Domain Adaptation for Regression

Size: px
Start display at page:

Download "Domain Adaptation for Regression"

Transcription

1 Domain Adaptation for Regression Corinna Cortes Google Research Mehryar Mohri Courant Institute and Google

2 Motivation Applications: distinct training and test distributions. Sentiment analysis: appraisal information for some domains, e.g., movies, books, music, restaurants, but no labels for travel. Language modeling, part-of-speech tagging. Statistical parsing. Speech recognition. Computer vision. Solution critical for applications. This talk: regression problems. 2

3 Domain Adaptation Problem Distributions: source Q, target P. Target function(s): and, or just. f Q Input: training sample drawn from Q, unlabeled sample drawn from P. Problem: find hypothesis h with small expected loss with respect to distribution P, L P (h, f P )= f P f E L h(x),f P (x). x P 3

4 Distribution Mismatch Q P Which distance should we use to compare these distributions? 4

5 Definition: Discrepancy Distance disc(q 1,Q 2 )= max h,h H L Q1 (h,h) L Q2 (h,h) symmetric, verifies triangle inequality, in general not a distance. helps compare distributions for arbitrary losses, e.g. hinge loss, or L p loss. can be estimated from finite samples, Rademacher complexity bounds. (Mansour, MM, Rostami, 2009). 5

6 Previous Work (Ben-David et al., NIPS 2006) & (Blitzer et al., NIPS 2007): bounds for binary classification based on d A distance and λ H term (cannot be estimated). (Mansour, MM, Rostami, COLT 2009): learning bounds and analysis for general loss functions. based on discrepancy and optimal hypotheses. favorable under plausible assumptions. pointwise loss guarantees for kernel algorithms. (Ben-David et al., AISTATS 2010): series of negative results for adaptation in binary classification. 6

7 Theoretical Guarantees Two types of questions: difference between average loss of hypothesis on Q versus P? difference of loss between hypothesis h obtained when training on ( Q, f Q ) versus hypothesis obtained when training on ( P,f P ). h h 7

8 Kernel-Based Reg. (KBR) Algorithms Algorithms minimizing objective function: F bq (h) =λ h 2 K + R bq (h), where K is a PDS kernel, λ>0 is a trade-off parameter, and R bq (h) is the empirical error of h. family of algorithms including SVM, SVR, kernel ridge regression, etc. 8

9 Guarantees for KBR Algorithms Theorem: let K be a PDS kernel with K(x, x) R 2 and L a loss function such that L(,y) is µ -Lipschitz. Assume that f P H, then, for all (x, y) X Y, L(h (x),y) L(h(x),y) disc( P, Q)+µη µr, λ where η =max{l(f Q (x),f P (x)): x supp( Q)}. 9

10 Adaptation Algorithm Search for a new empirical distribution same support: q with q = argmin supp(q) supp( b Q) disc( P,q). Solve modified KBR problem: min h F q (h) = 1 m m i=1 q (x i )L(h(x i ),y i )+λh 2 K. 10

11 Discrepancy Min. - Input space For L2 loss and cast as an SDP (Mansour, MM, Rostami, COLT 2009): H ={x w x: w Λ} minimize M(z) 2 m subject to M(z) =M 0 z i M i i=1 q M 0 = P (x j )x j x j j=m+1 M i = x i x i,i [1, m] z 1 =1 z 0. what about if we want to use kernels?, can be 11

12 Discrepancy Min. with Kernels For L2 loss and it can be cast as a similar SDP: H = {h H: h K Λ} minimize M (z) 2 m subject to M (z) =M 0 z i M i i=1 M 0 = K 1/2 D 0 K 1/2 M i = K 1/2 D i K 1/2 z 1 =1 z 0., proof that but, cannot be solved practically even for a few hundred points, even with best public SDP solvers. 12

13 Smooth Approximation Convex optimization problem: Smooth: C closed convex, algorithm: F O(1/ ) Lipschitz continuous gradient., optimal for problem class. Non-smooth: F Lipschitz continuous. find G uniform -approximation of F. algorithm: O(1/). (Nesterov, 1983, 2005) minimize z C F (z). 13

14 Disc. Min. SDP Problem Smooth approximation: F : z M(z) 2 not differentiable. G p : z 1 : smooth unif. approximation. 2 Tr[M(z)2p ] 1 p Algorithm: J =(M i, M j F ) 1 i,j m. Algorithm 2 u 0 argmin u C u Ju for k 0 do 2p 1 v k argmin u C (u u 2 k ) J(u u k )+ G p (M(u k )) u 2p 1 w k argmin u C (u u 2 0 ) J(u u 0 )+ P k i+1 i=0 G 2 p(m(u i )) u u k+1 2 w k+3 k + k+1 v k+3 k end for Fig. 2. Smooth approximation algorithm. 14

15 Convergence Guarantee Let r =max rank(m i )}. z C rank(m(z)) max{n, n i=0 Theorem: for any >0, the algorithm solves the discrepancy minimization SDP with relative accuracy in O( r log r/) iterations. 15

16 Experiments - Time Seconds o* 80 sec. o * o * o * o * QP optimization grad G computation oo oo * * * *!=3 Seconds 1e+01 1e+03 1e+05 o X o X X X o o X o! =3 o o Algorithm 2 SeDuMi oo Set size Set size 16

17 Experiments - Performance Adaptation to Books Adaptation to Dvd Adaptation to Elec Adaptation to Kitchen RMSE books dvd elec kitchen RMSE books dvd elec kitchen RMSE books dvd elec kitchen RMSE books dvd elec kitchen Unlabeled set size Unlabeled set size Unlabeled set size Unlabeled set size Fig. 3. Multi-domain sentiment analysis data set (Blitzer et al. 2007): books, dvd, elec, kitchen. Treated as regression task. 17

18 Conclusion Theoretical results for DA in regression. new pointwise loss guarantees for general class of loss functions. disc. min. adaptation extended to kernels. Efficient algorithm for solving discrepancy minimization. shown to scale to relatively large data sets. empirically shown to be effective. Still many adaptation questions left to address! 18

Learning with Imperfect Data

Learning with Imperfect Data Mehryar Mohri Courant Institute and Google mohri@cims.nyu.edu Joint work with: Yishay Mansour (Tel-Aviv & Google) and Afshin Rostamizadeh (Courant Institute). Standard Learning Assumptions IID assumption.

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Domain Adaptation MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Non-Ideal World time real world ideal domain sampling page 2 Outline Domain adaptation. Multiple-source

More information

Foundations of Machine Learning

Foundations of Machine Learning Introduction to ML Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu page 1 Logistics Prerequisites: basics in linear algebra, probability, and analysis of algorithms. Workload: about

More information

Learning Bounds for Importance Weighting

Learning Bounds for Importance Weighting Learning Bounds for Importance Weighting Corinna Cortes Google Research corinna@google.com Yishay Mansour Tel-Aviv University mansour@tau.ac.il Mehryar Mohri Courant & Google mohri@cims.nyu.edu Motivation

More information

Learning Kernels -Tutorial Part III: Theoretical Guarantees.

Learning Kernels -Tutorial Part III: Theoretical Guarantees. Learning Kernels -Tutorial Part III: Theoretical Guarantees. Corinna Cortes Google Research corinna@google.com Mehryar Mohri Courant Institute & Google Research mohri@cims.nyu.edu Afshin Rostami UC Berkeley

More information

Domain Adaptation with Multiple Sources

Domain Adaptation with Multiple Sources Domain Adaptation with Multiple Sources Yishay Mansour Google Research and Tel Aviv Univ. mansour@tau.ac.il Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Afshin Rostamizadeh Courant

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Learning Kernels MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Kernel methods. Learning kernels scenario. learning bounds. algorithms. page 2 Machine Learning

More information

Learning with Rejection

Learning with Rejection Learning with Rejection Corinna Cortes 1, Giulia DeSalvo 2, and Mehryar Mohri 2,1 1 Google Research, 111 8th Avenue, New York, NY 2 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York,

More information

Structured Prediction Theory and Algorithms

Structured Prediction Theory and Algorithms Structured Prediction Theory and Algorithms Joint work with Corinna Cortes (Google Research) Vitaly Kuznetsov (Google Research) Scott Yang (Courant Institute) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE

More information

Boosting Ensembles of Structured Prediction Rules

Boosting Ensembles of Structured Prediction Rules Boosting Ensembles of Structured Prediction Rules Corinna Cortes Google Research 76 Ninth Avenue New York, NY 10011 corinna@google.com Vitaly Kuznetsov Courant Institute 251 Mercer Street New York, NY

More information

Perceptron Mistake Bounds

Perceptron Mistake Bounds Perceptron Mistake Bounds Mehryar Mohri, and Afshin Rostamizadeh Google Research Courant Institute of Mathematical Sciences Abstract. We present a brief survey of existing mistake bounds and introduce

More information

Time Series Prediction & Online Learning

Time Series Prediction & Online Learning Time Series Prediction & Online Learning Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values. earthquakes.

More information

Online Learning for Time Series Prediction

Online Learning for Time Series Prediction Online Learning for Time Series Prediction Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values.

More information

Foundations of Machine Learning Multi-Class Classification. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Multi-Class Classification. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Multi-Class Classification Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation Real-world problems often have multiple classes: text, speech,

More information

Introduction to Machine Learning Lecture 13. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 13. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 13 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Multi-Class Classification Mehryar Mohri - Introduction to Machine Learning page 2 Motivation

More information

Sample Selection Bias Correction

Sample Selection Bias Correction Sample Selection Bias Correction Afshin Rostamizadeh Joint work with: Corinna Cortes, Mehryar Mohri & Michael Riley Courant Institute & Google Research Motivation Critical Assumption: Samples for training

More information

Algorithms for Learning Kernels Based on Centered Alignment

Algorithms for Learning Kernels Based on Centered Alignment Journal of Machine Learning Research 3 (2012) XX-XX Submitted 01/11; Published 03/12 Algorithms for Learning Kernels Based on Centered Alignment Corinna Cortes Google Research 76 Ninth Avenue New York,

More information

Foundations of Machine Learning Lecture 9. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Lecture 9. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Lecture 9 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Multi-Class Classification page 2 Motivation Real-world problems often have multiple classes:

More information

Domain Adaptation Can Quantity Compensate for Quality?

Domain Adaptation Can Quantity Compensate for Quality? Domain Adaptation Can Quantity Compensate for Quality? hai Ben-David David R. Cheriton chool of Computer cience University of Waterloo Waterloo, ON N2L 3G1 CANADA shai@cs.uwaterloo.ca hai halev-hwartz

More information

Instance-based Domain Adaptation

Instance-based Domain Adaptation Instance-based Domain Adaptation Rui Xia School of Computer Science and Engineering Nanjing University of Science and Technology 1 Problem Background Training data Test data Movie Domain Sentiment Classifier

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

On-Line Learning with Path Experts and Non-Additive Losses

On-Line Learning with Path Experts and Non-Additive Losses On-Line Learning with Path Experts and Non-Additive Losses Joint work with Corinna Cortes (Google Research) Vitaly Kuznetsov (Courant Institute) Manfred Warmuth (UC Santa Cruz) MEHRYAR MOHRI MOHRI@ COURANT

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

Sparse Domain Adaptation in a Good Similarity-Based Projection Space

Sparse Domain Adaptation in a Good Similarity-Based Projection Space Sparse Domain Adaptation in a Good Similarity-Based Projection Space Emilie Morvant, Amaury Habrard, Stéphane Ayache To cite this version: Emilie Morvant, Amaury Habrard, Stéphane Ayache. Sparse Domain

More information

ADANET: adaptive learning of neural networks

ADANET: adaptive learning of neural networks ADANET: adaptive learning of neural networks Joint work with Corinna Cortes (Google Research) Javier Gonzalo (Google Research) Vitaly Kuznetsov (Google Research) Scott Yang (Courant Institute) MEHRYAR

More information

Deep Boosting. Joint work with Corinna Cortes (Google Research) Umar Syed (Google Research) COURANT INSTITUTE & GOOGLE RESEARCH.

Deep Boosting. Joint work with Corinna Cortes (Google Research) Umar Syed (Google Research) COURANT INSTITUTE & GOOGLE RESEARCH. Deep Boosting Joint work with Corinna Cortes (Google Research) Umar Syed (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Ensemble Methods in ML Combining several base classifiers

More information

The definitions and notation are those introduced in the lectures slides. R Ex D [h

The definitions and notation are those introduced in the lectures slides. R Ex D [h Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 2 October 04, 2016 Due: October 18, 2016 A. Rademacher complexity The definitions and notation

More information

i=1 cosn (x 2 i y2 i ) over RN R N. cos y sin x

i=1 cosn (x 2 i y2 i ) over RN R N. cos y sin x Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 November 16, 017 Due: Dec 01, 017 A. Kernels Show that the following kernels K are PDS: 1.

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto Reproducing Kernel Hilbert Spaces 9.520 Class 03, 15 February 2006 Andrea Caponnetto About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Introduction to Machine Learning Lecture 11. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 11. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 11 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Boosting Mehryar Mohri - Introduction to Machine Learning page 2 Boosting Ideas Main idea:

More information

Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013

Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013 Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013 A. Kernels 1. Let X be a finite set. Show that the kernel

More information

Introduction to Machine Learning Lecture 9. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 9. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 9 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Kernel Methods Motivation Non-linear decision boundary. Efficient computation of inner

More information

Structured Prediction

Structured Prediction Structured Prediction Ningshan Zhang Advanced Machine Learning, Spring 2016 Outline Ensemble Methods for Structured Prediction[1] On-line learning Boosting AGeneralizedKernelApproachtoStructuredOutputLearning[2]

More information

Does Unlabeled Data Help?

Does Unlabeled Data Help? Does Unlabeled Data Help? Worst-case Analysis of the Sample Complexity of Semi-supervised Learning. Ben-David, Lu and Pal; COLT, 2008. Presentation by Ashish Rastogi Courant Machine Learning Seminar. Outline

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

Bits of Machine Learning Part 1: Supervised Learning

Bits of Machine Learning Part 1: Supervised Learning Bits of Machine Learning Part 1: Supervised Learning Alexandre Proutiere and Vahan Petrosyan KTH (The Royal Institute of Technology) Outline of the Course 1. Supervised Learning Regression and Classification

More information

Support Vector Machines: Kernels

Support Vector Machines: Kernels Support Vector Machines: Kernels CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 14.1, 14.2, 14.4 Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Non-Linear Problems

More information

Matrix Factorizations: A Tale of Two Norms

Matrix Factorizations: A Tale of Two Norms Matrix Factorizations: A Tale of Two Norms Nati Srebro Toyota Technological Institute Chicago Maximum Margin Matrix Factorization S, Jason Rennie, Tommi Jaakkola (MIT), NIPS 2004 Rank, Trace-Norm and Max-Norm

More information

A survey of multi-source domain adaptation

A survey of multi-source domain adaptation A survey of multi-source domain adaptation Shiliang Sun, Honglei Shi, Yuanbin Wu Shanghai Key Laboratory of Multidimensional Information Processing, Department of Computer Science and Technology, East

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Deep Boosting MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Model selection. Deep boosting. theory. algorithm. experiments. page 2 Model Selection Problem:

More information

Towards Lifelong Machine Learning Multi-Task and Lifelong Learning with Unlabeled Tasks Christoph Lampert

Towards Lifelong Machine Learning Multi-Task and Lifelong Learning with Unlabeled Tasks Christoph Lampert Towards Lifelong Machine Learning Multi-Task and Lifelong Learning with Unlabeled Tasks Christoph Lampert HSE Computer Science Colloquium September 6, 2016 IST Austria (Institute of Science and Technology

More information

Support vector machines Lecture 4

Support vector machines Lecture 4 Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The

More information

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh Generalization Bounds in Machine Learning Presented by: Afshin Rostamizadeh Outline Introduction to generalization bounds. Examples: VC-bounds Covering Number bounds Rademacher bounds Stability bounds

More information

Authors: John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira and Jennifer Wortman (University of Pennsylvania)

Authors: John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira and Jennifer Wortman (University of Pennsylvania) Learning Bouds for Domain Adaptation Authors: John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira and Jennifer Wortman (University of Pennsylvania) Presentation by: Afshin Rostamizadeh (New York

More information

arxiv: v2 [cs.lg] 13 Sep 2018

arxiv: v2 [cs.lg] 13 Sep 2018 Unsupervised Domain Adaptation Based on ource-guided Discrepancy arxiv:1809.03839v2 [cs.lg] 13 ep 2018 eiichi Kuroki 1 Nontawat Charoenphakdee 1 Han Bao 1,2 Junya Honda 1,2 Issei ato 1,2 Masashi ugiyama

More information

IFT Lecture 7 Elements of statistical learning theory

IFT Lecture 7 Elements of statistical learning theory IFT 6085 - Lecture 7 Elements of statistical learning theory This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s): Brady Neal and

More information

Introduction to Machine Learning Lecture 14. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 14. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 14 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Density Estimation Maxent Models 2 Entropy Definition: the entropy of a random variable

More information

Learning Representations for Counterfactual Inference. Fredrik Johansson 1, Uri Shalit 2, David Sontag 2

Learning Representations for Counterfactual Inference. Fredrik Johansson 1, Uri Shalit 2, David Sontag 2 Learning Representations for Counterfactual Inference Fredrik Johansson 1, Uri Shalit 2, David Sontag 2 1 2 Counterfactual inference Patient Anna comes in with hypertension. She is 50 years old, Asian

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning TTIC 31230, Fundamentals of Deep Learning, Winter 2019 David McAllester The Fundamental Equations of Deep Learning 1 Early History 1943: McCullock and Pitts introduced the linear threshold neuron. 1962:

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Support Vector Machines Explained

Support Vector Machines Explained December 23, 2008 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

Large-Scale Training of SVMs with Automata Kernels

Large-Scale Training of SVMs with Automata Kernels Large-Scale Training of SVMs with Automata Kernels Cyril Allauzen, Corinna Cortes, and Mehryar Mohri, Google Research, 76 Ninth Avenue, New York, NY Courant Institute of Mathematical Sciences, 5 Mercer

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

PAC-Bayesian Learning and Domain Adaptation

PAC-Bayesian Learning and Domain Adaptation PAC-Bayesian Learning and Domain Adaptation Pascal Germain 1 François Laviolette 1 Amaury Habrard 2 Emilie Morvant 3 1 GRAAL Machine Learning Research Group Département d informatique et de génie logiciel

More information

Learning Theory and Algorithms for Auctioning and Adaptation Problems

Learning Theory and Algorithms for Auctioning and Adaptation Problems Learning Theory and Algorithms for Auctioning and Adaptation Problems by Andrés Muñoz Medina A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department

More information

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution:

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution: Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 October 31, 2016 Due: A. November 11, 2016; B. November 22, 2016 A. Boosting 1. Implement

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

Joint distribution optimal transportation for domain adaptation

Joint distribution optimal transportation for domain adaptation Joint distribution optimal transportation for domain adaptation Changhuang Wan Mechanical and Aerospace Engineering Department The Ohio State University March 8 th, 2018 Joint distribution optimal transportation

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 477 Instructor: Tony Jebara Topic 5 Generalization Guarantees VC-Dimension Nearest Neighbor Classification (infinite VC dimension) Structural Risk Minimization Support Vector Machines

More information

CSC 411 Lecture 17: Support Vector Machine

CSC 411 Lecture 17: Support Vector Machine CSC 411 Lecture 17: Support Vector Machine Ethan Fetaya, James Lucas and Emad Andrews University of Toronto CSC411 Lec17 1 / 1 Today Max-margin classification SVM Hard SVM Duality Soft SVM CSC411 Lec17

More information

On the Generalization Ability of Online Strongly Convex Programming Algorithms

On the Generalization Ability of Online Strongly Convex Programming Algorithms On the Generalization Ability of Online Strongly Convex Programming Algorithms Sham M. Kakade I Chicago Chicago, IL 60637 sham@tti-c.org Ambuj ewari I Chicago Chicago, IL 60637 tewari@tti-c.org Abstract

More information

learning bounds for importance weighting Tamas Madarasz & Michael Rabadi April 15, 2015

learning bounds for importance weighting Tamas Madarasz & Michael Rabadi April 15, 2015 learning bounds for importance weighting Tamas Madarasz & Michael Rabadi April 15, 2015 Introduction Often, training distribution does not match testing distribution Want to utilize information about test

More information

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation Instance-based Domain Adaptation via Multi-clustering Logistic Approximation FENG U, Nanjing University of Science and Technology JIANFEI YU, Singapore Management University RUI IA, Nanjing University

More information

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning classification classifiers need labeled data to train labeled data

More information

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University Lecture 18: Kernels Risk and Loss Support Vector Regression Aykut Erdem December 2016 Hacettepe University Administrative We will have a make-up lecture on next Saturday December 24, 2016 Presentations

More information

Unlabeled Data: Now It Helps, Now It Doesn t

Unlabeled Data: Now It Helps, Now It Doesn t institution-logo-filena A. Singh, R. D. Nowak, and X. Zhu. In NIPS, 2008. 1 Courant Institute, NYU April 21, 2015 Outline institution-logo-filena 1 Conflicting Views in Semi-supervised Learning The Cluster

More information

Impossibility Theorems for Domain Adaptation

Impossibility Theorems for Domain Adaptation Shai Ben-David and Teresa Luu Tyler Lu Dávid Pál School of Computer Science University of Waterloo Waterloo, ON, CAN {shai,t2luu}@cs.uwaterloo.ca Dept. of Computer Science University of Toronto Toronto,

More information

Semi-Supervised Learning

Semi-Supervised Learning Semi-Supervised Learning getting more for less in natural language processing and beyond Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning many human

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Time Series Prediction and Online Learning

Time Series Prediction and Online Learning JMLR: Workshop and Conference Proceedings vol 49:1 24, 2016 Time Series Prediction and Online Learning Vitaly Kuznetsov Courant Institute, New York Mehryar Mohri Courant Institute and Google Research,

More information

Support Vector Machines (SVMs).

Support Vector Machines (SVMs). Support Vector Machines (SVMs). SemiSupervised Learning. SemiSupervised SVMs. MariaFlorina Balcan 3/25/215 Support Vector Machines (SVMs). One of the most theoretically well motivated and practically most

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Algorithmic Stability and Generalization Christoph Lampert

Algorithmic Stability and Generalization Christoph Lampert Algorithmic Stability and Generalization Christoph Lampert November 28, 2018 1 / 32 IST Austria (Institute of Science and Technology Austria) institute for basic research opened in 2009 located in outskirts

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

Learning Weighted Automata

Learning Weighted Automata Learning Weighted Automata Joint work with Borja Balle (Amazon Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Weighted Automata (WFAs) page 2 Motivation Weighted automata (WFAs): image

More information

Foundations of Machine Learning Ranking. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning Ranking. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning Ranking Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation Very large data sets: too large to display or process. limited resources, need

More information

Introduction to Machine Learning (67577) Lecture 7

Introduction to Machine Learning (67577) Lecture 7 Introduction to Machine Learning (67577) Lecture 7 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Solving Convex Problems using SGD and RLM Shai Shalev-Shwartz (Hebrew

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Rademacher Bounds for Non-i.i.d. Processes

Rademacher Bounds for Non-i.i.d. Processes Rademacher Bounds for Non-i.i.d. Processes Afshin Rostamizadeh Joint work with: Mehryar Mohri Background Background Generalization Bounds - How well can we estimate an algorithm s true performance based

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Metric Learning. 16 th Feb 2017 Rahul Dey Anurag Chowdhury

Metric Learning. 16 th Feb 2017 Rahul Dey Anurag Chowdhury Metric Learning 16 th Feb 2017 Rahul Dey Anurag Chowdhury 1 Presentation based on Bellet, Aurélien, Amaury Habrard, and Marc Sebban. "A survey on metric learning for feature vectors and structured data."

More information

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1 Introduction to Machine Learning Introduction to ML - TAU 2016/7 1 Course Administration Lecturers: Amir Globerson (gamir@post.tau.ac.il) Yishay Mansour (Mansour@tau.ac.il) Teaching Assistance: Regev Schweiger

More information

A Two-Stage Weighting Framework for Multi-Source Domain Adaptation

A Two-Stage Weighting Framework for Multi-Source Domain Adaptation A Two-Stage Weighting Framework for Multi-Source Domain Adaptation Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, Jieping Ye Computer Science and Engineering, Arizona State University, AZ 8587

More information

Domain-Adversarial Neural Networks

Domain-Adversarial Neural Networks Domain-Adversarial Neural Networks Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand Département d informatique et de génie logiciel, Université Laval, Québec, Canada Département

More information

Cutting Plane Training of Structural SVM

Cutting Plane Training of Structural SVM Cutting Plane Training of Structural SVM Seth Neel University of Pennsylvania sethneel@wharton.upenn.edu September 28, 2017 Seth Neel (Penn) Short title September 28, 2017 1 / 33 Overview Structural SVMs

More information

Generalization Bounds

Generalization Bounds Generalization Bounds Here we consider the problem of learning from binary labels. We assume training data D = x 1, y 1,... x N, y N with y t being one of the two values 1 or 1. We will assume that these

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31 Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking Dengyong Zhou zhou@tuebingen.mpg.de Dept. Schölkopf, Max Planck Institute for Biological Cybernetics, Germany Learning from

More information

Maximum Margin Matrix Factorization

Maximum Margin Matrix Factorization Maximum Margin Matrix Factorization Nati Srebro Toyota Technological Institute Chicago Joint work with Noga Alon Tel-Aviv Yonatan Amit Hebrew U Alex d Aspremont Princeton Michael Fink Hebrew U Tommi Jaakkola

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines www.cs.wisc.edu/~dpage 1 Goals for the lecture you should understand the following concepts the margin slack variables the linear support vector machine nonlinear SVMs the kernel

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information

Machine Learning in the Data Revolution Era

Machine Learning in the Data Revolution Era Machine Learning in the Data Revolution Era Shai Shalev-Shwartz School of Computer Science and Engineering The Hebrew University of Jerusalem Machine Learning Seminar Series, Google & University of Waterloo,

More information

The Learning Problem and Regularization Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee

The Learning Problem and Regularization Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee The Learning Problem and Regularization 9.520 Class 03, 11 February 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

Support Vector Machine

Support Vector Machine Andrea Passerini passerini@disi.unitn.it Machine Learning Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

More information