Elliptic integrals, the arithmetic-geometric mean and the Brent-Salamin algorithm for π

Size: px
Start display at page:

Download "Elliptic integrals, the arithmetic-geometric mean and the Brent-Salamin algorithm for π"

Transcription

1 Elliptic integrals, the arithmetic-geometric mean and the Brent-Salamin algorithm for π Notes by G.J.O. Jameson Contents. The integrals I(a, b) and K(b). The arithmetic-geometric mean 3. The evaluation of I(a, b): Gauss s theorem 4. Estimates for I(a, ) for large a and I(, b) for small b 5. The integrals J(a, b) and E(b) 6. The integrals L(a, b) 7. Further evaluations in terms of the agm; the Brent-Salamin algorithm 8. Further results on K(b) and E(b).. The integrals I(a, b) and K(b) For a, b >, define I(a, b) = An important equivalent form is: π/ (a cos θ + b sin dθ. () θ) /.. We have I(a, b) = dx. () (x + a ) / (x + b ) / Proof. With the substitution x = b tan θ, the stated integral becomes π/ b sec θ (a + b tan θ) / b sec θ dθ = = π/ π/ (a + b tan θ) / cos θ dθ (a cos θ + b sin dθ. θ) / We list a number of facts that follow immediately from () or (): (I) I(a, a) = π a ; (I) (I3) I(b, a) = I(a, b); I(ca, cb) = I(a, b), hence ai(a, b) = I(, b/a); c (I4) I(a, b) decreases with a and with b; (I5) if a b, then π a I(a, b) π b.

2 Note that the substitution x = /y in () gives I(a, b) = dx. (3) ( + a x ) / ( + b x ) /.. We have I(a, b) π (ab) /. Proof. This follows from the integral Cauchy-Schwarz inequality, applied to (). Note further that, by the inequality of the means, π (ab) π ( / 4 a + ). b This upper bound for I(a, b) is also obtained directly by applying the inequality of the means to the integrand in (). Clearly, I(a, ) is undefined, and one would expect that I(a, b) as b +. This is, indeed, true. In fact, the behaviour of I(, b) for b close to is quite interesting; we return to it in section 4. The complete elliptic integral of the first kind is defined by K(b) = π/ ( b sin dθ. (4) θ) / For b, the conjugate b is defined by b = ( b ) /, so that b + b =. Then cos θ + b sin θ = b sin θ, so that I(, b) = K(b ). (An incomplete elliptic integral is one in which the integral is over a general interval [, α]. We do not consider such integrals in these notes.) Clearly, K() = π.3. We have and K(b) increases with b. Another equivalent form is: K(b) = dt. (5) ( t ) / ( b t ) / Proof. Denote this integral by I. Substituting t = sin θ, we have I = π/ cos θ( b sin cos θ dθ = K(b). θ) /.4 PROPOSITION. For b <, π K(b) = d n b n = + 4 b b4 +, (6) n=

3 where d = and d n =.3... (n ).4... (n). where Proof. By the binomial series, ( b sin θ) / = + a n b n sin n θ, n= ( ) a n = ( ) n = n n! ( )( 3) (n (n ) ) = (n) For fixed b <, the series is uniformly convergent for θ π. Now π/ sin n θdθ = πa n: identity (6) follows. In a sense, this series can be regarded as an evaluation of I(a, b), but a more effective one will be described in section 3..5 COROLLARY. For b <, + 4 b π K(b) + b 4( b ). Proof. Just note that + 4 b n= d nb n + 4 (b + b ). Hence π K(b) + b for b. These are convenient inequalities for K(b), but when translated into an inequality for I(, b) = K(b ), the right-hand inequality says I(, b) + ( π b )/(4b ) = /(4b ), and it is easily checked that this is weaker than the elementary estimate I(, b) + /b given above. 4 π The special case I(, ) The integral I(, ) equates to a beta integral, and consequently to numerous other integrals. We mention some of them, assuming familiarity with the beta and gamma functions..6 PROPOSITION. We have I(, ) = = dx ( x 4 ) / (7) dx (x 4 ) / (8) = 4 B( 4, ) (9) = Γ( 4 ) 4 π. () 3

4 Proof. For (7), substitute x = sin θ, so that x 4 = cos θ( + sin θ). Then π/ dx = ( x 4 ) / Substituting x = /y, we also have dx = ( x 4 ) / π/ ( + sin dθ = θ) / Substituting x = t /4 in (7), we obtain I(, ) = (cos θ + sin θ) / dθ = I(, ). ( y 4 ) / y dy = dy. (y 4 ) / ( t) / ( 4 t 3/4 ) dt = 4 B( 4, ). Now using the identities B(a, b) = Γ(a)Γ(b)/Γ(a + b) and Γ(a)Γ( a) = π/(sin aπ), we have Γ( ) = π and Γ( 4 )Γ( 3 4 ) = π/(sin π 4 ) = π, hence B( 4, ) = Γ( 4 )Γ( ) Γ( 3 4 ) = πγ( 4 ) π = Γ( 4 ) π..7. We have π/ (sin θ) dθ = I(, ), () / ( x 4 ) / dx = ( x ) /4 dx = 3 I(, ). () Proof. For (), substitute x = (sin θ) / in (7). Denote the two integrals in () by I, I. The substitutions x = t /4 and x = t / give I = B(, 3) and I 4 4 = B(, 5 ). The 4 identity (a + b)b(a, b + ) = bb(a, b) now gives I = I = B(, ) The arithmetic-geometric mean Given positive numbers a, b, the arithmetic mean is a = (a + b) and the geometric mean is b = (ab) /. If a = b, then a = b = a. If a > b, then a > b, since 4(a b ) = (a + b) 4ab = (a b) >. With a > b, consider the iteration given by a = a, b = b and a n+ = (a n + b n ), b n+ = (a n b n ) /. At each stage, the two new numbers are the arithmetic and geometric means of the previous two. The following facts are obvious: 4

5 (M) a n > b n ; (M) a n+ < a n and b n+ > b n ; (M3) a n+ b n+ < a n+ b n = (a n b n ), hence a n b n < n (a b). It follows that (a n ) and (b n ) converge to a common limit, which is called the arithmeticgeometric mean of a and b. We will denote it by M(a, b). Convergence is even more rapid than the estimate implied by (M3), as we will show below. First, we illustrate the procedure by the calculation of M(, ) and M(, ): n b n a n n b n a n Of course, a n and b n never actually become equal, but more decimal places would be required to show the difference at the last stage shown. In fact, in the first example, a 3 b 3 < 4, as we will see shortly. Clearly, M(a, b) = M(a n, b n ) and b n < M(a, b) < a n for all n. Also, M(ca, cb) = cm(a, b) for c >, so M(a, b) = am(, b/a) = bm(a/b, ). For further analysis of the process, define c n by a n b n = c n... With c n defined in this way, we have (M4) c n+ = (a n b n ), (M5) a n = a n+ + c n+, b n = a n+ c n+, (M6) c n = 4a n+ c n+, (M7) c n+ < c n, also c n+ c n 4b. Proof. For (M4), we have c n+ = a n+ b n+ = 4 (a n + b n ) a n b n = 4 (a n b n ). (M5) follows, since a n+ = (a n + b n ), and (M6) is given by c n = (a n + b n )(a n b n ) = (a n+ )(c n+ ). The inequalities in (M7) follow from (M3), (M4) and (M6). (M5) shows how to derive a n and b n from a n+ and b n+, reversing the agm iteration. 5

6 (M7) shows that c n (hence also a n b n ) converges to quadratically, hence very rapidly. We can derive an explicit bound for c n as follows:.. Let R > and let k be such that c k 4b/R. Then c n+k 4b/R n for all n. The same holds with b replaced by b k. Proof. The hypothesis equates to the statement for n =. Assuming it now for a general n, we have by (M7) c n+k+ < (4b) = 4b. 4b R n+ R n+ In the case M(, ), we have c = b =. Taking R = 4, we deduce c n 4/4 n for all n. For a slightly stronger variant, note that c = a a <, hence c n+ 4/(4 n ) = 4/( n+ ) for n, or c n 4/( n ) for n. In particular, c <. We finish this section with a variant of the agm iteration in the form of a single sequence instead of a pair of sequences..3. Let b >. Define a sequence (k n ) by: k = b and Then k n+ = k/ n. + k n M(, b) = n= ( + k n). Proof. Let (a n ), (b n ) be the sequences generated by the iteration for M(, b) (with a =, b = b, whether or not b < ), and let k n = b n /a n. Then k = b and k n+ = b n+ = (a nb n ) / = k/ n. a n+ a n + b n + k n So the sequence (k n ) defined by this iteration is (b n /a n ). Also, so n r= ( + k n) = a n + b n = a n+, a n a n ( + k r) = a n M(, b) as n. Quadratic convergence of (k n ) to is easily established directly: k n+ = k/ n + k n < kn / + k n = ( kn / ) < ( k n ). + k n 6

7 Another way to present this iteration is as follows. Assume now that b <. Recall that for k, the conjugate k is defined by k + k =. Clearly, if t = k / /( + k) (where k ), then t = ( k)/( + k). So we have kn+ = ( k n )/( + k n ), hence + kn+ = /( + k n ), so that M(, b) =. + kn n= 3. The evaluation of I(a, b): Gauss s theorem We now come to the basic theorem relating I(a, b) and M(a, b). It was established by Gauss in 799. There are two distinct steps, which we present as separate theorems. In the notation of section, we show first that I(a, b) = I(a, b ). It is then a straightforward deduction that I(a, b) = π/[m(a, b)]. Early proofs of the first step, including that of Gauss, were far from simple. Here we present a proof due to Newman [New] based on an ingenious substitution. 3. THEOREM. Let a b >, and let a = (a + b), b = (ab) /. Then I(a, b) = I(a, b ). () is even: Substitute Proof. We write I(a, b ) as an integral on (, ), using the fact that the integrand I(a, b ) = dx. (x + a ) / (x + b / ) x = t ab t. Then x as t and x as t +. Also, dx dt = ( + ab/t ) and 4(x + b ) = 4x + 4ab = t + ab + a b = t ( t + ab t ), hence Further, (x + b ) / = ( t + ab ). t 4(x + a ) = 4x + (a + b) = t + a + b + a b t = t (t + a )(t + b ). 7

8 Hence I(a, b ) = ( t (t + a ) / (t + b ) / ab (t + ) + ab ) t t = dt (t + a ) / (t + b ) / = I(a, b). dt Lord [Lo] gives an interesting alternative proof based on the area in polar coordinates. 3. THEOREM. We have I(a, b) = π M(a, b) () Proof. Let (a n ), (b n ) be the sequences generated by the iteration for M(a, b). By Theorem 3., I(a, b) = I(a n, b n ) for all n. Hence π a n I(a, b) for all n. Since both a n and b n converge to M(a, b), the statement follows. We describe some immediate consequences; more will follow later. π b n 3.3. We have π a + b I(a, b) π. (3) (ab) / Proof. This follows from Theorem 3., since π/(a ) I(a, b ) π/(b ). The right-hand inequality in (3) repeats., but I do not know an elementary proof of the left-hand inequality. From the expressions equivalent to I(, ) given in.6, we have: 3.4. Let M = M(, ) (.984). Then ( x 4 ) / dx = I(, ) = π M (.39), B( 4, ) = π M ( 5.446), Γ( 4 ) = (π)3/4 M / ( 3.656) Example. From the value M(, ) 6.67 found in section, we have I(, ) 8

9 Finally, we present several ways in which Theorem 3. can be rewritten in terms of K(b). Recall that I(, b) = K(b ), where b + b =, and that if k = ( b)/( + b), then k = k / /( + b) For b <, K(b) = I( + b, b). (4) Proof. By Theorem 3., I( + b, b) = I[, ( b ) / ] = I(, b ) = K(b) For < b <, K(b) = + b K K(b ) = + b K ( b / + b ( b + b ), (5) ). (6) Proof. By (4) and the property I(ca, cb) = I(a, b), c K(b) = I( + b, b) = ( + b I, b ) = + b + b K Also, by Theorem 3., K(b ) = I(, b) = I ( ) + b, b/ = + b I ( b / ) (, b/ = + b + b K + b ). ( ) b. + b Conversely, any of (4), (5), (6) implies () (to show this for (4), start by choosing c and k so that ca = + k and cb = k). For another proof of Theorem 3., based on this observation and the series expansion of ( + ke iθ ) / )( + ke iθ ) /, see [Bor, p. ]. 4. Estimates for I(a, ) for large a and I(, b) for small b In this section, we will show that I(, b) is closely approximated by log(4/b) for b close to. Equivalently, ai(a, ) is approximated by log 4a for large a, and consequently M(a, ) is approximated by F (a) =: π a log 4a. By way of illustration, F () = 6.7 to four d.p., while M(, ) This result has been known for a long time, with varying estimates of the accuracy of the approximation. For example, a version appears in [WW, p. 5], published in 97. 9

10 A highly effective method was introduced by Newman in [New], but only sketched rather briefly, with the statement given in the form ai(a, ) = log 4a+O(/a ). Following [Jam], we develop Newman s method in more detail to establish a more precise estimation. The method requires nothing more than some elementary integrals and the binomial and logarithmic series, and a weaker form of the result is obtained with very little effort. The starting point is: 4.. We have (ab) / dx = (x + a ) / (x + b ) / dx. (ab) (x / + a ) / (x + b ) / Proof. With the substitution x = ab/y, the left-hand integral becomes ab (ab) / ( a b + a y ) / ( a b + b y ) / y dy = dy. (ab) (b / + y ) / (a + y ) / where Hence b / I(, b) = H(x) dx, () H(x) =. () (x + ) / (x + b ) / Now ( + y) / > y for < y <, as is easily seen by multiplying out ( + y)( y), so for < x <, ( x ) (x + b ) < H(x) <. (3) / (x + b ) / Now observe that the substitution x = by gives b / /b / dx = (x + b ) / (y + ) / dy = sinh b /. 4. LEMMA. We have log b < / sinh < log b/ b + b. (4) / 4 Proof. Recall that sinh x = log[x + (x + ) / ], which is clearly greater than log x. Also, since ( + b) / < + b, ( ) / b + / b + = b [ + ( + / b)/ ] < b ( + b) = / b ( + b). / 4 The right-hand inequality in (4) now follows from the fact that log( + x) x.

11 where This is already enough to prove the following weak version of our result: 4.3 PROPOSITION. For < b and a, log 4 b b < I(, b) < log 4 b + b, (5) log 4a a < ai(a, ) < log 4a + a. (6) Proof. The two statements are equivalent, because ai(a, ) = I(, ). By () and (3), a Since (x + b ) / > x, we have sinh b / R (b) < I(, b) < sinh b /, R (b) < R (b) = b / b / x dx. (7) (x + b ) / x b / x dx = x dx = b. Both inequalities in (5) now follow from (4), since log b / = log 4 b. This result is sufficient to show that M(a, ) F (a) as a. To see this, write ai(a, ) = log 4a + r(a). Then I(a, ) which tends to as a, since ar(a). a log 4a = ar(a) log 4a[log 4a + r(a)], Some readers may be content with this version, but for those with the appetite for it, we now refine the method to establish closer estimates. All we need to do is improve our estimations by the insertion of further terms. ( + y) / <. Instead, we now use the stronger bound ( + y) / < y y The upper estimate in (3) only used for < y <. These are the first three terms of the binomial expansion, and the stated inequality holds because the terms of the expansion alternate in sign and decrease in magnitude. So we have instead of (3): ( x ) (x + b ) < H(x) < ( / x x4 ). (8) (x + b ) / We also need a further degree of accuracy in the estimates for sinh b / and R (b).

12 4.4 LEMMA. For < b, we have log b + b 3 / 4 3 b < sinh < log b/ b + b / 4 Proof. Again by the binomial series, we have So, as in Lemma 4., 6 b + 3 b3. (9) + b 8 b < ( + b) / < + b 8 b + 6 b3. () ( ) / b + / b + < b ( + b / 8 b + 6 b3 ) = b ( + b / 4 6 b + 3 b3 ). The right-hand inequality in (9) now follows from log( + x) x. Also, ( ) / b + / b + > b ( + b / 8 b ) = ( + B), b/ where B = 4 b 6 b (so B < 4 b). By the log series, log( + x) > x x for < x <, so log( + B) > B B > 4 b 6 b 3 b = 4 b 3 3 b. 4.5 LEMMA. For < b, we have: R (b) < b + 4 b b log, () b/ R (b) > b + 4 b b log b / 3 6 b3, () R (b) < b 5 b. (3) Proof: We can evaluate R (b) explicitly by the substitution x = b sinh t: R (b) = c(b) where c(b) = sinh (/b / ). Now c(b) b sinh t dt = b (cosh t ) dt = 4 b sinh c(b) b c(b), sinh c(b) = sinh c(b) cosh c(b) = ( ) / b / b + = b ( + b)/, so R (b) = b( + b)/ b c(b). Statement () now follows from ( + b) / < + b and c(b) > log. Statement () b / follows from the left-hand inequality in () and the right-hand one in (4).

13 Unfortunately, (3) does not quite follow from (). We prove it directly from the integral, as follows. Write x /(x + b ) / = g(x). Since g(x) < x, we have b / g(x) dx < b (b b ). For < x < b, we have by the binomial expansion again ) x x g(x) = ( x b( + x /b ) / b b + 3x4, 8b 4 and hence b g(x) dx < ( )b < 3 b. Together, these estimates give R (b) < b 5 b. We can now state the full version of our Theorem. 4.6 THEOREM. For < b and a, we have log 4 b < I(, b) < ( + 4 b ) log 4 b, (4) ( log 4a < ai(a, ) < + ) log 4a. (5) 4a Moreover, the following lower bounds also apply: Hence I(, b) > ( + 4 b ) log 4 b 7 6 b, (6) ( ai(a, ) > + ) log 4a 7 4a 6a. (7) I(, b) = ( + 4 b ) log 4 b + O(b ) for < b <, ( ai(a, ) = + ) log 4a + O(/a ) for a >. 4a Note. As this shows, the estimation log 4a + O(/a ) in [New] is not quite correct. Proof: lower bounds. By (8), (9) and (3), I(, b) > sinh b / R (b) > log 4 b + b 3 6 b ( b 5 b ) > log 4 b, (with a spare term 8 b ). Of course, the key fact is the cancellation of the term b. Also, using () instead of (3), we have I(, b) > log 4 b + b 3 6 b ( b + 4 b 4 b log 4 b ) = ( + 4 b ) log 4 b 7 6 b. 3

14 Upper bound: By (8), I(, b) < sinh b / R (b) R (b), where So by (9) and (), R (b) = b / x 4 b / dx < x 3 dx = (x + b ) / 4 b. I(, b) < log 4 b + b 8 b + 6 b3 ( b + 4 b 4 b log 4 b 3 6 b3 ) b = ( + 4 b ) log 4 b 3 6 b + 4 b3. If b < 3 4, then 3 6 b 4 b3, so I(, b) < ( + 4 b ) log 4 b. For b 3 4, we reason as follows. By., I(, b) π 4 (+ b ). Write h(b) = (+ 4 b ) log 4 b π ( + ). We find that h( 3 ) >. One verifies by differentiation that h(b) 4 b 4 is increasing for < b (we omit the details), hence h(b) > for 3 b. 4 By Gauss s theorem and the inequality /( + x) > x, applied with x = /(4a ), statement (5) translates into the following pair of inequalities for M(a, ): 4.7 COROLLARY. Let F (a) = (πa)/( log 4a). Then for a, ( ) F (a) < M(a, ) < F (a). (8) 4a Since M(a, b) = b M(a/b, ) we can derive the following bounds for M(a, b) (where a > b) in general: π ) a ( b < M(a, b) < π log(4a/b) 4a a log(4a/b). (9) Note: We mention very briefly an older, perhaps better known, approach (cf. [Bow, p. ]). Use the identity I(, b) = K(b ), and note that b when b. Define A(b ) = π/ b sin θ ( b sin dθ θ) / and B(b ) = K(b ) A(b ). One shows by direct integration that A(b ) = log[(+b )/b] and B() = log, so that when b, we have A(b ) log b and hence K(b ) log 4 b. This method can be developed to give an estimation with error term O(b log ), [Bor, p. b ], but the details are distinctly more laborious, and (even with some refinement) the end result does not achieve the accuracy of our Theorem

15 By a different method, we now establish exact upper and lower bounds for I(, b) log(/b) on (, ]. The lower bound amounts to a second proof that I(, b) > log(4/b) The expression I(, b) log(/b) increases with b for < b. Hence log 4 I(, b) log b π for < b ; () π log 4 ai(a, ) log a π for a ; () a log a + π M(a, ) π a for a. () log a + log 4 Proof. We show that K(b) log(/b ) decreases with b, so that I(, b) log(/b) = K(b ) log(/b) increases with b. Once this is proved, the inequalities follow, since I(, b) log(/b) takes the value π/ at b = and (by 4.3) tends to log 4 as b +. By.4, for b <, we have K(b) = π n= d nb n, where d = and d n =.3... (n ).4... (n). Hence K (b) = π n= nd nb n. Meanwhile, log(/b ) = log( b ), so d db log b = b b = b n. By well-known inequalities for the Wallis product, nπd n <, so K (b) < d db log(/b ). n= Application to the calculation of logarithms and π. Theorem 4.6 has pleasing applications to the calculation of logarithms (assuming π known) and π (assuming logarithms known), exploiting the rapid convergence of the agm iteration. Consider first the problem of calculating log x (where x > ). Choose n, in a way to be discussed below, and let 4a = x n, so that n log x = log 4a, which is approximated by ai(a, ). We calculate M = M(a, ), and hence I(a, ) = π/(m). Then log x is approximated by (a/n)i(a, ). How accurate is this approximation? By Theorem 4.6, log 4a = ai(a, ) r(a), where < r(a) < 4a log 4a. Hence in which log x = a r(a) I(a, ) n n, < r(a) n < log x = 4 log x 4a x. n We choose n so that this is within the desired degree of accuracy. It might seem anomalous that log x, which we are trying to calculate, appears in this error estimation, but a rough estimate for it is always readily available. 5

16 For illustration, we apply this to the calculation of log, taking n =, so that a = = 4. We find that M = M(4, ) , so our approximation is π 4 M , while in fact log = to seven d.p.. The discussion above (just taking log < ) shows that the approximation overestimates log, with error no more than 4/ 4 = /. We now turn to the question of approximating π. The simple-minded method is as follows. Choose a suitably large a. By Theorems 3. and 4.6, where π = M(a, )I(a, ) = M(a, )log 4a a + s(a), s(a) = M(a, ) r(a) 4a < M(a, )log a 4a. 3 So an approximation to π is M(a, ) log 4a, with error no more than s(a). Using our a original example with a =, this gives to five d.p., with the error estimated as no more than 8 5 (the actual error is about ). For a better approximation, one would repeat with a larger a. However, there is a way to generate a sequence of increasingly close approximations from a single agm iteration, which we now describe (cf. [Bor, Proposition 3]). In the original agm iteration, let c n = (a n b n) /. Note that c n converges rapidly π to. By Gauss s theorem, = M(a, c )I(a, c ). To apply Theorem 4.6, we need to equate I(a, c ) to an expression of the form I(d n, e n ), where e n /d n tends to. This is achieved as follows. Recall from. that a n = a n+ + c n+ and c n = 4a n+ c n+, so the arithmetic mean of a n+ and c n+ is a n, while the geometric mean is c n. So by Theorem 3., I(a n, c n ) = I(a n+, c n+ ), and hence I(a, c ) = I( n a n, n c n ) = n a n I (, c ) n. a n Since c n /a n tends to, Theorem 4.6 (or even 4.3) applies to show that I(a, c ) = lim log 4a n. n n a n c n Now take a = and b =. Then c = b, so M(a, b ) = M(a, c ), and (a n ) converges to this value. Since π = M(a, c )I(a, c ), we have established the following: 4.9 PROPOSITION. With a n, b n, c n defined in this way, we have π = lim n log 4a n. n c n 6

17 Denote this approximation by p n. With enough determination, one can derive an error estimation, but we will just illustrate the speed of convergence by performing the first three steps. Values are rounded to six significant figures. To calculate c n, we use c n = c n /(4a n ) rather than (a n b n ), since this would require much greater accuracy in the values of a n and b n. n a n b n c n p n More accurate calculation gives the value p 3 = , showing that it actually agrees with π to eight decimal places. While this expression does indeed converge rapidly to π, it has the disadvantage that it requires the calculation of logarithms at each stage. This is overcome by the Gauss-Brent- Salamin algorithm, which we describe in section The integrals J(a, b) and E(b) For a, b, define J(a, b) = π/ (a cos θ + b sin θ) / dθ. () Note that 4J(a, b) is the perimeter of the ellipse x /a + y /b =. Some immediate facts: (E) J(a, a) = (E) J(a, ) = π/ π/ a dθ = πa, a cos θ dθ = a, (E3) for c >, J(ca, cb) = cj(a, b); (E4) J(b, a) = J(a, b) (substitute θ = π φ); (E5) J(a, b) increases with a and with b; (E6) if a b, then πb J(a, b) πa. (E6) follows from (E) and (E5), since J(b, b) J(a, b) J(a, a). Since x + for x >, we have I(a, b) + J(a, b) π. For < b, we have x J(, b) π I(, b). 7

18 We start with some further inequalities for J(a, b). Given that J(a, b) is the length of the quarter-ellipse, it would seem geometrically more or less obvious that (a + b ) / J(a, b) a + b, () since this says that the curve is longer than the straight-line path between the same points, but shorter than two sides of the rectangle. An analytic proof of the right-hand inequality is very easy: since (x + y ) / x + y for positive x, y, we have (a cos θ + b sin θ) / a cos θ + b sin θ for each θ. Integration on [, π/] gives J(a, b) a + b. We will improve this inequality below. For the left-hand inequality in (), and some further estimations, we use the Cauchy- Schwarz inequality, in both its discrete and its integral form. 5.. We have J(a, b) (a + b ) /. (3) Proof. By the Cauchy-Schwarz inequality, a cos θ + b sin θ = a(a cos θ) + b(b sin θ) (a + b ) / (a cos θ + b sin θ) /. Integrating on [, π/], we obtain a + b (a + b ) / J(a, b), hence (3). A slight variation of this reasoning gives a second lower bound, improving upon (E6). 5.. We have J(a, b) π (a + b). (4) 4 Proof. By the Cauchy-Schwarz inequality, a cos θ + b sin θ = (a cos θ) cos θ + (b sin θ) sin θ (a cos θ + b sin θ) / (cos θ + sin θ) / = (a cos θ + b sin θ) /. Integration gives (4), since π/ cos θ dθ = π/ sin θ dθ = π 4. Note that equality holds in (3) when b =, and in (4) when b = a. 8

19 5.3. We have Equality holds when a = b. J(a, b) π (a + b ) /. (5) Proof. By the Cauchy-Schwarz inequality for integrals (with both sides squared), ( ) π/ π/ J(a, b) (a cos θ + b sin θ) dθ = π π 4 (a + b ). Since π/( ).7, J(a, b) is actually modelled fairly well by (a + b ) /. For u = (a, b), write u = (a + b ) / : this is the Euclidean norm on R. In this notation, we have J(a, b) = π/ (a cos θ, b sin θ) dθ. The triangle inequality for vectors says that u + u u + u. We show that J(a, b) also satisfies the triangle inequality (so in fact is also a norm on R ) Let u j = (a j, b j ) (j =, ), where a j, b j. Then Proof. For each θ, we have J(u + u ) J(u ) + J(u ). (6) [(a + a ) cos θ, (b + b ) sin θ] (a cos θ, b sin θ) + (a cos θ, b sin θ). Integrating on [, π ], we deduce that J(a + a, b + b ) J(a, b ) + J(a, b ). By suitable choices of u and u, we can read off various inequalities for J(a, b). Firstly, J(a, b) J(a, ) + J(, b) = a + b, as seen in (). Secondly: Second proof of (4). Since (a + b, a + b) = (a, b) + (b, a), we have (a + b) π = J(a + b, a + b) J(a, b) + J(b, a) = J(a, b). Thirdly, we can compare J(a, b) with the linear function of b that agrees with J(a, b) at b = and b = a. The resulting upper bound improves simultaneously on those in (E6) and (). 9

20 5.5. For b a, we have J(a, b) a + Equality holds when b = and when b = a. Proof. Since (a, b) = (a b, ) + (b, b), ( π ) b. (7) J(a, b) J(a b, ) + J(b, b) = (a b) + π b. Inequality (7) reflects the fact that J(a, b) is a convex functon of b for fixed a; this also follows easily from (6). We now consider equivalent and related integrals We have J(a, b) = b (x + a ) / dx. (8) (x + b ) 3/ Proof. Substituting x = b tan θ, we obtain (x + a ) / dx. = (x + b ) 3/ π/ (a + b tan θ) / b sec θ dθ b 3 sec 3 θ = π/ (a + b tan θ) / cos θ dθ b = J(a, b). b The complete elliptic integral of the second kind is E(b) = π/ Since cos θ + b sin θ = b sin θ, we have J(, b) = E(b ). ( b sin θ) / dθ. (9) Clearly, E() = π/, E() = and E(b) decreases with b. Also, K(b) E(b) = π/ ( b sin θ) ( b sin dθ = θ) / π/ b sin θ ( b sin dθ. () θ) / We use the usual mathematical notation E (b) for the derivative d E(b). We alert the db reader to the fact that some of the literature on this subject, including [Bor], writes b where we have b and then uses E (b) to mean E(b ) We have E (b) = [E(b) K(b)] for < b <. () b

21 Proof. This follows at once by differentiating under the integral sign in (9) and comparing with () We have E(b) = ( b t ) / ( t ) / dt. () Proof. Denote this integral by I. The substitution t = sin θ gives I = π/ ( b sin θ) / cos θ cos θ dθ = E(b) For b, b π E(b) 4 b. (3) Proof. For x, we have x ( x) / x. Hence E(b) π/ and similarly for the upper bound. ( b sin θ) dθ = π ( b ), When applied to J(, b) = E(b ), (3) gives weaker inequalities than (4) and (5). We now give the power series expression. Recall from.4 that π K(b) = n= d nb n, where d = and d n =.3... (n ).4... (n). 5. PROPOSITION. For b <, π E(b) = d n n bn = 4 b 3 64 b4 + (4) n= where Proof. By the binomial series, ( b sin θ) / = + ( ) a n = ( ) n = ( )n ( n n! )( ) ( a n b n sin n θ, n=... (n 3) n + ) = (n) For fixed b <, the series is uniformly convergent for θ π. The statement follows, since π/ sin n θ dθ = π (n ) (n)

22 6. The integral L(a, b) Most of the material in this section follows the excellent exposition in [Lo]. Further results on I(a, b) and J(a, b) are most conveniently derived and expressed with the help of another integral. For a > and b, define L(a, b) = π/ cos θ (a cos θ + b sin dθ. () θ) / The first thing to note is that L(b, a) L(a, b). In fact, we have: 6.. For a and b >, L(b, a) = π/ sin θ (a cos θ + b sin dθ. () θ) / Proof. The substitution θ = π φ gives L(b, a) = π/ cos θ π/ sin φ (b cos θ + a sin dθ = θ) / (a cos φ + b sin dφ. φ) / Hence, immediately: 6.. For a, b >, L(a, b) + L(b, a) = I(a, b), (3) a L(a, b) + b L(b, a) = J(a, b). (4) 6.3 COROLLARY. For a, b >, (a b )L(a, b) = J(a, b) b I(a, b). (5) Some immediate facts: (L) L(a, ) = ; L(, b) is undefined; a (L) L(a, a) = π 4a ; (L3) L(ca, cb) = L(a, b) for c > ; c (L4) L(a, b) decreases with a and with b; (L5) L(a, b) a for all b; (L6) if a b, then π 4a L(a, b) π, and similarly for L(b, a) (by (L5) and (L)). 4b

23 6.4. We have J(a, b) = bl(b, a). (6) b Proof. Differentiate under the integral sign in the expression for J(a, b). π/4. So if we write J (b) for J(, b), then J (b) = bl(b, ). In particular, J () = L(, ) = 6.5. We have L(a, b) = L(b, a) = b dx, (7) (x + a ) / (x + b ) 3/ x dx, (8) (x + a ) / (x + b ) 3/ Proof. With the substitution x = b tan θ, the integral in (7) becomes π/ b 3 sec θ (a + b tan θ) / b 3 sec 3 θ dθ = = π/ π/ cos θ dθ (a + b tan θ) / cos θ (a cos θ + b sin dθ. θ) / The integral in (8) now follows from (3) and the integral (.) for I(a, b) If a > b, then L(a, b) < L(b, a). Proof. By (7), applied to both L(a, b) and L(b, a), L(b, a) L(a, b) = a (x + b ) b (x + a ) (x + a ) 3/ (x + b ) 3/ dx. This is positive, since the numerator is (a b )x We have b I(a, b) = L(a, b), (9) b b(a b ) b I(a, b) = b I(a, b) J(a, b). () Proof. (9) is obtained by differentiating the integral expression (.) for I(a, b) under the integral sign and comparing with (7). (The integral expressions in terms of θ do not deliver this result so readily.) Using (5) to substitute for L(a, b), we obtain (). Hence, writing I (b) for I(, b), we have I () = L(, ) = π/4. There is a corresponding expression for K (b), but we defer it to section 8. 3

24 Identities (9) and () are an example of a relationship that is expressed more pleasantly in terms of L(a, b) rather than J(a, b). More such examples will be encountered below. The analogue of the functions K(b) and E(b) is the pair of integrals L(, b ) = π/ cos θ ( b sin θ) / dθ, L(b, ) = π/ Corresponding results apply. For example, the substitution t = sin θ gives L(, b ) = ( t ) / dt ( b t ) / sin θ ( b sin dθ. θ) / (compare.3 and 5.8), and power series in terms of b are obtained by modifying.5. However, we will not introduce a special notation for these functions. Recall Theorem 4.6, which stated: log 4 < I(, b) < ( + b 4 b ) log 4 for < b <. We b now derive a corresponding estimation for J(, b) (actually using the upper bound from 4.8). 6.8 LEMMA. For < b <, where c = log 4, c = π/4. log b + c L(b, ) log b + c, () Proof. By 4.8, we have log b + log 4 I(, b) log b + π. Also, π 4 Statement () follows, by (3). L(, b). 6.9 PROPOSITION. For < b <, J(, b) = + b log b + r(b), () where c 3 b r(b) < c 4 b, with c 3 = log 4 and c 4 = 4 + π 8. Proof. Write J (t) = J(, t). By (6), J (t) = tl(t, ), so J (b) = b tl(t, ) dt. Now b ( t log t) dt = [ t log t ] b b + t dt = b log b + 4 b. By (), a lower bound for J(, b) is obtained by adding b c t dt = c b, and an upper bound by adding c b. Since J(a, ) = aj(, ), we can derive the following estimation for a >, a where c 3 /a r (a) c 4 /a. J(a, ) = a + log a a 4 + r (a),

25 It follows from () that J () = (this is not a case of (6)). Note that J b (b) = L(b, ) as b +, so J does not have a second derivative at. By (4), we have L(, b) + b L(b, ) = J(, b). By () and (), it follows that L(, b) = b log + b O(b ). A corresponding expression for L(b, ) can be derived by combining this with Theorem 4.6. Values at (, ) Recall from.6 that I(, ) = ( x 4 ) / dx = 4 B( 4, ). 6.. We have L(, ) = x ( x 4 ) dx = B(, 3 ). (3) / 4 4 Proof. Substitute x = sin θ, so that x 4 = cos θ(+sin θ) = cos θ(cos θ + sin θ). Then Also, the substitution x = t /4 gives x dx = ( x 4 ) / x π/ sin θ dx = ( x 4 ) / (cos θ + sin θ) dθ = L(, ). / t / ( t) / 4 t 3/4 dt = 4 t /4 ( t) / dt = 4 B(, 3 4 ). we deduce: Now using the identities Γ(a+) = aγ(a), Γ( ) = π and B(a, b) = Γ(a)Γ(b)/Γ(a+b), 6.. We have L(, )I(, ) = π 4. (4) hence (4). Proof. By the identities just quoted, B(, 4 )B(, 3 4 ) = Γ( )Γ( 4 ) Γ( 3 4 ) Γ( )Γ( 3 4 ) Γ( 5 4 ) = Γ( ) Γ( 4 ) Γ( 5 4 ) = 4π, Now I(, ) = π/(m ), where M = M(, ). We deduce: 6.. Let M = M(, ). Then L(, ) = M (.5997), (5) 5

26 L(, ) = π M M J(, ) = π + M M (.7959), (6) (.999). (7) Proof. (5) is immediate. Then (6) follows from (3), and (7) from (4), in the form J(, ) = L(, ) + L(, ). Two related integrals We conclude with a digression on two related integrals that can be evaluated explicitly For < b <, π/ π/ cos θ ( b sin θ) dθ = sin b, / b sin θ ( b sin θ) dθ = / b log + b b. Proof. Denote these two integrals by F (b), F (b) respectively. The substitution x = b sin θ gives F (b) = b b ( x ) dx = sin b. / b Now let b = ( b ) /, so that b + b =. Then b sin θ = b + b cos θ. Substitute x = b cos θ to obtain F (b) = b b (b + x ) dx = b / b sinh b. Now sinh u = log[u + ( + u ) / ] and + b /b = /b, so Now observe that F (b) = b log + b b. + b = + b ( + b)/ = b ( b ) / ( b). / The integral F (b) can be used as the basis for an alternative method for the results section 4. Another application is particularly interesting. Writing t for b, note that F (t) = so that F (t) dt = n= 6 t n n +, n= (n + ).

27 By reversing the implied double integral, one obtains an attractive proof of the well-known identity n= n = π /6 [JL]. 7. Further evaluations in terms of the agm; the Brent-Salamin algorithm We continue to follow the exposition of [Lo]. Recall that Gauss s theorem (Theorem 3.) says that I(a, b ) = I(a, b), where a = (a + b) and b = (ab) /. There are corresponding identities for L and J, but they are not quite so simple. We now establish them, using the same substitution as in the proof of Gauss s theorem. 7. THEOREM. Let a b and a = (a + b), b = (ab) /. Then L(b, a ) = a + b [L(b, a) L(a, b)]. () a b L(a, b ) = [al(a, b) bl(b, a)]. () a b Proof. By (6.7), written as an integral on (, ), L(b, a ) = As in Theorem 3., we substitute As before, we find so that a dx. (x + a ) 3/ (x + b / ) x = t ab t. (x + b ) / = ( t + ab ), t 4(x + a ) = 4x + (a + b) = t + a + b + a b L(b, a ) = 8 (a + b) But by (6.7) again, = (a + b) L(b, a) L(a, b) = t = t (t + a )(t + b ), 8t 3 (t + a ) 3/ (t + b ) 3/ ab (t + ) t t dt. (t + a ) 3/ (t + b ) 3/ = (a b ) a (t + b ) b (t + a ) dt (t + a ) 3/ (t + b ) 3/ ( + ab ) t t dt. (t + a ) 3/ (t + b ) 3/ dt 7

28 This proves (). To deduce (), write I(a, b) = I, L(a, b) = L and L(b, a) = L. Then I = L + L, also I = I(a, b ) = L(a, b ) + L(b, a ), so (a b)l(a, b ) = (a b)[i L(b, a )] = (a b)(l + L ) + (a + b)(l L ) = al + bl. 7. COROLLARY. We have J(a, b ) = abi(a, b) + J(a, b). (3) Proof. By (6.4), J(a, b ) = a L(a, b ) + b L(b, a ). Continue to write I, L, L as above. Substituting () and (), we obtain (a b)j(a, b ) = (a + b) (al bl ) + ab(a + b)(l L) = (a + b)[a(a + b) ab]l + (a + b)[ab b(a + b)]l = a(a + b)(a b)l + b(a + b)(a b)l, hence J(a, b ) = a(a + b)l + b(a + b)l = ab(l + L ) + (a L + b L ) = abi + J. It is possible, but no shorter, to prove (3) directly from the integral expression in 5.6, without reference to L(a, b). It follows from () and () that if a > b, then L(a, b) < L(b, a) (as already seen in 6.6) and al(a, b) > bl(b, a). Note. If a and b are interchanged, then a and b remain the same: they are not interchanged! The expressions in (), () and (3) are not altered. We now derive expressions for L(a, b), L(b, a) and J(a, b) in terms of the agm iteration. In this iteration, recall that c n is defined by c n = a n b n: for this to make sense when n =, we require a > b. We saw in. that for a certain k, we have c n 4b/4 n k which it follows that lim n n c n = and the series n= n c n is convergent. for n k, from 7.3 THEOREM. Let a > b >, and let a n, b n, c n be defined by the agm iteration for M(a, b), so that c = a b. Let S = n= n c n. Then c L(b, a) = SI(a, b), (4) 8

29 c L(a, b) = (c S)I(a, b), (5) J(a, b) = (a S)I(a, b). (6) Proof. Note first that (5) and (6) follow from (4), because L(a, b) + L(b, a) = I(a, b) and J(a, b) = a I(a, b) c L(b, a) (see 6.3). Write I(a, b) = I, and recall that I(a n, b n ) = I for all n. Also, write L(b n, a n ) = L n. Note that L(b n, a n ) L(a n, b n ) = L n I. Recall from. that c n+ = (a n b n ). So by (), applied to a n, b n, we have (for each n 4c n+l n+ = (a n b n ) L n+ = (a n b n)(l n I) = c n(l n I), hence n c nl n n+ c n+l n+ = n c ni. Adding these differences for n N, we have ( N ) c L N+ c N+L N+ = n c n I. n= Taking the limit as N, we have c L = SI, i.e. (4). iteration. Since I(a, b) = π/(m(a, b)), this expresses L(a, b) and J(a, b) in terms of the agm Recall from 6. that L(, )I(, ) = π/4. With Theorem 7.3, we can deduce the following expressions for π: 7.4 THEOREM. Let M(, ) = M and let a n, b n, c n be defined by the agm iteration for M. Let S = n= n c n. Then Hence π = lim n π n, where π = M S. (7) where S n = n r= r c r. π n = a n+ S n, (8) Proof. By (5), L(, ) = ( S)I(, ). So, by 6., π 4 = ( S)I(, ) = ( S) π, 4M hence π = M /( S). Clearly, (8) follows. 9

30 The sequence in (8) is called the Brent-Salamin iteration for π. However, the idea was already known to Gauss. A minor variant is to use a n rather than a n+. Another, favoured by some writers (including [Bor]) is to work with M = M(, ) = M /. The resulting sequences are a n, b n, c n, where a n = a n / (etc.). Then S = n= n c n and π = M /( S). Of course, the rapid convergence of the agm iteration ensures rapid convergence of (8). We illustrate this by performing the first three steps. This repeats the calculation of M in section (with slightly greater accuracy), but this time we record c n and c n. To calculate c n, we use the identity c n = c n /(4a n ). n a n b n c n c n From this, we calculate S 3 = , hence S 3 = and π 3 = to eight d.p. (while π ). We now give a reasonably simple error estimation, which is essentially equivalent to the more elaborate one in [Bor, p. 48]. Recall from. that c n+ 4/( n ) for all n With π n defined by (8), we have π n < π and Proof. We have π π n < n+9 n+. (9) where π π n = M S a n+ S n = X n ( S)( S n ), X n = M ( S n ) a n+( S) = (S S n )M ( S)(a n+ M ). Now S n < S, so S n > S. From the calculations above, it is clear that S > 5, so ( S)( S n ) < 5 4 < 3. Now consider X n. We have < a n+ M < a n+ b n+ = c n+. Meanwhile, < M < and S S n = r=n+ r c r > n c n+. 3

31 At the same time, since r c r+ < r c r, we have S S n < n+ c n+. Hence X n > (so π n < π) and X n < M (S S n ) < (S S n ) < n+ c n+ < n+6 n+. Inequality (9) follows. A slight variation of the proof that X n > shows that π n increases with n. 8. Further results on K(b) and E(b) In this section, we translate some results from sections 6 and 7 into statements in terms of K(b) and E(b). First we give expressions for the derivatives, with some some applications. We have already seen in 5.7 that E (b) = [E(b) K(b)]. The expression for b K (b) is not quite so simple: 8.. For < b <, bb K (b) = E(b) b K(b). () Proof. Recall that b = ( b ) /. By 6.7, with a =, With b replaced by b, this says bb d db I(, b) = b I(, b) J(, b). Now db /db = b/b, so by the chain rule K (b) = b b b b d db K(b) = b K(b) E(b). d db K(b) = b b b b [b K(b) E(b)] = bb [b K(b) E(b)]. Alternatively, 8. can be proved from the power series for K(b) and E(b). Note that these power series also show that K () = E () =. The expressions for K (b) and E (b) can be combined to give the following more pleasant identities: 8. COROLLARY. For < b <, b [K (b) E (b)] = be(b), () b K (b) E (b) = bk(b). (3) 3

32 Proof. We have be (b) = E(b) K(b)]. With (), this gives bb [K (b) E (b)] = ( b )E(b) = b E(b), hence (), and (3) similarly. 8.3 THEOREM (Legendre s identity). For < b <, E(b)K(b ) + E(b )K(b) K(b)K(b ) = π. (4) Proof. Write K(b) E(b) = F (b). Then (4) is equivalent to E(b)E(b ) F (b)f (b ) = π. Now E (b) = F (b)/b and, by (), F (b) = (b/b )E(b). Hence, again using the chain rule, we have and d db E(b)E(b ) = b F (b)e(b ) + E(b) b b F (b ) d db F (b)f (b ) = b b E(b)F (b ) + F (b) ( bb ) b b E(b ) = b b E(b)F (b ) b F (b)e(b ). Hence E(b)E(b ) F (b)f (b ) is constant (say c) on (, ). To find c, we consider the limit as b +. Note first that < F (b) < K(b) for < b <. Now E() = π and E() =. By.5 and 5.9, F (b) < π b for < b <. Also, by., c = E()E() = π/. F (b ) < K(b ) = I(, b) π/(b / ). Hence F (b)f (b ) as b +, so Taking b = b = and writing E( ) = E, and similarly K, M, so that K = π/(m ), this gives E K K = π, so that E = π 4K + K = M + π 4M, as found in 6. (note that M = M(, ) = M and J(, ) = E ). In 3.5 and 3.6, we translated the identity I(a, b ) = I(a, b) into identities in terms of K(b). In particular, I( + b, b) = K(b). The corresponding identity for J was given in 7.: J(a, b ) = abi(a, b) + J(a, b). (5) 3

33 We now translate this into statements involving K and E. The method given here can be compared with [Bor, p. ]. Recall that if k = ( b)/( + b), then k = b / /( + b): denote this by g(b) We have E(b) b K(b) = ( + b)e[g(b)]. (6) Proof. By (5), with a and b replaced by + b and b, b I( + b, b) + J( + b, b) = J(, b ) = E(b). As mentioned above, I( + b, b) = K(b). Further ( J( + b, b) = ( + b)j, b ) = ( + b)e[g(b)]. + b 8.5. We have E(b ) + bk(b ) = ( + b)e ( ) b. (7) + b Proof. By (5), E(b ) + bk(b ) = J(, b) + bi(, b) = J ( ( + b), b/) ) = ( + b)j (, b/ + b ( ) b = ( + b)e. + b Note that (5) and (6) can be arranged as expressions for E(b) and E(b ) respectively. Outline of further results obtained from differential equations Let us restate the identities for E (b) and K (b), writing out b as b : be (b) = E(b) K(b), (8) b( b )K (b) + ( b )K(b) = E(b). (9) We can eliminate E(b) by differentiating (9), using (8) to substitute for E (b), and then (9) again to substitute for E(b). The result is the following identity, amounting to a second-order differential equation satisfied by K(b): b( b )K (b) + ( 3b )K (b) bk(b) =. () 33

34 Similarly, we find that b( b )E (b) + ( b )E (b) + be(b) =. () By following this line of enquiry further, we can obtain series expansions for K(b ) = I(, b) and E(b ) = J(, b). Denote these functions by K (b) and E (b). To derive the differential equations satisfied by them, we switch temporarily to notation more customary for differential equations. Suppose we know a second-order differential equation satisfied by y(x) for < x <, and let z(x) = y(x ), where x = ( x ) /. By the chain rule, we find that y (x ) = (x /x)z (x) and y (x ) = x x z (x) x 3 z (x). Substituting in the equation satisfied by y(x ), we derive one satisfied by z(x). In this way, we find that K (x) satisfies x( x )y (x) + ( 3x )y (x) xy(x) =. () Interestingly, this is the same as the equation () satisfied by K(x). Meanwhile, E (x) satisfies (which is not the same as ()). x( x )y (x) ( + x )y (x) + xy(x) = (3) Now look for solutions of () of the form y(x) = n= a nx n+ρ. We substitute in the equation and equate all the coefficients to zero. The coefficient of x ρ is ρ. Taking ρ =, we obtain the solution y (x) = n= d nx n, where d = and d n = (n ) (n). Of course, we knew this solution already: by.4, y (x) = K(x). A second solution can be π found by the method of Frobenius. We give no details here, but the solution obtained is where y (x) = y (x) log x + e n = n r= d n e n x n, n= ( r ). r Now relying on the appropriate uniqueness theorem for differential equations, we conclude that K (x) = c y (x) + c y (x) for some c and c. To determine these constants, we use 4.3, which can be stated as follows: K (x) = log 4 log x + r(x), where r(x) as x +. By 34

35 .4, we have < y (x) < x for x <. Hence [y (x) ] log x, therefore also y (x) log x, tends to as x +. So K (x) = c y (x) + c y (x) = c + c log x + s(x), where s(x) as x +. It follows that c = and c = log 4. We summarise the conclusion, reverting to the notation b (compare [Bor, p. 9]): 8.6 THEOREM. Let < b <. With d n, e n as above, we have I(, b) = K(b ) = π K(b) log 4 b d n e n b n (4) n= = log 4 b + d n (log 4 ) b e n b n. (5) n= It is interesting to compare (5) with Theorem 4.6. The first term of the series in (5) is 4 b (log 4 ), so we can state b I(, b) = ( + 4 b ) log 4 ( b 4 b + O b 4 log ) b for small b, which is rather more accurate than the corresponding estimate in 4.6. Also, e n < log for all n, since it is increasing with limit log. Hence log 4 b e n > for all n, so (5) gives the lower bound I(, b) > ( + 4 b ) log 4 b 4 b, slightly stronger than the lower bound in 4.6. However, the upper bound in 4.6 is ( + 4 b ) log(4/b), and some detailed work is needed to recover this from (5). For the agm, the estimation above translates into where F (a) = (πa)/( log 4a). M(a, ) = F (a) F (a) log 4a + O(/a 3 ) as a, 4a log 4a One could go through a similar procedure to find a series expansion of J(, b). However, it is less laborious (though still fairly laborious!) to use 6.7 in the form J(, b) = b I(, b) b( b ) d I(, b) db and substitute (5). The result is: 35

36 where 8.7 THEOREM. For < b <, J(, b) = + r= f n (log 4 ) b g n b n, (6) n= f n = (n 3) (n ), (n ) (n) n ( g n = r ) + r n n. The first term in the series in (6) is ( log 4 b 4 )b. Denoting this by q(b), we conclude that J(, b) > + q(b) (since all terms of the series are positive), and J(, b) = + q(b) + O(b 4 log /b) for small b. This can be compared with the estimation in 6.9. References [Bor] J.M. Borwein and P.B. Borwein, The arithmetic-geometric mean and fast computation of elementary functions, SIAM Review 6 (984), , reprinted in Pi: A Source Book (Springer, 999), [Bor] J.M. Borwein and P.B. Borwein, Pi and the AGM, (Wiley, 987). [Bow] F. Bowman, Introduction to Elliptic Functions, (Dover Publications, 96). [Jam] [JL] G.J.O. Jameson, An approximation to the arithmetic-geometric mean, Math. Gaz 98 (4), G.J.O. Jameson and Nick Lord, Evaluation of n= Gaz. 97 (3), n by a double integral, Math. [Lo] Nick Lord, Recent calculations of π: the Gauss-Salamin algorithm, Math. Gaz. 76 (99), 3 4. [Lo] Nick Lord, Evaluating integrals using polar areas, Math. Gaz. 96 (), [New] [New] [WW] D.J. Newman, Rational approximation versus fast computer methods, in Lectures on approximation and value distribution, pp , Sém. Math. Sup. 79 (Presses Univ. Montréal, 98). D.J. Newman, A simplified version of the fast algorithm of Brent and Salamin, Math. Comp. 44 (985), 7, reprinted in Pi: A Source Book (Springer, 999), E.T. Whittaker and G.N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, 97). Dept. of Mathematics and Statistics, Lancaster University, Lancaster LA 4YF 36 g.jameson@lancaster.ac.uk

Inequalities for the perimeter of an ellipse. G.J.O. Jameson, Math. Gazette 98 (2014)

Inequalities for the perimeter of an ellipse. G.J.O. Jameson, Math. Gazette 98 (2014) Inequalities for the perimeter of an ellipse G.J.O. Jameson, Math. Gazette 98 (14) integral The perimeter of the ellipse x /a + y /b = 1 is 4J(a, b), where J(a, b) is the elliptic J(a, b) = (a cos θ +

More information

Integrals evaluated in terms of Catalan s constant. Graham Jameson and Nick Lord (Math. Gazette, March 2017)

Integrals evaluated in terms of Catalan s constant. Graham Jameson and Nick Lord (Math. Gazette, March 2017) Integrals evaluated in terms of Catalan s constant Graham Jameson and Nick Lord (Math. Gazette, March 7) Catalan s constant, named after E. C. Catalan (84 894) and usually denoted by G, is defined by G

More information

An Arithmetic-Geometric Mean Inequality

An Arithmetic-Geometric Mean Inequality EXPOSITIONES MATHEMATICAE Mathematical Note Expo. Math. 19 (2001):273-279 Urban & Fischer Verlag www. u rbanfischer.de/jou rnals/expomath An Arithmetic-Geometric Mean Inequality Paul Bracken Centre de

More information

- 2 ' a 2 =- + _ y'2 + _ 21/4. a 3 =! +! y'2 +! 21/4 +!. / (!:_ +! y'2) 21/ Y 2 2 c!+!v'2+!21/4). lc!+!v'2) 21/4.

- 2 ' a 2 =- + _ y'2 + _ 21/4. a 3 =! +! y'2 +! 21/4 +!. / (!:_ +! y'2) 21/ Y 2 2 c!+!v'2+!21/4). lc!+!v'2) 21/4. ....................................... ~. The Arithmetic Geometric Mean The arithmetic mean of two numbers a and b is defined as the "average" of the numbers, namely, aib while the geometric mean is given

More information

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material.

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material. The incomplete gamma functions Notes by G.J.O. Jameson These notes incorporate the Math. Gazette article [Jam], with some etra material. Definitions and elementary properties functions: Recall the integral

More information

Integrals of the form. Notes by G.J.O. Jameson. I f (x) = x. f(t) cos t dt, S f (x) = x

Integrals of the form. Notes by G.J.O. Jameson. I f (x) = x. f(t) cos t dt, S f (x) = x Integrals of the form f(t)eit dt Notes by G.J.O. Jameson Basic results We consider integrals of the form with real and imaginary parts I f () = f(t)e it dt, C f () = f(t) cos t dt, S f () = f(t) sin t

More information

Chennai Mathematical Institute B.Sc Physics Mathematical methods Lecture 1: Introduction to complex algebra

Chennai Mathematical Institute B.Sc Physics Mathematical methods Lecture 1: Introduction to complex algebra Chennai Mathematical Institute B.Sc Physics Mathematical methods Lecture 1: Introduction to complex algebra A Thyagaraja January, 2009 AT p.1/12 1. Real numbers The set of all real numbers (hereafter denoted

More information

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY MATH 22: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY When discussing separation of variables, we noted that at the last step we need to express the inhomogeneous initial or boundary data as

More information

Taylor and Laurent Series

Taylor and Laurent Series Chapter 4 Taylor and Laurent Series 4.. Taylor Series 4... Taylor Series for Holomorphic Functions. In Real Analysis, the Taylor series of a given function f : R R is given by: f (x + f (x (x x + f (x

More information

(b) g(x) = 4 + 6(x 3) (x 3) 2 (= x x 2 ) M1A1 Note: Accept any alternative form that is correct. Award M1A0 for a substitution of (x + 3).

(b) g(x) = 4 + 6(x 3) (x 3) 2 (= x x 2 ) M1A1 Note: Accept any alternative form that is correct. Award M1A0 for a substitution of (x + 3). Paper. Answers. (a) METHOD f (x) q x f () q 6 q 6 f() p + 8 9 5 p METHOD f(x) (x ) + 5 x + 6x q 6, p (b) g(x) + 6(x ) (x ) ( + x x ) Note: Accept any alternative form that is correct. Award A for a substitution

More information

Polymer Theory: Freely Jointed Chain

Polymer Theory: Freely Jointed Chain Polymer Theory: Freely Jointed Chain E.H.F. February 2, 23 We ll talk today about the most simple model for a single polymer in solution. It s called the freely jointed chain model. Each monomer occupies

More information

TABLE OF CONTENTS 2 CHAPTER 1

TABLE OF CONTENTS 2 CHAPTER 1 TABLE OF CONTENTS CHAPTER 1 Quadratics CHAPTER Functions 3 CHAPTER 3 Coordinate Geometry 3 CHAPTER 4 Circular Measure 4 CHAPTER 5 Trigonometry 4 CHAPTER 6 Vectors 5 CHAPTER 7 Series 6 CHAPTER 8 Differentiation

More information

A Remarkable Cubic Mean Iteration

A Remarkable Cubic Mean Iteration - Computational Methods Function Theory Proceedings, Valparafso 1989 St. Ruseheweyh, E.B. Saff, L. C. Salinas, R.S. Varga (eds.) Lecture Notes in Mathematics 145, pp. 27-1 (~) Springer Berlin Heidelberg

More information

FIRST YEAR CALCULUS W W L CHEN

FIRST YEAR CALCULUS W W L CHEN FIRST YER CLCULUS W W L CHEN c W W L Chen, 994, 28. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Math 141: Lecture 11

Math 141: Lecture 11 Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods Bob Hough October 12, 2016 Bob Hough Math 141: Lecture 11 October 12, 2016 1 / 36 First Fundamental Theorem of Calculus

More information

Operator-valued extensions of matrix-norm inequalities

Operator-valued extensions of matrix-norm inequalities Operator-valued extensions of matrix-norm inequalities G.J.O. Jameson 1. INTRODUCTION. Let A = (a j,k ) be a matrix (finite or infinite) of complex numbers. Let A denote the usual operator norm of A as

More information

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES S.S. DRAGOMIR Abstract. The main aim of this paper is to establish some connections that exist between the numerical

More information

4.4 Uniform Convergence of Sequences of Functions and the Derivative

4.4 Uniform Convergence of Sequences of Functions and the Derivative 4.4 Uniform Convergence of Sequences of Functions and the Derivative Say we have a sequence f n (x) of functions defined on some interval, [a, b]. Let s say they converge in some sense to a function f

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

INTEGRATING RADICALS

INTEGRATING RADICALS INTEGRATING RADICALS MATH 53, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Section 8.4. What students should already know: The definitions of inverse trigonometric functions. The differentiation

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

THE HYPERBOLIC METRIC OF A RECTANGLE

THE HYPERBOLIC METRIC OF A RECTANGLE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 401 407 THE HYPERBOLIC METRIC OF A RECTANGLE A. F. Beardon University of Cambridge, DPMMS, Centre for Mathematical Sciences Wilberforce

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is . If P(A) = x, P = 2x, P(A B) = 2, P ( A B) = 2 3, then the value of x is (A) 5 8 5 36 6 36 36 2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time

More information

MATH1231 CALCULUS. Session II Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065

MATH1231 CALCULUS. Session II Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065 MATH1231 CALCULUS Session II 2007. Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065 Jag.Roberts@unsw.edu.au MATH1231 CALCULUS p.1/66 Overview Systematic Integration Techniques

More information

(x, y) = d(x, y) = x y.

(x, y) = d(x, y) = x y. 1 Euclidean geometry 1.1 Euclidean space Our story begins with a geometry which will be familiar to all readers, namely the geometry of Euclidean space. In this first chapter we study the Euclidean distance

More information

Math 259: Introduction to Analytic Number Theory More about the Gamma function

Math 259: Introduction to Analytic Number Theory More about the Gamma function Math 59: Introduction to Analytic Number Theory More about the Gamma function We collect some more facts about Γs as a function of a complex variable that will figure in our treatment of ζs and Ls, χ.

More information

The arithmetic geometric mean (Agm)

The arithmetic geometric mean (Agm) The arithmetic geometric mean () Pictures by David Lehavi This is part of exercise 5 question 4 in myc> calculus class Fall 200: a = c a n+ =5a n 2 lim n an = a = a an + bn a n+ = 2 b = b b n+ = a nb n

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

AEA 2007 Extended Solutions

AEA 2007 Extended Solutions AEA 7 Extended Solutions These extended solutions for Advanced Extension Awards in Mathematics are intended to supplement the original mark schemes, which are available on the Edexcel website.. (a The

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 198 NOTES ON MATRIX METHODS 1. Matrix Algebra Margenau and Murphy, The Mathematics of Physics and Chemistry, Chapter 10, give almost

More information

Geometry and Motion, MA 134 Week 1

Geometry and Motion, MA 134 Week 1 Geometry and Motion, MA 134 Week 1 Mario J. Micallef Spring, 2007 Warning. These handouts are not intended to be complete lecture notes. They should be supplemented by your own notes and, importantly,

More information

Bessel Functions Michael Taylor. Lecture Notes for Math 524

Bessel Functions Michael Taylor. Lecture Notes for Math 524 Bessel Functions Michael Taylor Lecture Notes for Math 54 Contents 1. Introduction. Conversion to first order systems 3. The Bessel functions J ν 4. The Bessel functions Y ν 5. Relations between J ν and

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

MATH 1231 S2 2010: Calculus. Section 2: Techniques of integration.

MATH 1231 S2 2010: Calculus. Section 2: Techniques of integration. MATH 1231 S2 2010: Calculus For use in Dr Chris Tisdell s lectures Section 2: Techniques of integration. Created and compiled by Chris Tisdell S1: Motivation S2: What you should already know S3: Integrals

More information

CHAPTER 2. CONFORMAL MAPPINGS 58

CHAPTER 2. CONFORMAL MAPPINGS 58 CHAPTER 2. CONFORMAL MAPPINGS 58 We prove that a strong form of converse of the above statement also holds. Please note we could apply the Theorem 1.11.3 to prove the theorem. But we prefer to apply the

More information

Math 122 Test 3. April 15, 2014

Math 122 Test 3. April 15, 2014 SI: Math 1 Test 3 April 15, 014 EF: 1 3 4 5 6 7 8 Total Name Directions: 1. No books, notes or 6 year olds with ear infections. You may use a calculator to do routine arithmetic computations. You may not

More information

A GEOMETRIC VIEW OF RATIONAL LANDEN TRANSFORMATIONS

A GEOMETRIC VIEW OF RATIONAL LANDEN TRANSFORMATIONS Bull. London Math. Soc. 35 (3 93 3 C 3 London Mathematical Society DOI:./S4693393 A GEOMETRIC VIEW OF RATIONAL LANDEN TRANSFORMATIONS JOHN HUBBARD and VICTOR MOLL Abstract In this paper, a geometric interpretation

More information

Lecture 4 Lebesgue spaces and inequalities

Lecture 4 Lebesgue spaces and inequalities Lecture 4: Lebesgue spaces and inequalities 1 of 10 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 4 Lebesgue spaces and inequalities Lebesgue spaces We have seen how

More information

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1)

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1) 1.4. CONSTRUCTION OF LEBESGUE-STIELTJES MEASURES In this section we shall put to use the Carathéodory-Hahn theory, in order to construct measures with certain desirable properties first on the real line

More information

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize). Summer Review Packet for Students Entering Prealculus Radicals: To simplify means that 1) no radicand has a perfect square factor and ) there is no radical in the denominator (rationalize). Recall the

More information

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E, Tel Aviv University, 26 Analysis-III 9 9 Improper integral 9a Introduction....................... 9 9b Positive integrands................... 9c Special functions gamma and beta......... 4 9d Change of

More information

In these notes we will outline a proof of Lobachevskiĭ s main equation for the angle of parallelism, namely

In these notes we will outline a proof of Lobachevskiĭ s main equation for the angle of parallelism, namely Mathematics 30 Spring Semester, 003 Notes on the angle of parallelism c W. Taylor, 003 In these notes we will outline a proof of Lobachevskiĭ s main equation for the angle of parallelism, namely ( ) Π(y)

More information

SUMMER REVIEW PACKET. Name:

SUMMER REVIEW PACKET. Name: Wylie East HIGH SCHOOL SUMMER REVIEW PACKET For students entering Regular PRECALCULUS Name: Welcome to Pre-Calculus. The following packet needs to be finished and ready to be turned the first week of the

More information

A-LEVEL Further Mathematics

A-LEVEL Further Mathematics A-LEVEL Further Mathematics F1 Mark scheme Specimen Version 1.1 Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers.

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D 3 Independent Random Variables II: Examples 3.1 Some functions of independent r.v. s. Let X 1, X 2,... be independent r.v. s with the known distributions. Then, one can compute the distribution of a r.v.

More information

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

MA131 - Analysis 1. Workbook 4 Sequences III

MA131 - Analysis 1. Workbook 4 Sequences III MA3 - Analysis Workbook 4 Sequences III Autumn 2004 Contents 2.3 Roots................................. 2.4 Powers................................. 3 2.5 * Application - Factorials *.....................

More information

1 Euclidean geometry. 1.1 The metric on R n

1 Euclidean geometry. 1.1 The metric on R n 1 Euclidean geometry This chapter discusses the geometry of n-dimensional Euclidean space E n, together with its distance function. The distance gives rise to other notions such as angles and congruent

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

M311 Functions of Several Variables. CHAPTER 1. Continuity CHAPTER 2. The Bolzano Weierstrass Theorem and Compact Sets CHAPTER 3.

M311 Functions of Several Variables. CHAPTER 1. Continuity CHAPTER 2. The Bolzano Weierstrass Theorem and Compact Sets CHAPTER 3. M311 Functions of Several Variables 2006 CHAPTER 1. Continuity CHAPTER 2. The Bolzano Weierstrass Theorem and Compact Sets CHAPTER 3. Differentiability 1 2 CHAPTER 1. Continuity If (a, b) R 2 then we write

More information

PURE MATHEMATICS AM 27

PURE MATHEMATICS AM 27 AM Syllabus (014): Pure Mathematics AM SYLLABUS (014) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (014): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

CHAPTER 4: EXPLORING Z

CHAPTER 4: EXPLORING Z CHAPTER 4: EXPLORING Z MATH 378, CSUSM. SPRING 2009. AITKEN 1. Introduction In this chapter we continue the study of the ring Z. We begin with absolute values. The absolute value function Z N is the identity

More information

Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differenti. equations.

Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differenti. equations. Lecture 9 Metric spaces. The contraction fixed point theorem. The implicit function theorem. The existence of solutions to differential equations. 1 Metric spaces 2 Completeness and completion. 3 The contraction

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Fourth Week: Lectures 10-12

Fourth Week: Lectures 10-12 Fourth Week: Lectures 10-12 Lecture 10 The fact that a power series p of positive radius of convergence defines a function inside its disc of convergence via substitution is something that we cannot ignore

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

Isoperimetric inequalities and variations on Schwarz s Lemma

Isoperimetric inequalities and variations on Schwarz s Lemma Isoperimetric inequalities and variations on Schwarz s Lemma joint work with M. van den Berg and T. Carroll May, 2010 Outline Schwarz s Lemma and variations Isoperimetric inequalities Proof Classical Schwarz

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

AS PURE MATHS REVISION NOTES

AS PURE MATHS REVISION NOTES AS PURE MATHS REVISION NOTES 1 SURDS A root such as 3 that cannot be written exactly as a fraction is IRRATIONAL An expression that involves irrational roots is in SURD FORM e.g. 2 3 3 + 2 and 3-2 are

More information

The Not-Formula Book for C2 Everything you need to know for Core 2 that won t be in the formula book Examination Board: AQA

The Not-Formula Book for C2 Everything you need to know for Core 2 that won t be in the formula book Examination Board: AQA Not The Not-Formula Book for C Everything you need to know for Core that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

Precise error estimate of the Brent-McMillan algorithm for the computation of Euler s constant

Precise error estimate of the Brent-McMillan algorithm for the computation of Euler s constant Precise error estimate of the Brent-McMillan algorithm for the computation of Euler s constant Jean-Pierre Demailly Université de Grenoble Alpes, Institut Fourier Abstract Brent and McMillan introduced

More information

21.3. z-transforms and Difference Equations. Introduction. Prerequisites. Learning Outcomes

21.3. z-transforms and Difference Equations. Introduction. Prerequisites. Learning Outcomes -Transforms and Difference Equations 1.3 Introduction In this we apply -transforms to the solution of certain types of difference equation. We shall see that this is done by turning the difference equation

More information

Inner product spaces. Layers of structure:

Inner product spaces. Layers of structure: Inner product spaces Layers of structure: vector space normed linear space inner product space The abstract definition of an inner product, which we will see very shortly, is simple (and by itself is pretty

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Advanced Computational Fluid Dynamics AA215A Lecture 2 Approximation Theory. Antony Jameson

Advanced Computational Fluid Dynamics AA215A Lecture 2 Approximation Theory. Antony Jameson Advanced Computational Fluid Dynamics AA5A Lecture Approximation Theory Antony Jameson Winter Quarter, 6, Stanford, CA Last revised on January 7, 6 Contents Approximation Theory. Least Squares Approximation

More information

The p-adic numbers. Given a prime p, we define a valuation on the rationals by

The p-adic numbers. Given a prime p, we define a valuation on the rationals by The p-adic numbers There are quite a few reasons to be interested in the p-adic numbers Q p. They are useful for solving diophantine equations, using tools like Hensel s lemma and the Hasse principle,

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

1MA1 Introduction to the Maths Course

1MA1 Introduction to the Maths Course 1MA1/-1 1MA1 Introduction to the Maths Course Preamble Throughout your time as an engineering student at Oxford you will receive lectures and tuition in the range of applied mathematical tools that today

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

AEA 2003 Extended Solutions

AEA 2003 Extended Solutions AEA 003 Extended Solutions These extended solutions for Advanced Extension Awards in Mathematics are intended to supplement the original mark schemes, which are available on the Edexcel website. 1. Since

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Martin Nicholson In this brief note, we show how to apply Kummer s and other quadratic transformation formulas for

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

ξ,i = x nx i x 3 + δ ni + x n x = 0. x Dξ = x i ξ,i = x nx i x i x 3 Du = λ x λ 2 xh + x λ h Dξ,

ξ,i = x nx i x 3 + δ ni + x n x = 0. x Dξ = x i ξ,i = x nx i x i x 3 Du = λ x λ 2 xh + x λ h Dξ, 1 PDE, HW 3 solutions Problem 1. No. If a sequence of harmonic polynomials on [ 1,1] n converges uniformly to a limit f then f is harmonic. Problem 2. By definition U r U for every r >. Suppose w is a

More information

2007 Paper 1 Solutions

2007 Paper 1 Solutions 27 Paper 1 Solutions 2x 2 x 19 x 2 + x + 2 1 = 2x2 x 19 (x 2 + x + 2) x 2 + x + 2 2x 2 x 19 x 2 + x + 2 > 1 2x 2 x 19 x 2 + x + 2 1 > x 2 4x 21 x 2 + x + 2 > (x + )(x 7) (x + 2)(x + 1) > = x2 4x 21 x 2

More information

#A5 INTEGERS 18A (2018) EXPLICIT EXAMPLES OF p-adic NUMBERS WITH PRESCRIBED IRRATIONALITY EXPONENT

#A5 INTEGERS 18A (2018) EXPLICIT EXAMPLES OF p-adic NUMBERS WITH PRESCRIBED IRRATIONALITY EXPONENT #A5 INTEGERS 8A (208) EXPLICIT EXAMPLES OF p-adic NUMBERS WITH PRESCRIBED IRRATIONALITY EXPONENT Yann Bugeaud IRMA, UMR 750, Université de Strasbourg et CNRS, Strasbourg, France bugeaud@math.unistra.fr

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES CHRISTOPHER HEIL 1. Adjoints in Hilbert Spaces Recall that the dot product on R n is given by x y = x T y, while the dot product on C n is

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 433 BLECHER NOTES. As in earlier classnotes. As in earlier classnotes (Fourier series) 3. Fourier series (continued) (NOTE: UNDERGRADS IN THE CLASS ARE NOT RESPONSIBLE

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M.

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M. 5 Vector fields Last updated: March 12, 2012. 5.1 Definition and general properties We first need to define what a vector field is. Definition 5.1. A vector field v on a manifold M is map M T M such that

More information

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions...

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions... Legendre Polynomials and Functions Reading Problems Outline Background and Definitions...2 Definitions...3 Theory...4 Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and

More information

Markov s Inequality for Polynomials on Normed Linear Spaces Lawrence A. Harris

Markov s Inequality for Polynomials on Normed Linear Spaces Lawrence A. Harris New Series Vol. 16, 2002, Fasc. 1-4 Markov s Inequality for Polynomials on Normed Linear Spaces Lawrence A. Harris This article is dedicated to the 70th anniversary of Acad. Bl. Sendov It is a longstanding

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics NORMS OF CERTAIN OPERATORS ON WEIGHTED l p SPACES AND LORENTZ SEQUENCE SPACES G.J.O. JAMESON AND R. LASHKARIPOUR Department of Mathematics and Statistics,

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

Math LM (24543) Lectures 02

Math LM (24543) Lectures 02 Math 32300 LM (24543) Lectures 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Continuity, Ross Chapter 3 Uniform Continuity and Compactness Connectedness

More information

In this chapter we study several functions that are useful in calculus and other areas of mathematics.

In this chapter we study several functions that are useful in calculus and other areas of mathematics. Calculus 5 7 Special functions In this chapter we study several functions that are useful in calculus and other areas of mathematics. 7. Hyperbolic trigonometric functions The functions we study in this

More information