14 Normal Prior s Experimental result: x 1 p 1 (x 1 θ) p(θ x 1 ) l 1 (θ; x 1 )p(θ) Experimental result: x 2 p 2 (x 2 θ) p(θ x 2, x 1 ) l 2 (θ; x 2 )p(θ x 1 ) l 2 (θ; x 2 )l 1 (θ; x 1 )p(θ) Experimental results: x i p i (x i θ), for i = 3,, n p(θ x n,, x 1 ) l n (θ; x n )p(θ x n 1,, x 1 ) [ n ] l i (θ; x i ) p(θ) i=1

15 Normal Prior s Model, and posterior: x i θ, H N(θz i ; σ 2 ) i = 1,..., n θ H N(θ 0, τ 2 0 ) θ x, H N(θ 1, τ 2 1 ) where τ1 2 = τ0 2 + z z/σ 2 and θ 1 = τ1 2 ( θ0 τ0 2 + z x/σ 2) Note 1: As n increases, τ 1 σ 2 (z z) 1 and θ 1 (z z) 1 z x. Note 2: The same applies when τ 2 0 0, i.e. with little knowledge about θ.

16 Normal Prior s Model, and posterior: SV x t θ t, H N(0; e θt ) t = 1,..., T θ t H N(α + βθ t 1, σ 2 ) t = 1,..., T T p(θ x, H) e θt/2 exp { 12 } x te θt t=1 T t=1 { exp 1 } 2σ 2 (θ t α βθ t 1 ) 2 Unfortunately, closed form solutions are rare. How to compute E(θ 43 x, H) or V (θ 11 x, H)? How to obtain a 95% credible region for (θ 35, θ 36 x, H)? How to sample from p(θ x, H)? How to compute p(x H) or p(x T +1,..., x T +k x, H)?

17 Normal Prior s The standard approach to multiple linear is (y X, β, σ 2 ) N(X β, σ 2 I n ) where y = (y 1,..., y n ), X = (x 1,..., x n ) is the (n q), design matrix and q = p + 1. The of (β, σ 2 ) is NIG(b 0, B 0, n 0, S 0 ), i.e. β σ 2 N(b 0, σ 2 B 0 ) σ 2 IG(n 0 /2, n 0 S 0 /2) for known hyperparameters b 0, B 0, n 0 and S 0.

18 Normal Prior s Conditionals and marginals It is easy to show that (β, σ 2 ) is NIG(b 1, B 1, n 1, S 1 ), i.e. where (β σ 2, y, X ) N(b 1, σ 2 B 1 ) (σ 2 y, X ) IG(n 1 /2, n 1 S 1 /2) B1 1 = B0 1 + X X B1 1 1 = B X y n 1 = n 0 + n n 1 S 1 = n 0 S 0 + (y Xb 1 ) y + (b 0 b 1 ) B 1 0 b 0. It is also easy to derive the full conditional s, i.e. where (β y, X ) t n1 (b 1, S 1 B 1 ) (σ 2 β, y, X ) IG(n 1 /2, n 1 S 11 /2) n 1 S 11 = n 0 S 0 + (y X β) (y X β).

19 Normal Prior s It is well known that Ordinary least squares ˆβ = (X X ) 1 X y ˆσ 2 = S e n q = (y X ˆβ) (y X ˆβ) n q are the OLS estimates of β and σ 2, respectively. The conditional and unconditional sampling s of ˆβ are ( ˆβ σ 2, y, X ) N(β, σ 2 (X X ) 1 ) ( ˆβ y, X ) t n q (β, S e ) respectively, with (ˆσ 2 σ 2 ) IG ( (n q)/2, ((n q)σ 2 /2 ).

20 Normal Prior s Sufficient statistics Recall (y t x t, β, σ 2 ) N(x tβ, σ 2 ) for t = 1,..., n, with β σ 2 N(b 0, σ 2 B 0 ) and σ 2 IG(n 0 /2, n 0 S 0 /2). Then, for y t = (y 1,..., y t ) and X t = (x 1,..., x t ), it follows: (β σ 2, y t, X t ) N(b t, σ 2 B t ) (σ 2 y t, X t ) IG(n t /2, n t S t /2) where n t = n t 1 + 1, Bt 1 = B 1 t 1 + x tx t, Bt 1 b t = B 1 t 1 b t 1 + y t x t and n t S t = n t 1 S t 1 + (y t b tx t )y t + (b t 1 b t ) B 1 The only ingredients needed are: x t x t, y t x t and y 2 t. t 1 b t 1. These recursions will play an important role later on when deriving sequential Monte Carlo methods for conditionally Gaussian dynamic linear s, like many stochastic s.

21 Normal Prior s Predictive The density can be seen as the marginal likelihood, i.e. p(y X ) = p(y X, β, σ 2 )p(β σ 2 )p(σ 2 )dβdσ 2 or, by Bayes theorem, as the normalizing constant, i.e. p(y X ) = p(y X, β, σ2 )p(β σ 2 )p(σ 2 ) p(β σ 2, y, X )p(σ 2 y, X ) which is valid for all (β, σ 2 ). Closed form solution is available for the multiple normal linear : (y X ) t n0 (Xb 0, S 0 (I n + XB 0 X )).

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Bayesian Inference: Concept and Practice

Bayesian Inference: Concept and Practice Inference: Concept and Practice fundamentals Johan A. Elkink School of Politics & International Relations University College Dublin 5 June 2017 1 2 3 Bayes theorem In order to estimate the parameters of

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Time Series and Dynamic Models

Time Series and Dynamic Models Time Series and Dynamic Models Section 1 Intro to Bayesian Inference Carlos M. Carvalho The University of Texas at Austin 1 Outline 1 1. Foundations of Bayesian Statistics 2. Bayesian Estimation 3. The

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2015 Julien Berestycki (University of Oxford) SB2a MT 2015 1 / 16 Lecture 16 : Bayesian analysis

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Particle Learning and Smoothing

Particle Learning and Smoothing Particle Learning and Smoothing Carlos Carvalho, Michael Johannes, Hedibert Lopes and Nicholas Polson This version: September 2009 First draft: December 2007 Abstract In this paper we develop particle

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

A Bayesian Treatment of Linear Gaussian Regression

A Bayesian Treatment of Linear Gaussian Regression A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model y β, σ 2, X N(Xβ,

More information

BAYESIAN MODEL CRITICISM

BAYESIAN MODEL CRITICISM Monte via Chib s BAYESIAN MODEL CRITICM Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31 Hierarchical models Dr. Jarad Niemi Iowa State University August 31, 2017 Jarad Niemi (Iowa State) Hierarchical models August 31, 2017 1 / 31 Normal hierarchical model Let Y ig N(θ g, σ 2 ) for i = 1,...,

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

INTRODUCTION TO BAYESIAN METHODS II

INTRODUCTION TO BAYESIAN METHODS II INTRODUCTION TO BAYESIAN METHODS II Abstract. We will revisit point estimation and hypothesis testing from the Bayesian perspective.. Bayes estimators Let X = (X,..., X n ) be a random sample from the

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Module 4: Bayesian Methods Lecture 5: Linear regression

Module 4: Bayesian Methods Lecture 5: Linear regression 1/28 The linear regression model Module 4: Bayesian Methods Lecture 5: Linear regression Peter Hoff Departments of Statistics and Biostatistics University of Washington 2/28 The linear regression model

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Bayesian Interpretations of Regularization

Bayesian Interpretations of Regularization Bayesian Interpretations of Regularization Charlie Frogner 9.50 Class 15 April 1, 009 The Plan Regularized least squares maps {(x i, y i )} n i=1 to a function that minimizes the regularized loss: f S

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

MONTE CARLO METHODS. Hedibert Freitas Lopes

MONTE CARLO METHODS. Hedibert Freitas Lopes MONTE CARLO METHODS Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

A few basics of credibility theory

A few basics of credibility theory A few basics of credibility theory Greg Taylor Director, Taylor Fry Consulting Actuaries Professorial Associate, University of Melbourne Adjunct Professor, University of New South Wales General credibility

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 8: Importance Sampling Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 8: Importance Sampling 8.1 Importance Sampling Importance sampling

More information

Introduc)on to Bayesian Methods

Introduc)on to Bayesian Methods Introduc)on to Bayesian Methods Bayes Rule py x)px) = px! y) = px y)py) py x) = px y)py) px) px) =! px! y) = px y)py) y py x) = py x) =! y "! y px y)py) px y)py) px y)py) px y)py)dy Bayes Rule py x) =

More information

Data Analysis and Uncertainty Part 2: Estimation

Data Analysis and Uncertainty Part 2: Estimation Data Analysis and Uncertainty Part 2: Estimation Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics in Estimation 1. Estimation 2. Desirable

More information

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak Gaussian processes and bayesian optimization Stanisław Jastrzębski kudkudak.github.io kudkudak Plan Goal: talk about modern hyperparameter optimization algorithms Bayes reminder: equivalent linear regression

More information

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University.

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University. Appendices to To Center or Not to Center: That is Not the Question An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency Yaming Yu Department of Statistics, University of

More information

New Insights into History Matching via Sequential Monte Carlo

New Insights into History Matching via Sequential Monte Carlo New Insights into History Matching via Sequential Monte Carlo Associate Professor Chris Drovandi School of Mathematical Sciences ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Lecture 3. Univariate Bayesian inference: conjugate analysis

Lecture 3. Univariate Bayesian inference: conjugate analysis Summary Lecture 3. Univariate Bayesian inference: conjugate analysis 1. Posterior predictive distributions 2. Conjugate analysis for proportions 3. Posterior predictions for proportions 4. Conjugate analysis

More information

INTRODUCTION TO BAYESIAN STATISTICS

INTRODUCTION TO BAYESIAN STATISTICS INTRODUCTION TO BAYESIAN STATISTICS Sarat C. Dass Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University TOPICS The Bayesian Framework Different Types

More information

Particle Learning and Smoothing

Particle Learning and Smoothing Statistical Science 2010, Vol. 25, No. 1, 88 106 DOI: 10.1214/10-STS325 Institute of Mathematical Statistics, 2010 Particle Learning and Smoothing Carlos M. Carvalho, Michael S. Johannes, Hedibert F. Lopes

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression 1/37 The linear regression model Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression Ken Rice Department of Biostatistics University of Washington 2/37 The linear regression model

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

Quantile Filtering and Learning

Quantile Filtering and Learning Quantile Filtering and Learning Michael Johannes, Nicholas Polson and Seung M. Yae October 5, 2009 Abstract Quantile and least-absolute deviations (LAD) methods are popular robust statistical methods but

More information

STAT 830 Bayesian Estimation

STAT 830 Bayesian Estimation STAT 830 Bayesian Estimation Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Bayesian Estimation STAT 830 Fall 2011 1 / 23 Purposes of These

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

One Parameter Models

One Parameter Models One Parameter Models p. 1/2 One Parameter Models September 22, 2010 Reading: Hoff Chapter 3 One Parameter Models p. 2/2 Highest Posterior Density Regions Find Θ 1 α = {θ : p(θ Y ) h α } such that P (θ

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

Spring 2006: Examples: Laplace s Method; Hierarchical Models

Spring 2006: Examples: Laplace s Method; Hierarchical Models 36-724 Spring 2006: Examples: Laplace s Method; Hierarchical Models Brian Junker February 13, 2006 Second-order Laplace Approximation for E[g(θ) y] An Analytic Example Hierarchical Models Example of Hierarchical

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/~brewer/ Emphasis I will try to emphasise the underlying ideas of the methods. I will not be teaching specific software

More information

Bayesian Dropout. Tue Herlau, Morten Morup and Mikkel N. Schmidt. Feb 20, Discussed by: Yizhe Zhang

Bayesian Dropout. Tue Herlau, Morten Morup and Mikkel N. Schmidt. Feb 20, Discussed by: Yizhe Zhang Bayesian Dropout Tue Herlau, Morten Morup and Mikkel N. Schmidt Discussed by: Yizhe Zhang Feb 20, 2016 Outline 1 Introduction 2 Model 3 Inference 4 Experiments Dropout Training stage: A unit is present

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Bayesian Inference. Introduction

Bayesian Inference. Introduction Bayesian Inference Introduction The frequentist approach to inference holds that probabilities are intrinsicially tied (unsurprisingly) to frequencies. This interpretation is actually quite natural. What,

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Bayesian Monte Carlo Filtering for Stochastic Volatility Models

Bayesian Monte Carlo Filtering for Stochastic Volatility Models Bayesian Monte Carlo Filtering for Stochastic Volatility Models Roberto Casarin CEREMADE University Paris IX (Dauphine) and Dept. of Economics University Ca Foscari, Venice Abstract Modelling of the financial

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Particle Learning and Smoothing

Particle Learning and Smoothing Particle Learning and Smoothing Hedibert Freitas Lopes The University of Chicago Booth School of Business September 18th 2009 Instituto Nacional de Pesquisas Espaciais São José dos Campos, Brazil Joint

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

Bayesian Inference. Chapter 1. Introduction and basic concepts

Bayesian Inference. Chapter 1. Introduction and basic concepts Bayesian Inference Chapter 1. Introduction and basic concepts M. Concepción Ausín Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

Monte Carlo Composition Inversion Acceptance/Rejection Sampling. Direct Simulation. Econ 690. Purdue University

Monte Carlo Composition Inversion Acceptance/Rejection Sampling. Direct Simulation. Econ 690. Purdue University Methods Econ 690 Purdue University Outline 1 Monte Carlo Integration 2 The Method of Composition 3 The Method of Inversion 4 Acceptance/Rejection Sampling Monte Carlo Integration Suppose you wish to calculate

More information

Prelim Examination. Friday August 11, Time limit: 150 minutes

Prelim Examination. Friday August 11, Time limit: 150 minutes University of Pennsylvania Economics 706, Fall 2017 Prelim Prelim Examination Friday August 11, 2017. Time limit: 150 minutes Instructions: (i) The total number of points is 80, the number of points for

More information

Introduction to Applied Bayesian Modeling. ICPSR Day 4

Introduction to Applied Bayesian Modeling. ICPSR Day 4 Introduction to Applied Bayesian Modeling ICPSR Day 4 Simple Priors Remember Bayes Law: Where P(A) is the prior probability of A Simple prior Recall the test for disease example where we specified the

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University Bayesian Statistics and Data Assimilation Jonathan Stroud Department of Statistics The George Washington University 1 Outline Motivation Bayesian Statistics Parameter Estimation in Data Assimilation Combined

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Miscellany : Long Run Behavior of Bayesian Methods; Bayesian Experimental Design (Lecture 4)

Miscellany : Long Run Behavior of Bayesian Methods; Bayesian Experimental Design (Lecture 4) Miscellany : Long Run Behavior of Bayesian Methods; Bayesian Experimental Design (Lecture 4) Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/bayes/ Bayesian

More information

STAT J535: Introduction

STAT J535: Introduction David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Spring 2012 Chapter 1: Introduction to Bayesian Data Analysis Bayesian statistical inference uses Bayes Law (Bayes Theorem) to combine prior information

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Hyperparameter estimation in Dirichlet process mixture models

Hyperparameter estimation in Dirichlet process mixture models Hyperparameter estimation in Dirichlet process mixture models By MIKE WEST Institute of Statistics and Decision Sciences Duke University, Durham NC 27706, USA. SUMMARY In Bayesian density estimation and

More information

CS281A/Stat241A Lecture 22

CS281A/Stat241A Lecture 22 CS281A/Stat241A Lecture 22 p. 1/4 CS281A/Stat241A Lecture 22 Monte Carlo Methods Peter Bartlett CS281A/Stat241A Lecture 22 p. 2/4 Key ideas of this lecture Sampling in Bayesian methods: Predictive distribution

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

GWAS IV: Bayesian linear (variance component) models

GWAS IV: Bayesian linear (variance component) models GWAS IV: Bayesian linear (variance component) models Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS IV: Bayesian

More information

General Bayesian Inference I

General Bayesian Inference I General Bayesian Inference I Outline: Basic concepts, One-parameter models, Noninformative priors. Reading: Chapters 10 and 11 in Kay-I. (Occasional) Simplified Notation. When there is no potential for

More information

Lecture 1 Bayesian inference

Lecture 1 Bayesian inference Lecture 1 Bayesian inference olivier.francois@imag.fr April 2011 Outline of Lecture 1 Principles of Bayesian inference Classical inference problems (frequency, mean, variance) Basic simulation algorithms

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t

Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t Problem-1: Consider random walk with drift plus a linear time trend: y t = c + y t 1 + δ t + ϵ t, (1) where {ϵ t } is white noise with E[ϵ 2 t ] = σ 2 >, and y is a non-stochastic initial value. (a) Show

More information

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Matthew S. Johnson New York ASA Chapter Workshop CUNY Graduate Center New York, NY hspace1in December 17, 2009 December

More information

Nonparametric Regression With Gaussian Processes

Nonparametric Regression With Gaussian Processes Nonparametric Regression With Gaussian Processes From Chap. 45, Information Theory, Inference and Learning Algorithms, D. J. C. McKay Presented by Micha Elsner Nonparametric Regression With Gaussian Processes

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Generative Models Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

5.2 Expounding on the Admissibility of Shrinkage Estimators

5.2 Expounding on the Admissibility of Shrinkage Estimators STAT 383C: Statistical Modeling I Fall 2015 Lecture 5 September 15 Lecturer: Purnamrita Sarkar Scribe: Ryan O Donnell Disclaimer: These scribe notes have been slightly proofread and may have typos etc

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Investigating posterior contour probabilities using INLA: A case study on recurrence of bladder tumours by Rupali Akerkar PREPRINT STATISTICS NO. 4/2012 NORWEGIAN

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web this afternoon: capture/recapture.

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

Markov Chain Monte Carlo Methods for Stochastic

Markov Chain Monte Carlo Methods for Stochastic Markov Chain Monte Carlo Methods for Stochastic Optimization i John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U Florida, Nov 2013

More information

Particle Learning and Smoothing

Particle Learning and Smoothing Statistical Science 2010, Vol. 25, No. 1, 88 106 DOI: 10.1214/10-STS325 c Institute of Mathematical Statistics, 2010 Particle Learning and Smoothing Carlos M. Carvalho, Michael S. Johannes, Hedibert F.

More information