Kantorovich-Vlasov Method for the Flexural Analysis of Kirchhoff Plates with Opposite Edges Clamped, and Simply Supported (CSCS Plates)

Size: px
Start display at page:

Download "Kantorovich-Vlasov Method for the Flexural Analysis of Kirchhoff Plates with Opposite Edges Clamped, and Simply Supported (CSCS Plates)"

Transcription

1 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) Ktorovih-Vlsov Method for the Flexurl Alysis of Kirhhoff Pltes with Opposite Edges Clmped, d Simply Supported (CSCS Pltes) Oh H.N. #1, Mm B.O. #, Ike, C.C. *3, Nwoji, C.U. #1, #, # ept of Civil Egieerig *3 Uiversity of Nigeri, Nsukk, Eugu Stte, Nigeri. Eugu Stte Uiversity of Siee & Tehology, Eugu Stte, Nigeri. 1 hygius.oh@u.edu.g bejmi.mm@u.edu.g 3 ike7@yhoo.om lifford.woji@u.edu.g Abstrt - The Ktorovih-Vlsov method ws used, i this study, for the flexurl lysis of retgulr Kirhhoff pltes with opposite edges (x =, d x = ) simply supported d the other opposite edges (y =, d y = b) lmped (CSCS pltes). The plte ws subjeted to lier distributio of lod over the etire plte domi. Vlsov method ws used i fidig the oordite futio i the x-diretio, d Ktorovih method ws used to osider the displemet futio for the plte. The totl potetil eergy futiol, d the orrespodig Euler-Lgrge differetil equtios were the obtied for the plte problem. This ws solved subjet to the boudry oditios i the y diretio to obti the displemet futio whih miimized the totl potetil eergy futiol. Bedig momet distributios were obtied usig the bedig momet-displemet equtios. The solutios obtied for defletio d bedig momet distributios were foud to be rpidly overget sigle series. efletios d bedig momet omputed t the eter of the plte were lso rpidly overget series. The solutios obtied for defletios d bedig momets (M xx d M yy ) were extly idetil with solutios preseted by Timosheko d Woiowsky-Krieger who used the method of superpositio. Keywords: Ktorovih-Vlsov method, Kirhhoff plte, totl potetil eergy futiol, Euler-Lgrge differetil equtio. I. INTROUCTION Pltes re struturl members hrterized by trsverse dimesio tht is muh smller th the other iple dimesios. They re used i ivil, mehil, eroutil d mrie egieerig to model roof d floor slbs, ship hulls, bridge dek slbs, sperft pels, retiig wlls, foudtios slbs, d irrft pels [1,, 3]. Pltes my be subjet to trsverse stti or dymi lods or iple ompressive lods resultig i stti flexure, dymi flexure or buklig behviours. They re lssified ordig to shpes s: retgulr, irulr, elliptil, rhombi, skew, or ordig to the rtio of their thikess to the lest iple dimesio s thi pltes, modertely thik pltes d thik pltes [1,, 3]. They re lso lssified bsed o the mteril elsti properties s homogeeous, heterogeeous, isotropi, isotropi, d orthotropi. Severl theories hve bee used to desribe the respose d behviours of pltes uder lods. They re: Kirhhoff plte theory whih is suitble for thi pltes, Reisser [] plte theory, Midli [] plte theory, Leviso s sher deformtio plte theories, Reddy s plte theory, Shimpi s refied plte theory [6], [7]. Theory of elstiity methods hve bee lso used to desribe plte behviour. Kirhhoff plte theory, lso lled the lssil plte theory hs bee foud to be suitble for desribig the behviours of thi pltes uder stti flexure, dymi flexure d buklig; d is dopted i this study. Reisser s stress bsed theory d Midli s first order sher deformtio theory re suitble for modertely thik pltes d tke out of the effet of sher deformtio o the plte respose uder trsverse lods. Other theories tht tke out of the sher deformtio of the plte d thus re suitble for desribig modertely thik pltes ilude sher deformtio plte theories proposed by Leviso; Reddy, d Shimpi s refied plte theories. Thik pltes re desribed usig the theories of elstiity for three dimesiol bodies. OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J

2 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) II. METHOS OF SOLVING PLATE PROBLEMS Plte problems s desribed by vrious theories re boudry vlue problems. Two brod methods of solvig boudry vlue problems of pltes re: mthemtil or lytil methods, d umeril or pproximte methods. Mthemtil or lytil methods re methods used to obti solutios tht stisfy the goverig differetil equtios of the plte problem t ll poits o the plte domi, d o the plte boudries. They result i losed form solutios. They ilude: Nvier [8] method, Levy [9] method, seprtio of vribles method, itegrl trsform methods. Numeril methods re methods tht im to obti pproximte solutios to the goverig boudry vlue problem of pltes. They ilude: fiite differee methods [1], fiite elemet methods, boudry elemet methods, vritiol Ritz methods [11], vritiol Glerki method [1, 13], ollotio methods, Bubov-Glerki method, Ktorovih method [1, 1], Vlsov method [1, 1]. III. RESEARCH AIM AN OBJECTIVES The im of this study is to pply the Ktorovih-Vlsov method to the lysis of Kirhhoff CSCS pltes uder lierly distributed trsverse lods o the etire plte domi. The speifi objetives re: (i) to obti the totl potetil eergy futiol for the CSCS Kirhhoff plte bedig problem bsed o shpe futios obtied by Ktorovih d Vlsov pprohes. (ii) to obti the Euler-Lgrge-Ostrgrdsky differetil equtios for the extremiztio of the totl potetil eergy futiol. (iii) to solve the Euler-Lgrge-Ostrgrdsky differetil equtios subjet to the boudry oditios of the plte. (iv) to obti the bedig momet distributios. (v) to obti the defletios d bedig momets t the eter of the plte for vrious plte spet rtios. IV. THEORETICAL FRAMEWORK AN METHOOLOGY The Ktorovih-Vlsov method is vritiol method bsed o fidig the displemet futio tht miimizes the totl potetil eergy futiol. The displemet futio is ssumed to be i vribleseprble form s the sum of the produt of oordite futios i the x d y diretios, with the oordite futio i oe of the diretios hose s the eigefutios of vibrtig Euler-Beroulli bem with equivlet ed supports s the plte. The totl potetil eergy futiol for retgulr Kirhhoff plte uder pplied lod is give by: w w w w w (, ) R x y x y dxdy pw x y dxdy x y (1) R where R is the plte domi, w(x, y) is the trsverse defletio of the plte, p(x, y) is the trsverse lod distributio, is the Poisso s rtio, x d y re the iple Crtesi oordites d is the flexurl rigidity of the plte. I the Ktorovih-Vlsov method, the defletio futio w(x, y) is ssumed s the ifiite series: wxy (, ) g( y) f( x) () 1 where either g (y) or f (x) is kow to be the eigefutios of vibrtig Euler-Beroulli bem with the sme ed supports s the plte i the orrespodig oordite diretio; d the ukow futio sought i order to miimize the totl potetil eergy futiol. V. APPLICATION OF KANTOROVICH-VLASOV METHO PROBLEM ESCRIPTION Cosider retgulr Kirhhoff plte with iple dimesios b, simply supported o the opposite edges x =, d x =, d lmped o the other opposite edges y = d y = b, s show i Figure 1. OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J 18 33

3 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) Figure 1: Retgulr Kirhhoff plte, with opposite edges lmped d simply supported uder lier distributed trsverse lod The etire plte domi is subjeted to lierly distributed trsverse lod of itesity p(x) = p x/ VI. EFLECTION FUNCTION Followig Ktorovih proedure, the defletio futio w(x, y) is ssumed to be lier ombitio of the sum of produts of lierly idepedet oordite (shpe or bsis) futios s Equtio (). The oordite futios f (x) i the x-diretio re hose by the Vlsov proedure s the vibrtig modl shpe futios of freely vibrtig prismti Euler-Beroulli bem simply supported t x =, d x =. For simply supported Euler-Beroulli bems, the eigefutios re: ( ) si x f x (3) = 1,, 3,, The the defletio futio beomes: x wxy (, ) g( y)si () 1 TOTAL POTENTIAL ENERGY FUNCTIONAL By substitutio of Equtio () ito the totl potetil eergy futiol, we obti: x x g( y)si g( y)si R 1 1 x x g ( y)os g( y)si 1 1 x x g( y)si dxdy p( x, y) g( y)si dxdy 1 () R 1 The lod distributio is expressed i terms of sigle sie series to obti: x pxy (, ) p si (6) 1 Usig Equtio (6) d simplifyig the totl potetil eergy expressio i Equtio (), we obti: b x x x g( y) si g ( y) si 1 g( y) g( y)si g ( y) os b 1 x x g ( y) g ( y)si dxdy x p( y) g( y)si dxdy (7) OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J 18 33

4 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) Simplifyig further, b g( y) g( y) g( y) g( y) g( y) 1 b g( y) g( y) dy p( y) g( y) dy (8) Altertively, b g( y) g( y) g( y) g( y) 1 g ( y) g( y) g ( y) p( y) g( y) dy Equtio (9) is the totl potetil eergy futiol for the plte whose miimum with respet to g(y) we wish to F y, g( y) g( y) g ( y) is fid, i order to fully solve the Kirhhoff plte flexure problem. The itegrd F y, g( y) g( y), g ( y) ( g ( y)) ( g( y)) g ( y) g( y) g( y) g( y) g( y) p( y) g( y) EULER-LAGRANGE-OSTRAGRASKY IFFERENTIAL EQUATION The Euler-Lgrge-Ostrgrdsky differetil equtio of equilibrium whih represets the oditio for miimum of the totl potetil eergy futiol is give by: dy F d F d F g( y) dyg ( y) g ( y) Applyig Equtio (11) we obti: iv g g( y) g( y) g( y) g( y) g( y) p( y) Simplifitio yields: iv p ( y) g ( y) g( y) g( y) Equtio (13) is fourth order lier ordiry differetil equtio i g (y) s ukow; d is solved subjet to the boudry oditios of the plte support t the edges y = d y = b. LOA ISTRIBUTION SERIES COEFFICIENT P N The sigle Fourier sie series oeffiiet for the hydrostti lod distributio is, from sigle Fourier sie series theory, x p p( x, y)si dx (1) px x dx si (1) p x x si dx (16) (9) (1) (11) (1) (13) OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J

5 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) 1 p os p ( 1) p (17) SOLUTION OF THE EULER-LAGRANGE-OSTRAGRASKY EQUATION Usig equtio (17), the Euler-Lgrge-Ostrgrdsky differetil equtio for the Kirhhoff plte problem beomes: 1 iv ( 1) p g ( y) g( y) g( y) (18) The homogeeous solutio is the solutio to the fourth order homogeeous lier ordiry differetil equtio (OE): iv g ( y) g( y) g( y) (19) Usig the method of tril futios, it is ssumed tht the homogeeous solutio to g (y) is i the form of the expoetil futio: sy g( y) expsy e () where s is udetermied prmeter we seek to determie. The, the homogeeous OE beomes: sy sy sy se se e (1) Simplifyig, sy s s e () For o-trivil solutios, sy e (3) The uxiliry (hrteristi) polyomil is: s s () s () The roots re s1, double root (6) s3, double root (7) The homogeeous solutio the beomes: ( ) 1 exp y exp y 3 exp y exp g y y y y (8) where 1,, 3 d re the itegrtio ostts. From the distributed lod whih is ot futio of y, we osider tht prtiulr solutios g p would ot deped upo y d thus: iv gp gp (9) The, by substitutio ito the ihomogeeous OE, Equtio (18), we obti, fter simplifitio; 1 ( 1) p gp ( ) (3) OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J

6 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) The geerl solutio is obtied by usig the superpositio (lierity) priiple s the sum of the homogeeous d prtiulr solutios, s follows: ( ) 1 exp y exp y 3 exp y 1 y ( 1) p g y y yexp (31) ( ) ENFORCEMENT OF BOUNARY CONITIONS The boudry oditios t the lmped edges y =, d y = b re the four oditios for eh vlue of : g ( y ) (3) g ( y b ) (33) g ( y ) (3) g ( y b ) (3) The eforemet/pplitio of the four boudry oditios o g (y) results i system of four equtios i terms of the four itegrtio ostts for eh vlue. These four equtios re the solved simulteously to obti the four ostts of itegrtio 1,, 3 d t the th term. Eforemet of the boudry oditios yield: ( 1) p 1 ( ) (36) (37) 1 3 ( 1) b b b b 1 3 e e be be p ( ) (38) where b b b b 1 3 e e (1 b) e (1 b) e (39) () Let p ( 1) p ( ) The, the system of four lgebri equtios be expressed i mtrix form s: b b b b p e e be be 3 1 b b b b e e be be This is solved usig Crmer s rule to obti the four ostts s follows: where 1 3 (1) () 1 (3) () 3 () (6) OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J

7 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) Thus, The, b b b b e e be be b b b b e e (1 be ) (1 be ) p b b b p e be be b b b e (1 b) e (1 b) e 1 p 1 1 b b b e p be be b b b e (1 b) e (1 b) e 1 1 p 1 b b b e e p be b b b e e (1 b) e 1 1 b b b 1 e e be p b b b e e (1 b) e 1 ( ) b b b p b b e b e b e 1 b b ( ) b e e b b b ( ) p e b e b e b b b b ( ) b e e b b b ( 1) 1 p e b e e b 3 b b ( ) b e e b b b (1 ) 1 p e b e e b b b ( ) b e e 1 y y y y 1 3 p (7) (8) (9) () (1) () (3) () () wxy (, ) e e ye ye p si x (6) These ostts of itegrtio re expressed i terms of the spet rtio b r, s follows: r r r p 1r ( r) e (1 r) e (1 r) e 1 r r ( r) e e r r r p e (1 r) e (1 r) e r ( r) r r ( r) e e r r r 3 r r p e (r 1) e e 1r ( r) e e (7) (8) (9) OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J

8 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) r r r r r p e (1 r) e e 1 r ( r) e e (6) where d BENING MOMENT ISTRIBUTIONS The bedig momet distributios re obtied from the bedig momet defletio equtios: M w ( w ) (61) xx xx yy M w ( w ) (6) yy yy xx w y si xx 1 x 1 w x e e y y 3 y ye ye p (63) w y y y y y y 1 3 ( ) ( xx ) si y 1 w e e ye e ye e x (6) The defletio equtio, Equtio (6) is used to determie the defletio of the eter of squre Kirhhoff plte uder hydrostti lods for iresig iteger vlues of, d the results re tbulted i Tble 1. The tble revels the rpidly overget property of the series with stisftory results obtied with = 3. Tble shows the overged results for the defletio d bedig momet t the eter of squre Kirhhoff plte uder hydrostti lod. The overgee study of the series for bedig momets is show i Tble 3. Tble shows the vritio of eter bedig momets M xx, d M yy with the plte spet rtio, while Tble presets the vritio of eter defletio with plte spet rtio. TABLE 1: Covergee study for eter defletios of squre Kirhhoff (CSCS) plte uder hydrostti lod Number of terms, Ceter defletio w p TABLE : Coverged results for defletios d bedig momets t the eter of squre Kirhhoff (CSCS) pltes uder hydrostti lod p b w Mxx p yy M p OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J 18 3

9 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) TABLE 3: Covergee study for bedig momet oeffiiets t the eter of squre Kirhhoff CSCS plte uder hydrostti lod. px px ( ) (.3) Number of terms, M xx xx p M yy TABLE : Coverged solutios for bedig momets t the eter of retgulr Kirhhoff CSCS plte uder hydrostti lods px px ( ) b Preset study Timosheko d Woiowsky-Krieger M xx M yy M xx M yy..7p b.1p b.7p b.1p b.7.11p b.p b.11p b.1p b 1..1p.17p.13p.17p 1..1p.1p.1p.1p 1..3p.3p.3p.3p.3p.p.3p.p.63p.19p.63p.19p TABLE : Coverged solutios for Kirhhoff (CSCS) plte uder hydrostti lod px ( ), = 11 b p w VII. ISCUSSION yy p px The Ktorovih-Vlsov method hs bee suessfully implemeted to solve the boudry vlue problem px of Kirhhoff (CSCS) pltes uder lierly distributed trsverse lod px ( ), over the etire plte domi. The boudry vlue problem ws preseted i vritiol form so tht the problem beme oe of fidig the defletio futio tht miimized the totl potetil eergy futiol. Bsed o Vlsov d Ktorovih pprohes, the defletio futio ws osidered s Equtio (). This resulted i the totl potetil eergy futiol give by Equtio (9). The Euler-Lgrge-Ostrgrdsky differetil equtio for the problem ws obtied s Equtio (13) for y distributio of pplied trsverse lod d Equtio (18) for the speifi se of lierly distributed trsverse lod osidered i this study. The geerl solutio to the Euler-Lgrge-Ostrgrdsky equtio ws obtied s Equtio (31) usig the lierity priiples for solvig o-homogeeous ordiry differetil equtios. Boudry oditios were efored to obti the geerl solutio for the defletio futio s Equtio (6) where the itegrtio ostts were obtied i terms of the plte spet rtios s Equtios (7) (6). Bedig momet urvture reltios were used to obti the OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J 18 31

10 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) bedig momet distributios M xx d M yy from Equtios (61), (6), (63) d (6). The defletio d bedig momet expressios were foud to be sigle series expressios. Vlues of the defletio d bedig momets were lulted for vrious spet rtios of the plte d preseted i Tbles, d. The eter defletios d bedig momets for squre Kirhhoff CSCS plte uder the lierly distributed lod osidered were lso obtied for vrious terms of the sigle series d preseted i Tbles 1 d 3 i order to study the overgee properties of the series for defletio d the series for bedig momet. Tble 1 shows tht the series for defletio overges rpidly d resobly urte results for defletio re obtied by usig =. Similrly, the series for bedig momets overge less rpidly, but resobly urte results re obtied for squre pltes usig = 7 i the series for both M xx d M yy. Tbles, 3 d whih preset overged results for defletio d bedig momets for vrious plte spet rtios illustrte the good greemet betwee the results of the preset study d Timosheko d Woiowsky-Krieger s solutio for the sme problem. Timosheko d Woiowsky-Krieger obtied their solutios by lier superpositio of the solutio for simply supported retgulr Kirhhoff plte uder the lierly distributed trsverse lod p(x) = p x/ with the solutio for the sme problem uder pplied distributio of torque log the fixed edges (y = d y = b), where the torque is of suh mgitude tht rottiol displemet is fully restried t the fixed edges. VIII. CONCLUSIONS From the study, the followig olusios re mde: (i) the Ktorovih-Vlsov method be suessfully implemeted for the solutio of the retgulr Kirhhoff CSCS plte uder lierly distributed trsverse lod o the etire plte regio (ii) the solutios obtied for the defletio w(x, y) d bedig momet expressios M xx d M yy re sigle series otiig expoetil futios (iii) the series for defletio d bedig momet expressios re overget but the series for defletio is more rpidly overget th the series for bedig momets (iv) the overged results obtied for the defletios d bedig momets t the eter of the plte for vrious plte spet rtios gree exelletly well with the solutios preseted by Timosheko d Woiowsky-Krieger. REFERENCES [1] K. Chdrshekhr Theory of Pltes, Uiversity Press (Idi) Limited, Hyderbd, 11. [] R. Szilrd Theories d Applitios of Plte Alysis: Clssil, Numeril d Egieerig Methods, Joh Wiley d Sos I.. [3] S. Timosheko d S. Woiowsky-Krieger Theory of Pltes d Shells, 3rd Editio, MGrw Hill Book Co. New York, 199. [] E. Reisser The effet of trsverse sher deformtio o the bedig of elsti pltes, Jourl of Applied Mehis, Vol 1, pp , 19. [] R.. Midli Ifluee of rotry ierti d sher o flexurl motios of isotropi, elsti pltes, J. App. Meh. Vol 18, No 1, pp 31-38, 191. [6] R.P. Shimpi Refied plte theory d its vrits, AIAA Jourl Vol, No 1, pp , Jury. [7] Y. Suetke Plte bedig lysis by usig modified plte theory, CMES Vol 11, No 3, pp 13-11, Teho Siee Press. 6. [8] C.L.M.N. Nvier Bulleti des siee de l soietie philomrtrique de Pris, pp 9-1, Extrit des reherhé sur l flexio des ples elstiques, 183. [9] M. Levy Memoire sur l theorie des plques elstiques ples, Jourl de Mthemtiques Pures et Appliqueés, Vol 3, pp , [1] J.C. Ezeh, O.M. Iberugbulem d C.I. Oyehere Pure bedig lysis of thi retgulr flt pltes usig ordiry fiite differee method, Itertiol Jourl of Emergig Tehology d Adved Egieerig (IJETAE) Volume 3, Issue 3, pp. - 3, Mrh 13. [11] C.H. Agim, C.A. Chidolue d C.A. Ezegu Applitio of iret Vritiol Method i the Alysis of Isotropi, thi, retgulr pltes, ARPN Jourl of Egieerig d Applied Siees, Vol 7 No 9. Asi Reserh Publishig Network pp September 1. [1] N.N. Osdebe, C.C. Ike, H.N. Oh, C.U. Nwoji d F.O. Okfor Applitio of the Glerki-Vlsov method for the lysis of simply supported retgulr Kirhhoff pltes uder uiform lods, Nigeri Jourl of Tehology (NIJOTECH), Vol 3, No, pp , Otober 16. [13] C.U. Nwoji, B.O. Mm, C.C. Ike d H.N. Oh Glerki-Vlsov method for the flexurl lysis of retgulr Kirhhoff pltes with lmped d simply supported edges, IOSR Jourl of Mehil d Civil Egieerig (IOSR JMCE) Volume 1, Issue, Versio 7, pp 61-7, Mrh 17. [1] C.U. Nwoji, B.O. Mm, H.N. Oh d C.C. Ike Ktorovih-Vlsov method for simply supported pltes uder uiformly distributed lods, Itertiol Jourl of Civil, Mehil d Eergy Siee (IJCMES) Volume 3, Issue, pp 69-77, Mrh-April 17. [1] C.C. Ike Ktorovih-Euler Lgrge-Glerki method for bedig lysis of thi pltes, Nigeri Jourl of Tehology, NIJOTECH, Volume 36, No, pp 31-36, April 17. OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J 18 3

11 ISSN (Prit) : ISSN (Olie) : 97- Oh H.N. et l. / Itertiol Jourl of Egieerig d Tehology (IJET) AUTHOR PROFILE Hygius Nwkwo Oh (B.Eg, M.Eg, Ph) Bor i Nigeri o My th 199, I obtied my B.Eg. (Civil Egieerig) i After brief work i Lgos Nigeri, I trvelled to Fre i 1987 where I obtied M.Eg (Civil Egieerig) t INSA de Lyo d Ph. (Struturl Mehis) t CNAM Pris i The I worked s reserher t Reserh d evelopmet (R&) uit of RENAULT Motors Reuil Mlmiso Fre, eprtmet of Egieerig Uiversity of Mhester Egld d Behis Osiride of FIAT Motors Torio Itly for oe yer eh. From Jury 1996 to dte s leturer i Civil Egieerig eprtmet of Uiversity of Nigeri, Nsukk, I teh d supervise both udergrdute d Postgrdute studets d rry out reserh tivities i mehis d behvior of strutures Egr r Bejmi Okwudili Mm I got my Ph i the yer 9 i the Uiversity of Nigeri, Nsukk. My mster s degree i ivil Struturl Egieerig i 199 i the sme Shool. My first degree i Civil Egieerig i the Ambr Stte Uiversity of Tehology, Eugu. I hve bee leturig i the eprtmet of Civil Egieerig, Uiversity of Nigeri, Nsukk from 199 till dte. Egr r. Chrles C. Ike is leturer t the Eugu Stte Uiversity of Siee d Tehology, Eugu, Nigeri. He holds Ph i struturl egieerig, d is member of the Nigeri Soiety of Egieers. He is registered with the Couil for the Regultio of Egieerig i Nigeri (COREN). He hs umerous publitios i reputble itertiol jourls. Egr r. Clifford U. Nwoji obtied his ivil egieerig edutio from Uiversity of Nigeri Nsukk. He is member of Nigeri Soiety of Egieers d lso registered egieer with Couil for Regultio of Egieerig i Nigeri. He hs substtil idustril experiee. Sie obtiig his higher degrees i egieerig he hs bee tehig struturl egieerig ourses t both udergrdute d postgrdute levels. He hs suessfully supervised higher degree theses. He hs to his redit good umber of published reserh ppers i reputble itertiol jourls. OI: /ijet/17/v9i6/ Vol 9 No 6 e 17-J 18 33

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Fatigue life analysis of the plate structure with random vibro-acoustic loading

Fatigue life analysis of the plate structure with random vibro-acoustic loading INTER-NOISE 16 Ftigue life lysis of the plte struture with rdom vibro-ousti lodig Go Zhg 1 ; Hubig Jig 1 Istitute of Systems Egieerig, Chi Ademy of Egieerig Physis,Miyg Chi Istitute of Systems Egieerig,

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media Wves i dieletri medi d wveguides Setio 5. I this leture, we will osider the properties of wves whose propgtio is govered by both the diffrtio d ofiemet proesses. The wveguides re result of the ble betwee

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Ch. 12 Linear Bayesian Estimators

Ch. 12 Linear Bayesian Estimators h. Lier Byesi stimtors Itrodutio I hpter we sw: the MMS estimtor tkes simple form whe d re joitly Gussi it is lier d used oly the st d d order momets (mes d ovries). Without the Gussi ssumptio, the Geerl

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

INTEGRAL SOLUTIONS OF THE TERNARY CUBIC EQUATION

INTEGRAL SOLUTIONS OF THE TERNARY CUBIC EQUATION Itertiol Reserch Jourl of Egieerig d Techology IRJET) e-issn: 9-006 Volume: 04 Issue: Mr -017 www.irjet.et p-issn: 9-007 INTEGRL SOLUTIONS OF THE TERNRY CUBIC EQUTION y ) 4y y ) 97z G.Jki 1, C.Sry,* ssistt

More information

Gauss Elimination, Gauss-Jordan Elimination and Gauss Seidel Iteration Method: Performance Comparison using MAT LAB

Gauss Elimination, Gauss-Jordan Elimination and Gauss Seidel Iteration Method: Performance Comparison using MAT LAB Itertiol Jourl of Egieerig Tehology Siee d Reserh www.ietsr.om ISSN 394 3386 Volume 4, Issue 0 Otober 07 Guss Elimitio, Guss-Jord Elimitio d Guss Seidel Itertio Method: Performe Compriso usig MAT LAB *Dr.

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution Chapter V ODE V.4 Power Series Solutio Otober, 8 385 V.4 Power Series Solutio Objetives: After the ompletio of this setio the studet - should reall the power series solutio of a liear ODE with variable

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients Ge Mth Notes Vol 2 No Jury 20 pp 86-97 ISSN 229-784; Copyriht ICSRS Publitio 20 wwwi-srsor Avilble free olie t http://wwwemi Neihborhoods of Certi Clss of Alyti Futios of Complex Order with Netive Coeffiiets

More information

Fluids Lecture 2 Notes

Fluids Lecture 2 Notes Fluids Leture Notes. Airfoil orte Sheet Models. Thi-Airfoil Aalysis Problem Readig: Aderso.,.7 Airfoil orte Sheet Models Surfae orte Sheet Model A aurate meas of represetig the flow about a airfoil i a

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

Air Compressor Driving with Synchronous Motors at Optimal Parameters

Air Compressor Driving with Synchronous Motors at Optimal Parameters Iuliu Petri, Adri Vleti Petri AALELE UIVERSITĂłII EFTIMIE MURGU REŞIłA AUL XVII, R., 010, ISS 1453-7397 Air Compressor Drivig with Syhroous Motors t Optiml Prmeters I this pper method of optiml ompestio

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

Class #25 Wednesday, April 19, 2018

Class #25 Wednesday, April 19, 2018 Cla # Wedesday, April 9, 8 PDE: More Heat Equatio with Derivative Boudary Coditios Let s do aother heat equatio problem similar to the previous oe. For this oe, I ll use a square plate (N = ), but I m

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

DIGITAL SIGNAL PROCESSING LECTURE 5

DIGITAL SIGNAL PROCESSING LECTURE 5 DIGITAL SIGNAL PROCESSING LECTURE 5 Fll K8-5 th Semester Thir Muhmmd tmuhmmd_7@yhoo.com Cotet d Figures re from Discrete-Time Sigl Processig, e by Oppeheim, Shfer, d Buck, 999- Pretice Hll Ic. The -Trsform

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r Z-Trsforms. INTRODUCTION TO Z-TRANSFORM The Z-trsform is coveiet d vluble tool for represetig, lyig d desigig discrete-time sigls d systems. It plys similr role i discrete-time systems to tht which Lplce

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals Kig Fhd Uiversity of Petroleum & Mierls DEPARTMENT OF MATHEMATICAL CIENCE Techicl Report eries TR 434 April 04 A Direct Proof of the Joit Momet Geertig Fuctio of mple Me d Vrice Awr H. Jorder d A. Lrdji

More information

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz, MAT337H Itrodutio to Rel Alysis The Rel Numers RATIONAL FIELD Tke rtiols s give { m, m, R, } is field with dditio d multiplitio defied Additio: y= y, y z= yz, There eists Q suh tht = For eh Q there eists

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Introduction to Algorithms 6.046J/18.401J

Introduction to Algorithms 6.046J/18.401J Itrodutio to Algorithms.04J/8.40J The divide-d-oquer desig prdigm. Divide the problem (iste) ito subproblems.. Coquer the subproblems by solvig them reursively. 3. Combie subproblem solutios. Leture 3

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

Explicit and closed formed solution of a differential equation. Closed form: since finite algebraic combination of. converges for x x0

Explicit and closed formed solution of a differential equation. Closed form: since finite algebraic combination of. converges for x x0 Chapter 4 Series Solutios Epliit ad losed formed solutio of a differetial equatio y' y ; y() 3 ( ) ( 5 e ) y Closed form: sie fiite algebrai ombiatio of elemetary futios Series solutio: givig y ( ) as

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chpter VII Speil Futios Otober 7, 8 479 CHAPTER VII SPECIA FUNCTIONS Cotets: Heviside step futio, filter futio Dir delt futio, modelig of impulse proesses Sie itegrl futio 4 Error futio 5 Gmm futio E Epoetil

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION ANOTHER PROOF FOR FERMAT S LAST THEOREM Mugur B. RĂUŢ Correspodig author: Mugur B. RĂUŢ, E-mail: m_b_raut@yahoo.om Abstrat I this paper we propose aother proof for Fermat s Last Theorem (FLT). We foud

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang CS 33 Desig d Alysis of Algorithms -- Divide d Coquer Dr. Disy Tg Divide-Ad-Coquer Geerl ide: Divide problem ito subproblems of the sme id; solve subproblems usig the sme pproh, d ombie prtil solutios,

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Numerical Simulation of Ram Extrusion Process for Ceramic Materials

Numerical Simulation of Ram Extrusion Process for Ceramic Materials Numeril Simultio of Rm Extrusio Proess for Cermi Mterils Migyg Li, Lie Tg, Fei Xue, Robert Lders Missouri Uiversity of Siee d Tehology Shghi Diji Uiversity Abstrt The freee form extrusio proess for queous

More information

Radix-2/4 Streamlined Real Factor FFT Algorithms

Radix-2/4 Streamlined Real Factor FFT Algorithms SHAIK QADEER et l: RADIX-/ STREAMLIED REAL FACTOR FFT ALGORITHMS Rdix-/ Stremlied Rel Ftor FFT Algorithms Shi Qdeer () Mohmmed Zfr Ali Kh () d Syed A. Sttr () () Deprtmet of Eletril d Eletrois egieerig

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information