University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION

Size: px
Start display at page:

Download "University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION"

Transcription

1 University of California Berkeley Physics H7C Fall 999 (Strovink SOUTION TO FINA EXAMINATION Directions. Do all six problems (weights are indicated. This is a closed-book closed-note exam except for three 8 inch sheets containing any information yo wish on both sides. Yo are free to approach the proctor to ask qestions bt he or she will not give hints and will be obliged to write yor qestion and its answer on the board. Calclators are allowed bt not essential roots circlar fnctions etc. may be left nevalated if yo do not know them. Use a blebook. Do not se scratch paper otherwise yo risk losing part credit. Cross ot rather than erase any work that yo wish the grader to ignore. Jstify what yo do. Box or circle yor answer.. (35 points One circlarly polarized photon is trapped between two parallel perfectly condcting plates separated by a distance which are parallel to the photon s electric and magnetic fields. a. (0 points If the photon has the smallest definite energy possible nder these circmstances at a point halfway between the plates describe a possible motion of its electric field vector. Soltion. The electric field of the light E is parallel to the condcting plates so E mst vanish at the plates. Therefore we have E(0t= E( t =0. Of corse E(zt is a soltion to the wave eqation: ( z E(zt =0. c t In order to satisfy both the wave eqation and the bondary conditions we choose where E(zt =E 0 sin (kz exp ( iωt (ˆx ± iŷ k = nπ where n =... The smallest definite energy is achieved when k = π/ (conseqently ω = πc/ in which case we have for the electric field: E(zt =E 0 sin ( πz ( πct exp i (ˆx ± iŷ. Halfway between the plates (z = we find that E( t=e 0 exp ( i πct (ˆx ± iŷ. So E moves in a circle with anglar freqency ω = πc/. b. (0 points Same for its magnetic field vector. Soltion. FromMaxwell s eqations Therefore we have E = B t. B y t B x t = E x z = E y z. Fromthe above relations it follows that the spatial dependence of B(zt is given by cos (πz/. Halfway between the plates B =0. c. (5 points For this plate configration making no restriction on the photon energy evalate the density of photon states d N d dλ where N is the nmber of states and λ is the photon wavelength. Take into accont the possible states of circlar polarization.

2 Soltion. We have frompart (a. that k = nπ/ so in terms of wavelength λ (recalling k =π/λ: n = λ. Since we have possible polarization states the total nmber of states N as a fnction of wavelength is N = 4 λ. The derivative with respect to wavelength is dn d λ = 4 λ and so we obtain for the density of photon states d N d λ d = 4 λ.. (35 points A linearly (ˆx polarized plane EM wave travelling along ẑ is incident on an opaqe baffle located in the plane z = 0. The baffle has two slits ct in it which are of infinite extent in the ŷ direction. In the ˆx direction the slit widths are each a and their center-to-center distance is d. (Obviosly d>a bt yo may not assme that d a. The top and bottomslits are each an eqal distance from x =0. The diffracted image is viewed on a screen located in the plane z = where d; also λ d where λ is the EM wavelength. Qarter-wave plates are placed in each slit. They are identical except that the top plate s slow (high-index axis is along (ˆx+ŷ/ (+45 with respect to the ˆx axis while the bottomplate s slow axis is along (ˆx ŷ/ ( 45 with respect to the ˆx axis. a. (5 points What is the state of polarization of the diffracted light that hits the center of the screen at x = y = 0? Explain. Soltion. ight that exits the top slit (slow axis at +45 is in a state ( ( i i 0 = ( i or left-hand circlar polarization; light that exits the bottomslit (slow axis at 45 isina state of polarization ( ( i = ( i 0 i or right-hand circlar polarization. At the center of the screen light fromeach slit contribtes eqally; the state of polarization is proportional to ( + ( = ( ; i i 0 it is ˆx polarized like the incident beam. (See Fowles page 34 and Table. for the Jones vectors and matrices. b. (0 points At what diffracted angle θ x does the first minimm of the irradiance occr? Soltion. Right- and left-hand polarized states are orthogonal; they do not interfere. To see this formally (thogh this is not reqired as part of the soltion conslt Fowles Eq. 3.; the interference termthere is proportional to E E ( i ( =+i =0. i Since there is no interference between the light fromthe top and bottomslit the reslting irradiance is jst twice that expected froma single slit of width a. According to Fowles Eq. 5.8 this pattern is proportional to ( sin β β where in this problem s notation and k =π/λ. β = π or β = ka sin θ x The first minimm occrs at sin θ x = λ a.

3 3. (35 points A lens has an f-nmber (ratio of focal length to diameter eqal to F. The lens is sed to concentrate snlight on a ball whose diameter is eqal to the diameter of the sn s image. The ball is convectively and condctively inslated bt it freely radiates energy otward so that its temperatre can approach an eqilibrimvale T b. a. (0 points The sn sbtends a half-angle of radians. Is the size of its image diffraction-limited i.e. determined largely by the effects of diffraction? Make an orderof-magnitde argment assming that the lens is a typical camera lens with a radis of order 0 m. Soltion. The image of a distant point sorce formed at the focal plane of a lens is actally a Franhofer diffraction pattern where the apertre is the lens opening. The image becomes diffraction limited when the size of the image is near the size of an Airy disk. Fromthis condition we have the Rayleigh criterion: θ >.λ D where θ is the half-angle sbtended by the sn ( rad λ is the wavelength of the light and D is the diameter of the lens. We can assme λ 600 nmfor the sn D = 0 m so the image is not diffraction limited if θ> rad which is clearly satisfied in this problem. Ths the image is not diffraction limited. (Note that this qestion reqires only an orderof-magnitde analysis. So yo don t need to know anything abot the details of Rayleigh s criterion or Airy disks to get fll credit; all that yo need to say is that the diffraction angle is of order λ/d which here is mch smaller than the sn s anglar width. b. (5 points Assming the sn to be a blackbody of temperatre T calclate the ball s temperatre T b. Neglect reflection by the lens. (Hint: yor answer shold depend only on T and F. Soltion. The sn radiates total power P S = σt 4 S 4πR S where T S is the sn s srface temperatre and R S is the sn s radis. The lens collects a fraction of this light power given by Ω Ω = π(d/ 4πR ES where R ES is the distance fromthe earth to the sn. The entirety of this light is focsed on the ball. The ball re-radiates power P b = σt 4 b 4πR b. In eqilibrimwe have the light power absorbed by the ball eqal to the light power radiated by the ball. Setting the two eqal we obtain TS 4 D 4 R S R ES = T b r b. To relate this reslt to F we note that r b /f = /F where f is the focal length. Also we have r b /f R S /R ES θ where θ is the half-angle sbtended by the sn. Employing the above relations in the eqation relating the sn s temperatre to the ball s temperatre: So we find that Tb 4 = TS 4 d θ 4rb = 6F T 4 S. T b = T S F. 4. (30 points Yo are given a Hamiltonian H = (R + R where R and are two operators sch that [ R] =E 0

4 with E 0 a constant. Yo are also given an eigenfnction E (x ofh sch that H E = E E where E another constant is the energy eigenvale. Prove that H(R E =(E + E 0 (R E i.e. R is a raising operator. Soltion. H(R RR + RR RR RR +RR [ R]R +RR E0 R +RR E0 R + RR RR + RR + RR E0 R + R[ R]+RR + RR E0 R + R(R + R E0 R + R(H =(E + E 0 R. 5. (35 points. Consider a harmonic oscillator potential V (x = mω 0x in one dimension. An even nmber N of particles of mass m are placed in this potential. There are no special interactions between the particles no significant mtal electrostatic replsion gravitational attraction etc. compared to the strength of their interaction with the harmonic potential itself. Yo may se what yo already know abot the levels of a harmonic oscillator. The systemis in its grond state i.e. T =0 Kelvin. Calclate the total energy E of the N-particle system relative to the bottom of the well for the cases a. (0 points The N particles are distingishable. Soltion. The energy levels of a harmonic oscillator are ( E n = n + hω 0 where n =0... Nothing prevents mtally noninteracting distingishable particles fromoccpying the same spatial wavefnction. At T =0 this will be the grond state n = 0. Then E = N hω 0. b. (0 points The N particles are identical bosons. Soltion. Same as (a.. All the identical bosons are in the grond state at T =0. c. (5 points The N particles are identical spin fermions. Soltion. Each spatial wavefnction can accommodate two identical spin fermions one with spin p one with spin down. At T = 0 the lowest occpied state is the grond state with energy E 0 = hω 0 while the highest-energy occpied state has (Fermi energy eqal to ( N E F = E 0 + hω 0. The total energy is N times the average energy which is the mean of E 0 and E F : E = N E 0 + E F = N ( ( N E 0 + hω 0 = N 4 hω 0.

5 6. (30 points In the rest frame S of a star ignoring the gravitational redshift some of the photons emitted by the star arise froma particlar atomic transition with an nshifted wavelength λ. When these photons are observed on earth they are shifted to longer wavelength λ = λ + λ becase the star is receding fromthe earth with velocity β 0 c de to the Hbble expansion of the niverse. Astronomers measre this redshift by means of the parameter z definedby z λ λ. For light the relativistic Doppler shift is ω = ω γ 0 ( β 0 cos θ. a. (0 points In the neighboring star limit β 0 show that β 0 is approximately eqal to the measred z. Soltion. ω ω = γ 0 ( β 0 cos θ = πc λ /λ /λ = γ 0 ( β 0 cos θ λ λ = γ 0( β 0 cos θ λ λ = γ 0 ( β 0 cos θ z = γ 0 ( β 0 cos θ. For a receding star cos θ = and so z = γ 0 ( + β 0. When β 0 γ 0 to second order in β 0. Then z +β 0 =β 0. b. (0 points In the distant star limit γ 0 derive an expression for γ 0 in terms of the measred z. Soltion. When γ 0 β 0. Then from the soltion to (a. z γ 0 γ 0 +z. Fll credit is given with or withot the term. c. (0 points The observation of Spernova 987A marked the dawn of a new astronomy in which hmans are able to detect fermions (netrinos as well as bosons (photons from(spatially or temporally resolved sorces otside the solar system. Abot a dozen sch netrinos were detected in each of two hge ndergrond water tanks. The photons fromspernova 987A were redshifted by z 0 5. Taking the Hbble constant to be H yr for how many years did the netrinos from SN987A travel before hmans observed them? Soltion. FromRohlf Eq. (9.7 (necessary for solving assigned problem9.8 the velocity v with which SN987A is receding fromearth is v = H 0 d where d is its present distance fromearth. Netrinos are nearly massless and travel essentially at the speed of light c. Using the reslt of part (a. the travel time T of the netrinos from SN987A was T = d c = v H 0 c = β 0 H 0 z H yr yr.

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length,

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length, PHY 309 L. Soltions for Problem set # 6. Textbook problem Q.20 at the end of chapter 5: For any standing wave on a string, the distance between neighboring nodes is λ/2, one half of the wavelength. The

More information

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L.

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L. .4 WAVE EQUATION 445 EXERCISES.3 In Problems and solve the heat eqation () sbject to the given conditions. Assme a rod of length.. (, t), (, t) (, ),, > >. (, t), (, t) (, ) ( ) 3. Find the temperatre

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

Two questions from the exam

Two questions from the exam Two qestions from the exam 3. When the sn is located near one of the horizons, an observer looking at the sky directly overhead will view partially polarized light. This effect is de to which of the following

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/14 Fall, 2017

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/14 Fall, 2017 OPTI-50 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/14 Fall, 017 Name Closed book; closed notes. Time limit: 10 mintes. An eqation sheet is attached and can be removed.

More information

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions 13 Big Idea 1 CHAPTER SUMMARY BIG IDEAS Using Trigonometric Fnctions Algebra classzone.com Electronic Fnction Library For Yor Notebook hypotense acent osite sine cosine tangent sin 5 hyp cos 5 hyp tan

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

Physics H7C; Final. Monday, 5/12; 7-10 PM

Physics H7C; Final. Monday, 5/12; 7-10 PM Physics H7C; Final Monday, 5/12; 7-10 PM Write your responses below, or on extra paper if needed. Show your work, and take care to explain what you are doing; partial credit will be given for incomplete

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for edcational and R&D activities related to the Hngarian ELI project Free electron lasers Lectre 1.: Introdction, overview and working principle János Hebling Zoltán

More information

PROBLEMS

PROBLEMS PROBLEMS------------------------------------------------ - 7- Thermodynamic Variables and the Eqation of State 1. Compter (a) the nmber of moles and (b) the nmber of molecles in 1.00 cm of an ideal gas

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Elements of Coordinate System Transformations

Elements of Coordinate System Transformations B Elements of Coordinate System Transformations Coordinate system transformation is a powerfl tool for solving many geometrical and kinematic problems that pertain to the design of gear ctting tools and

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011 Name Closed book; closed notes. Time limit: 2 hors. An eqation sheet is attached and can be removed.

More information

Microscopic Properties of Gases

Microscopic Properties of Gases icroscopic Properties of Gases So far we he seen the gas laws. These came from observations. In this section we want to look at a theory that explains the gas laws: The kinetic theory of gases or The kinetic

More information

Conceptual Questions. Problems. 852 CHAPTER 29 Magnetic Fields

Conceptual Questions. Problems. 852 CHAPTER 29 Magnetic Fields 852 CHAPTER 29 Magnetic Fields magnitde crrent, and the niform magnetic field points in the positive direction. Rank the loops by the magnitde of the torqe eerted on them by the field from largest to smallest.

More information

III. Demonstration of a seismometer response with amplitude and phase responses at:

III. Demonstration of a seismometer response with amplitude and phase responses at: GG5330, Spring semester 006 Assignment #1, Seismometry and Grond Motions De 30 Janary 006. 1. Calibration Of A Seismometer Using Java: A really nifty se of Java is now available for demonstrating the seismic

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PK K I N E M A T I C S Syllabs : Frame of reference. Motion in a straight line : Position-time graph, speed and velocity. Uniform and non-niform motion, average speed and instantaneos velocity. Uniformly

More information

Setting The K Value And Polarization Mode Of The Delta Undulator

Setting The K Value And Polarization Mode Of The Delta Undulator LCLS-TN-4- Setting The Vale And Polarization Mode Of The Delta Undlator Zachary Wolf, Heinz-Dieter Nhn SLAC September 4, 04 Abstract This note provides the details for setting the longitdinal positions

More information

Linear System Theory (Fall 2011): Homework 1. Solutions

Linear System Theory (Fall 2011): Homework 1. Solutions Linear System Theory (Fall 20): Homework Soltions De Sep. 29, 20 Exercise (C.T. Chen: Ex.3-8). Consider a linear system with inpt and otpt y. Three experiments are performed on this system sing the inpts

More information

n 1 sin 1 n 2 sin 2 Light and Modern Incident ray Normal 30.0 Air Glass Refracted ray speed of light in vacuum speed of light in a medium c v

n 1 sin 1 n 2 sin 2 Light and Modern Incident ray Normal 30.0 Air Glass Refracted ray speed of light in vacuum speed of light in a medium c v Light and Modern E hf n speed of light in vacm speed of light in a medim c v n sin n sin Incident ray Normal TIP. The reqency Remains the Same The freqency of a wave does not change as the wave passes

More information

University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm. Maximum score: 200 points

University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm. Maximum score: 200 points 1 University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm Maximum score: 200 points NAME: SID #: You are given 180 minutes for this exam. You are

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

1. INTRODUCTION. A solution for the dark matter mystery based on Euclidean relativity. Frédéric LASSIAILLE 2009 Page 1 14/05/2010. Frédéric LASSIAILLE

1. INTRODUCTION. A solution for the dark matter mystery based on Euclidean relativity. Frédéric LASSIAILLE 2009 Page 1 14/05/2010. Frédéric LASSIAILLE Frédéric LASSIAILLE 2009 Page 1 14/05/2010 Frédéric LASSIAILLE email: lmimi2003@hotmail.com http://lmi.chez-alice.fr/anglais A soltion for the dark matter mystery based on Eclidean relativity The stdy

More information

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently Relatiity II I. Henri Poincare's Relatiity Principle In the late 1800's, Henri Poincare proposed that the principle of Galilean relatiity be expanded to inclde all physical phenomena and not jst mechanics.

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Math 116 First Midterm October 14, 2009

Math 116 First Midterm October 14, 2009 Math 116 First Midterm October 14, 9 Name: EXAM SOLUTIONS Instrctor: Section: 1. Do not open this exam ntil yo are told to do so.. This exam has 1 pages inclding this cover. There are 9 problems. Note

More information

Generalized Jinc functions and their application to focusing and diffraction of circular apertures

Generalized Jinc functions and their application to focusing and diffraction of circular apertures Qing Cao Vol. 20, No. 4/April 2003/J. Opt. Soc. Am. A 66 Generalized Jinc fnctions and their application to focsing and diffraction of circlar apertres Qing Cao Optische Nachrichtentechnik, FernUniversität

More information

EXCITATION RATE COEFFICIENTS OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE

EXCITATION RATE COEFFICIENTS OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE EXCITATION RATE COEFFICIENTS OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE A.N. Jadhav Department of Electronics, Yeshwant Mahavidyalaya, Ned. Affiliated to

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

Polymer confined between two surfaces

Polymer confined between two surfaces Appendix 4.A 15 Polymer confined between two srfaces In this appendix we present in detail the calclations of the partition fnction of a polymer confined between srfaces with hard wall bondary conditions.

More information

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-1 April 01, Tallinn, Estonia UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL Põdra, P. & Laaneots, R. Abstract: Strength analysis is a

More information

Pendulum Equations and Low Gain Regime

Pendulum Equations and Low Gain Regime WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Sven Reiche :: SwissFEL Beam Dynamics Grop :: Pal Scherrer Institte Pendlm Eqations and Low Gain Regime CERN Accelerator School FELs and ERLs Interaction with Radiation

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB IOS Jornal of Mathematics (IOS-JM) e-issn: 78-578, p-issn: 319-765X. Volme 13, Isse 6 Ver. II (Nov. - Dec. 17), PP 5-59 www.iosrjornals.org Applying Laminar and Trblent Flow and measring Velocity Profile

More information

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points. Physics 5B FINAL EXAM Winter 2009 PART I (15 points): True/False Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth

More information

FRTN10 Exercise 12. Synthesis by Convex Optimization

FRTN10 Exercise 12. Synthesis by Convex Optimization FRTN Exercise 2. 2. We want to design a controller C for the stable SISO process P as shown in Figre 2. sing the Yola parametrization and convex optimization. To do this, the control loop mst first be

More information

Prandl established a universal velocity profile for flow parallel to the bed given by

Prandl established a universal velocity profile for flow parallel to the bed given by EM 0--00 (Part VI) (g) The nderlayers shold be at least three thicknesses of the W 50 stone, bt never less than 0.3 m (Ahrens 98b). The thickness can be calclated sing Eqation VI-5-9 with a coefficient

More information

Thermal balance of a wall with PCM-enhanced thermal insulation

Thermal balance of a wall with PCM-enhanced thermal insulation Thermal balance of a wall with PCM-enhanced thermal inslation E. Kossecka Institte of Fndamental Technological esearch of the Polish Academy of Sciences, Warsaw, Poland J. Kośny Oak idge National aboratory;

More information

FRÉCHET KERNELS AND THE ADJOINT METHOD

FRÉCHET KERNELS AND THE ADJOINT METHOD PART II FRÉCHET KERNES AND THE ADJOINT METHOD 1. Setp of the tomographic problem: Why gradients? 2. The adjoint method 3. Practical 4. Special topics (sorce imaging and time reversal) Setp of the tomographic

More information

Obliqe Projection. A body is projected from a point with different angles of projections 0 0, 35 0, 45 0, 60 0 with the horizontal bt with same initial speed. Their respective horizontal ranges are R,

More information

OPTI-502 Final Exam In Class John E. Greivenkamp Page 1/13 Fall, 2008

OPTI-502 Final Exam In Class John E. Greivenkamp Page 1/13 Fall, 2008 Page 1/13 Fall, 2008 Name Closed book; closed notes. The time limit is 2 hors. Eqation sheets are attached and can be removed. Spare ratrace forms are also attached. Use the back sides if reqired. Do not

More information

Essentials of optimal control theory in ECON 4140

Essentials of optimal control theory in ECON 4140 Essentials of optimal control theory in ECON 4140 Things yo need to know (and a detail yo need not care abot). A few words abot dynamic optimization in general. Dynamic optimization can be thoght of as

More information

Evaluation of the Fiberglass-Reinforced Plastics Interfacial Behavior by using Ultrasonic Wave Propagation Method

Evaluation of the Fiberglass-Reinforced Plastics Interfacial Behavior by using Ultrasonic Wave Propagation Method 17th World Conference on Nondestrctive Testing, 5-8 Oct 008, Shanghai, China Evalation of the Fiberglass-Reinforced Plastics Interfacial Behavior by sing Ultrasonic Wave Propagation Method Jnjie CHANG

More information

Sources of Non Stationarity in the Semivariogram

Sources of Non Stationarity in the Semivariogram Sorces of Non Stationarity in the Semivariogram Migel A. Cba and Oy Leangthong Traditional ncertainty characterization techniqes sch as Simple Kriging or Seqential Gassian Simlation rely on stationary

More information

Model Explaining the Gravitational Force

Model Explaining the Gravitational Force Model Explaining the Gravitational Force Clade Mercier eng., Agst nd, 015 Rev. October 17 th, 015 clade.mercier@gctda.com The niversal gravitation eqation of Newton is widely sed in the calclations in

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions Chem 4501 Introdction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Nmber 10 Soltions 1. McQarrie and Simon, 10-4. Paraphrase: Apply Eler s theorem

More information

PLANETARY ORBITS. According to MATTER (Re-examined) Nainan K. Varghese,

PLANETARY ORBITS. According to MATTER (Re-examined) Nainan K. Varghese, PLANETARY ORBITS According to MATTER (Re-examined) Nainan K. Varghese, matterdoc@gmail.com http://www.matterdoc.info Abstract: It is an established fact that sn is a moving macro body in space. By simple

More information

Physics of the Interstellar and Intergalactic Medium

Physics of the Interstellar and Intergalactic Medium Y4A04 Senior Sophister hysics of the Interstellar and Intergalactic edim Lectre 9: Shocks - revised Dr Graham. Harper School of hysics, TCD What a good physicist does best - Simplify eil Nebla ~8000 yr

More information

Possible holographic universe, graviton rest mass, mass gap and dark energy

Possible holographic universe, graviton rest mass, mass gap and dark energy JJJPL report 0423-2 (2015); vixra:1508.0292 (2015). Possible holographic niverse, graviton rest mass, mass gap and dark energy Jae-Kwang Hwang JJJ Physics Laboratory, 1077 Beech Tree Lane, Brentwood, TN

More information

An Interpretation of the Black Energy in Universe by Using a Hydro-Dynamical Analogy with Newton Gravity

An Interpretation of the Black Energy in Universe by Using a Hydro-Dynamical Analogy with Newton Gravity An Interpretation of the Black nergy in Universe by Using a Hydro-Dynamical Analogy with Newton Gravity Corneli BRBNT*,1, Sorin BRBNT *Corresponding athor *,1 POLITHNICA University of Bcharest, Faclty

More information

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code A Flly-Neoclassical Finite-Orbit-Width Version of the CQL3 Fokker-Planck code CompX eport: CompX-6- Jly, 6 Y. V. Petrov and. W. Harvey CompX, el Mar, CA 94, USA A Flly-Neoclassical Finite-Orbit-Width Version

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2016

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2016 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2016 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

4 Primitive Equations

4 Primitive Equations 4 Primitive Eqations 4.1 Spherical coordinates 4.1.1 Usefl identities We now introdce the special case of spherical coordinates: (,, r) (longitde, latitde, radial distance from Earth s center), with 0

More information

Second-Order Wave Equation

Second-Order Wave Equation Second-Order Wave Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 3 December 016 1 Introdction The classical wave eqation is a second-order

More information

The Theory of Virtual Particles as an Alternative to Special Relativity

The Theory of Virtual Particles as an Alternative to Special Relativity International Jornal of Physics, 017, Vol. 5, No. 4, 141-146 Available online at http://pbs.sciepb.com/ijp/5/4/6 Science and Edcation Pblishing DOI:10.1691/ijp-5-4-6 The Theory of Virtal Particles as an

More information

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0 Chapter Inverse Circlar Fnctions and Trigonometric Eqations Section. Inverse Circlar Fnctions. onetoone. range. cos... = tan.. Sketch the reflection of the graph of f across the line =. 7. (a) [, ] é ù

More information

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe Special relativity The laws of physics are the same in all coordinate systems either at rest or moving at constant speed with respect to one another The speed of light in a vacm has the same vale regardless

More information

Seat Number. Print and sign your name, and write your Student ID Number and seat number legibly in the spaces above.

Seat Number. Print and sign your name, and write your Student ID Number and seat number legibly in the spaces above. Physics 123A Final Spring 2001 Wednesday, June 6 Name last first initial Seat Number Signature Student Number Print and sign your name, and write your Student ID Number and seat number legibly in the spaces

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

Methods of Design-Oriented Analysis The GFT: A Final Solution for Feedback Systems

Methods of Design-Oriented Analysis The GFT: A Final Solution for Feedback Systems http://www.ardem.com/free_downloads.asp v.1, 5/11/05 Methods of Design-Oriented Analysis The GFT: A Final Soltion for Feedback Systems R. David Middlebrook Are yo an analog or mixed signal design engineer

More information

Gravitational Instability of a Nonrotating Galaxy *

Gravitational Instability of a Nonrotating Galaxy * SLAC-PUB-536 October 25 Gravitational Instability of a Nonrotating Galaxy * Alexander W. Chao ;) Stanford Linear Accelerator Center Abstract Gravitational instability of the distribtion of stars in a galaxy

More information

Turbomachinery Lecture Notes

Turbomachinery Lecture Notes Trbomachinery Lectre Notes KTH Corse MJ49/MJ41 Trbomachinery for Compressible Flids DRAFT version Compressors Damian M. Vogt KTH Heat and Power Technology Trbomachinery Lectre Notes 1 007-09-19 Axial Compressor

More information

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning of any

More information

Higher Maths A1.3 Recurrence Relations - Revision

Higher Maths A1.3 Recurrence Relations - Revision Higher Maths A Recrrence Relations - Revision This revision pack covers the skills at Unit Assessment exam level or Recrrence Relations so yo can evalate yor learning o this otcome It is important that

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

EVALUATION OF GROUND STRAIN FROM IN SITU DYNAMIC RESPONSE

EVALUATION OF GROUND STRAIN FROM IN SITU DYNAMIC RESPONSE 13 th World Conference on Earthqake Engineering Vancover, B.C., Canada Agst 1-6, 2004 Paper No. 3099 EVALUATION OF GROUND STRAIN FROM IN SITU DYNAMIC RESPONSE Ellen M. RATHJE 1, Wen-Jong CHANG 2, Kenneth

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

Material Transport with Air Jet

Material Transport with Air Jet Material Transport with Air Jet Dr. István Patkó Bdapest Tech Doberdó út 6, H-1034 Bdapest, Hngary patko@bmf.h Abstract: In the field of indstry, there are only a very few examples of material transport

More information

Bertrand s Theorem. October 8, µr 2 + V (r) 0 = dv eff dr. 3 + dv. f (r 0 )

Bertrand s Theorem. October 8, µr 2 + V (r) 0 = dv eff dr. 3 + dv. f (r 0 ) Bertrand s Theorem October 8, Circlar orbits The eective potential, V e = has a minimm or maximm at r i and only i so we mst have = dv e L µr + V r = L µ 3 + dv = L µ 3 r r = L µ 3 At this radis, there

More information

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63 5 Kragjevac J. Sci. 34 () 5-. UDC 53.5: 536.4:537.63 UNSTEADY MHD FLOW AND HEAT TRANSFER BETWEEN PARALLEL POROUS PLATES WITH EXPONENTIAL DECAYING PRESSURE GRADIENT Hazem A. Attia and Mostafa A. M. Abdeen

More information

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty Technical Note EN-FY160 Revision November 30, 016 ODiSI-B Sensor Strain Gage Factor Uncertainty Abstract Lna has pdated or strain sensor calibration tool to spport NIST-traceable measrements, to compte

More information

Formules relatives aux probabilités qui dépendent de très grands nombers

Formules relatives aux probabilités qui dépendent de très grands nombers Formles relatives ax probabilités qi dépendent de très grands nombers M. Poisson Comptes rends II (836) pp. 603-63 In the most important applications of the theory of probabilities, the chances of events

More information

The Linear Quadratic Regulator

The Linear Quadratic Regulator 10 The Linear Qadratic Reglator 10.1 Problem formlation This chapter concerns optimal control of dynamical systems. Most of this development concerns linear models with a particlarly simple notion of optimality.

More information

Numerical verification of the existence of localization of the elastic energy for closely spaced rigid disks

Numerical verification of the existence of localization of the elastic energy for closely spaced rigid disks Nmerical verification of the existence of localization of the elastic energy for closely spaced rigid disks S. I. Rakin Siberian State University of transport Rssia, 6349, Novosibirsk, Dsy Kovalchk street,

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Introduction to Quantum Information Processing

Introduction to Quantum Information Processing Introdction to Qantm Information Processing Lectre 5 Richard Cleve Overview of Lectre 5 Review of some introdctory material: qantm states, operations, and simple qantm circits Commnication tasks: one qbit

More information

Chapter 17. Weak Interactions

Chapter 17. Weak Interactions Chapter 17 Weak Interactions The weak interactions are meiate by W ± or (netral) Z exchange. In the case of W ±, this means that the flavors of the qarks interacting with the gage boson can change. W ±

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Problem 1: A A hot blackbody will emit more photons per unit time per unit surface area than a cold blackbody. It does not, however, necessarily need to have a higher luminosity,

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2015

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2015 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2015 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

arxiv:quant-ph/ v4 14 May 2003

arxiv:quant-ph/ v4 14 May 2003 Phase-transition-like Behavior of Qantm Games arxiv:qant-ph/0111138v4 14 May 2003 Jiangfeng D Department of Modern Physics, University of Science and Technology of China, Hefei, 230027, People s Repblic

More information

Vibrational modes of a rotating string

Vibrational modes of a rotating string Vibrational modes of a rotating string Theodore J. Allen Department of Physics, University of Wisconsin-Madison, 1150 University Avene, Madison, WI 53706 USA and Department of Physics, Eaton Hall Hobart

More information

m = Average Rate of Change (Secant Slope) Example:

m = Average Rate of Change (Secant Slope) Example: Average Rate o Change Secant Slope Deinition: The average change secant slope o a nction over a particlar interval [a, b] or [a, ]. Eample: What is the average rate o change o the nction over the interval

More information

Physics Spring 2007 Final Exam Solution. This version incorporates minor typographic corrections in the exam problems.

Physics Spring 2007 Final Exam Solution. This version incorporates minor typographic corrections in the exam problems. Physics 02- Spring 2007 Final Exam Solution This version incorporates minor typographic corrections in the exam problems. Grading note: Point values are specified for each problem. Within a problem, some

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fndamentals of Physics I Lectres 7 and 8 Motion in Two Dimensions A/Prof Tay Sen Chan 1 Grond Rles Switch off yor handphone and paer Switch off yor laptop compter and keep it No talkin while lectre

More information

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 3. System Modeling Mathematical Modeling In designing control systems we mst be able to model engineered system dynamics. The model of a dynamic system

More information

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4

CONTENTS. INTRODUCTION MEQ curriculum objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 CONTENTS INTRODUCTION MEQ crriclm objectives for vectors (8% of year). page 2 What is a vector? What is a scalar? page 3, 4 VECTOR CONCEPTS FROM GEOMETRIC AND ALGEBRAIC PERSPECTIVES page 1 Representation

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

Newton s Laws. Why Things Move. Overview. Part

Newton s Laws. Why Things Move. Overview. Part Part I Newton s Laws Overview Why Things Move Each of the seven parts of this book opens with an overview to give yo a look ahead, a glimpse at where yor jorney will take yo in the net few chapters. It

More information

You must show your student ID when you hand in your exam!

You must show your student ID when you hand in your exam! Physics 8B, Section 2 (Speliotopoulos) Final Examination, Fall 2013 Berkeley, CA Rules: This midterm is closed book and closed notes. You are allowed two sides of one and onehalf sheets of 8.5 x 11 paper

More information

Decision Making in Complex Environments. Lecture 2 Ratings and Introduction to Analytic Network Process

Decision Making in Complex Environments. Lecture 2 Ratings and Introduction to Analytic Network Process Decision Making in Complex Environments Lectre 2 Ratings and Introdction to Analytic Network Process Lectres Smmary Lectre 5 Lectre 1 AHP=Hierar chies Lectre 3 ANP=Networks Strctring Complex Models with

More information

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lectre Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 Prepared by, Dr. Sbhend Kmar Rath, BPUT, Odisha. Tring Machine- Miscellany UNIT 2 TURING MACHINE

More information

Chapter 3. Building Hadrons from Quarks

Chapter 3. Building Hadrons from Quarks P570 Chapter Bilding Hadrons from Qarks Mesons in SU() We are now ready to consider mesons and baryons constrcted from qarks. As we recall, mesons are made of qark-antiqark pair and baryons are made of

More information

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons Exam 4: Fri. May 10, in-class 20 qestions, covers fission, fsion, particle physics No final exam. Essays retrne Friay Toay: Review Particle Physics Particles an fiels: a new pictre Qarks an leptons The

More information

MEC-E8001 Finite Element Analysis, Exam (example) 2017

MEC-E8001 Finite Element Analysis, Exam (example) 2017 MEC-E800 Finite Element Analysis Eam (eample) 07. Find the transverse displacement w() of the strctre consisting of one beam element and po forces and. he rotations of the endpos are assmed to be eqal

More information