OPTI-502 Final Exam In Class John E. Greivenkamp Page 1/13 Fall, 2008

Size: px
Start display at page:

Download "OPTI-502 Final Exam In Class John E. Greivenkamp Page 1/13 Fall, 2008"

Transcription

1 Page 1/13 Fall, 2008 Name Closed book; closed notes. The time limit is 2 hors. Eqation sheets are attached and can be removed. Spare ratrace forms are also attached. Use the back sides if reqired. Do not se an pre-stored information or programs in or calclator. Assme thin lenses in air if not specified. If a method of soltion is specified in the problem, it mst be sed. Yo mst show or work and/or method of soltion in order to receive credit or partial credit for or answer. Distance Stdents: Please retrn the original exam onl; do not scan/fax/ an additional cop. 1) (10 points) The following list identifies six optical glasses b their six-digit glass code. Identif which of these glasses is a crown (K) or a flint (F) b circling the appropriate letter K F K F K F K F K F K F Which of these two glasses shold be sed to prodce a first-order achromatic doblet with the least excess power? Crown Glass: Flint Glass:

2 Page 2/13 Fall, ) (20 points) Dring the semester, we have discssed a variet of optical sstems, components and concepts. For each of the topics that is listed, provide a brief description and discss some of the featres or properties of this item. (for example, from a design perspective, what does it mean for the performance of the sstem or the se of the sstem?). Tr to be practical, I am looking for concepts not eqations. Limit or answers to the space provided. Legibilit does cont I need to be able to read it! a) Field Lenses b) Reverse Telephoto Lens

3 Page 3/13 Fall, 2008 c) Right angle Roof Prism (Amici) d) Speclar Illmination Sstem

4 Page 4/13 Fall, ) (15 points) Using onl 50 mm focal length thin lenses, provide the laot of a doble-telecentric sstem with a lateral magnification of Yo ma se p to for of these thin lenses in or design. Provide a sketch of the sstem clearl indicating the spacings of the lenses and the location of the sstem stop. Note: The sstem magnification mst be POSITIVE. The lens diameters are not reqired. There are several possible designs o need to provide onl one.

5 Page 5/13 Fall, ) (20 points) In a 3X Galilean telescope, the separation between the objective lens and the ee lens is 100 mm. The objective lens diameter is 30 mm and the ee lens diameter is 12 mm. The telescope is to be sed with an ee that has a 4 mm diameter entrance ppil. The separation between the ee lens and the ee ppil is 15 mm. The object is at infinit. What is the nvignetted object space Field of View of this sstem in degrees? Which element limits the nvignetted Field of View? Contines

6 Page 6/13 Fall, 2008 Unvignetted Field of View = +/- degrees in object space FOV Limited b Ra Trace Form Follows

7 Page 7/13 Fall, 2008 Srface f φ t

8 Page 8/13 Fall, ) (15 points) A swimming pool has a sloped bottom (i.e. deeper on one end than the other). Yo notice that at noon on a snn da, an interesting light pattern has formed on the bottom of the pool. The pattern is de to imaging of the sn b the waves on the pool srface. Especiall sharp line images of the sn occr at a depth of 2 m, and the spacing of the lines is abot 300 mm. Using reasonable, simple assmptions, what can o sa abot the waves on the srface of the water? In particlar, what are the approximate amplitde and period of the waves? State or assmptions. n water = 1.33 Contines

9 Page 9/13 Fall, 2008 Wave period = mm Wave peak-to-valle amplitde mm

10 Page 10/13 Fall, ) (20 points) In cataract srger, the natral lens of the ee (now white and opaqe) is removed and replaced b an artificial intraoclar lens (IOL). The goal of this lens is to work with the cornea to focs images of distant objects on the retina. The cornea can be assmed to be a single refracting srface (R C = 8.0 mm), and the IOL is assmed to be a thin lens. The IOL is sall made of plastic and it is immersed in the aqeos of the ee (n AQ = 1.333). The IOL is located 4 mm behind the cornea, and the retina is 24 mm behind the cornea. Both parts of this problem are to be done sing Gassian methods. No credit will be given for ratrace analsis. R C = 8.0 mm IOL Retina n = 1.0 n AQ = mm 24 mm a) What is the power and focal length of the IOL reqired to image distant objects onto the retina? This power and focal length are for the thin lens immersed in the aqeos. Contines

11 Page 11/13 Fall, 2008 φ IOL = /mm f IOL = mm Contines

12 Page 12/13 Fall, 2008 b) If the plastic IOL is removed from the aqeos, what are its power and focal length in air? The index of the IOL is 1.5. n IOL = 1.5 φ Air = /mm f Air = mm

13 Page 13/13 Fall, 2008 Spare ratrace forms: Srface C t n φ t/n n n Srface f φ t

14 OPTI-502 Eqation Sheet OPL = nl n sin θ = n sin θ γ= 2α n 1 d= t = t τ n φ= (n n)c n n = +φ z z f 1 f f R φ n n F E = = = z/n ω m = = z/n ω m f f = = f f n m= m n m N F2 2 R1 1 n = n 2 Δz/n = mm Δz/n PN = PN= f + f F 1 2 R t τ = ω= n n φ =φ 1+φ2 φφ 1 2τ d φ n φ 1 δ = = τ d n φ φ 2 δ = = τ ω =ω φ = +ωτ f/# f BFD = d + f R FFD = d + f F E NA n sin U n DEP 1 1 f/# W ( 1 m) f/# 2NA 2n I = H = n n = tan( θ 1/2) 10in 250mm MP = = f f 1 MP = m mv = mobjmpeye

15 M ρe L = = π π A Φ= LAΩ Ω 2 d πlo E = 2 4(f /# ) W Exposre = E Δ T a + Un a = and a Half a and a Fll DOF =± B f /# W L H fd LH = L B NEAR = 2 δ = ( n 1) α δ ε = ν = P Δ Δ α 1 ν = δ ν ν nd1 1 α 1 ν = δ ν ν ε δ nd2 1 P P 1 2 = ν1 ν2 ( α δmin ) sin ( α / 2) sin / 2 n = 1 n S θ C = sin nr D= 2.44λ f /# D f /# in μ m 2 Sag 2R nd 1 ν= n n n F n C d C P = n F n C δφ δf 1 = = φ f ν TA CH rp = ν φ1 ν1 φ2 ν2 = = φ ν ν φ ν ν δφdc δfcd ΔP = = φ f Δν

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011 Name Closed book; closed notes. Time limit: 2 hors. An eqation sheet is attached and can be removed.

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/14 Fall, 2017

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/14 Fall, 2017 OPTI-50 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/14 Fall, 017 Name Closed book; closed notes. Time limit: 10 mintes. An eqation sheet is attached and can be removed.

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2015

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2015 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2015 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2016

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2016 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2016 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

Section 9. Paraxial Raytracing

Section 9. Paraxial Raytracing OPTI-/ Geometrical and Instrmental Optics Copright 8 John E. Greivenkamp 9- Section 9 Paraxial atracing YNU atrace efraction (or reflection) occrs at an interface between two optical spaces. The transfer

More information

Assignment 3 Due September 27, 2010

Assignment 3 Due September 27, 2010 Assignment 3 Due September 27, 2010 Text readings Stops section 5.3 Dispersing and Reflecting Prisms [sections 5.5.1 and 5.5.2] Optical systems section 5.7 Lens Aberrations [section 6.3] Be careful about

More information

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector Chapter 4: Flids Kinematics 4. Velocit and Description Methods Primar dependent ariable is flid elocit ector V V ( r ); where r is the position ector If V is known then pressre and forces can be determined

More information

Chromatic Aberrations

Chromatic Aberrations Chromatic Aberrations Lens Design OPTI 517 Second-order chromatic aberrations W H W W H W H W, cos 2 2 000 200 111 020 Change of image location with λ (axial or longitudinal chromatic aberration) Change

More information

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions 13 Big Idea 1 CHAPTER SUMMARY BIG IDEAS Using Trigonometric Fnctions Algebra classzone.com Electronic Fnction Library For Yor Notebook hypotense acent osite sine cosine tangent sin 5 hyp cos 5 hyp tan

More information

Physics 1302, Exam 3 Review

Physics 1302, Exam 3 Review c V Andersen, 2006 1 Physics 1302, Exam 3 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.71 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

Physics 1212 Exam #4A (Final)

Physics 1212 Exam #4A (Final) Physics 1212 Exam #4A (Final) Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

Physics 1212 Exam #4B (Final)

Physics 1212 Exam #4B (Final) Physics 1212 Exam #4B (Final) Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION

University of California, Berkeley Physics H7C Fall 1999 (Strovink) SOLUTION TO FINAL EXAMINATION University of California Berkeley Physics H7C Fall 999 (Strovink SOUTION TO FINA EXAMINATION Directions. Do all six problems (weights are indicated. This is a closed-book closed-note exam except for three

More information

PHYS 1112 In-Class Exam #1, Version D

PHYS 1112 In-Class Exam #1, Version D PHYS 1112 In-Class Exam #1, Version D Tue. Feb. 4, 2014, 11:00am-12:15am This is a closed-book, closed-notes exam, but you are permitted to bring and use a clean copy of the official Formula Sheet for

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information

Geometric Optics. Scott Freese. Physics 262

Geometric Optics. Scott Freese. Physics 262 Geometric Optics Scott Freese Physics 262 10 April 2008 Abstract The primary goal for this experiment was to learn the basic physics of the concept of geometric optics. The specific concepts to be focused

More information

Introduction to aberrations OPTI 518 Lecture 14

Introduction to aberrations OPTI 518 Lecture 14 Introduction to aberrations Lecture 14 Topics Structural aberration coefficients Examples Structural coefficients Ж Requires a focal system Afocal systems can be treated with Seidel sums Structural stop

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

Physics 1252 Section Exam #1D

Physics 1252 Section Exam #1D Thu, 09 February 2017 Name: Physics 1252 Section 36501 Exam #1D Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator,

More information

Physics 1252 Section Exam #1E

Physics 1252 Section Exam #1E Thu, 09 February 2017 Name: Physics 1252 Section 36501 Exam #1E Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator,

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

III. Demonstration of a seismometer response with amplitude and phase responses at:

III. Demonstration of a seismometer response with amplitude and phase responses at: GG5330, Spring semester 006 Assignment #1, Seismometry and Grond Motions De 30 Janary 006. 1. Calibration Of A Seismometer Using Java: A really nifty se of Java is now available for demonstrating the seismic

More information

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L.

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L. .4 WAVE EQUATION 445 EXERCISES.3 In Problems and solve the heat eqation () sbject to the given conditions. Assme a rod of length.. (, t), (, t) (, ),, > >. (, t), (, t) (, ) ( ) 3. Find the temperatre

More information

Physics 319 Laboratory: Basics of telescopes and Microscopes (Magnification Experiment) and transverse magnification, M t

Physics 319 Laboratory: Basics of telescopes and Microscopes (Magnification Experiment) and transverse magnification, M t Objective: In general you will explore the basic principles of how simple telescopes and microscope work. Specifically, you will examine the fundamental principles of magnification of a single thin lens

More information

EP 225 Waves, Optics, and Fields

EP 225 Waves, Optics, and Fields EP 225 Waves, Optics, and Fields Website: http://physics.usask.ca/~hirose/ep225/ contains Course outline Laboratory instruction Notes Past exams Animation Instructor: Akira Hirose Office Physics 66 akira.hirose@usask.ca

More information

Physics 202 Final Exam Dec 20nd, 2011

Physics 202 Final Exam Dec 20nd, 2011 Physics 202 Final Exam Dec 20nd, 2011 Name: Student ID: Section: TA (please circle): Daniel Crow Scott Douglas Yutao Gong Taylor Klaus Aaron Levine Andrew Loveridge Jason Milhone Hojin Yoo Instructions:

More information

OPTICAL INSTRUMENTS VERY SHORT ANSWER QUESTIONS

OPTICAL INSTRUMENTS VERY SHORT ANSWER QUESTIONS OPTICAL INSTRUMENTS VERY SHORT ANSWER QUESTIONS Q-1. The difference in the focal lengths of the two lenses is larger in which case microscope or telescope? Q-2. What is the formula for angular magnification

More information

Lecture: Corporate Income Tax

Lecture: Corporate Income Tax Lectre: Corporate Income Tax Ltz Krschwitz & Andreas Löffler Disconted Cash Flow, Section 2.1, Otline 2.1 Unlevered firms Similar companies Notation 2.1.1 Valation eqation 2.1.2 Weak atoregressive cash

More information

Chapter Ray Optics and Optical Instrument

Chapter Ray Optics and Optical Instrument Chapter Ray Optics and Optical Instrument Q1. Focal length of a convex lens of refractive index 1.5 is 2 cm. Focal length of the lens when immersed in a liquid of refractive index of 1.25 will be [1988]

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

Prof. Jose Sasian OPTI 518. Introduction to aberrations OPTI 518 Lecture 14

Prof. Jose Sasian OPTI 518. Introduction to aberrations OPTI 518 Lecture 14 Introduction to aberrations Lecture 14 Topics Structural aberration coefficients Examples Structural coefficients Ж Requires a focal system Afocal systems can be treated with Seidel sums Structural stop

More information

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet. Chapters 15-30 PHYS 1402 - Brooks This practice test is similar to the actual final. The final exam will focus on questions involving solving problems, and not so much on conceptual questions. The final

More information

Math 116 First Midterm October 14, 2009

Math 116 First Midterm October 14, 2009 Math 116 First Midterm October 14, 9 Name: EXAM SOLUTIONS Instrctor: Section: 1. Do not open this exam ntil yo are told to do so.. This exam has 1 pages inclding this cover. There are 9 problems. Note

More information

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module Lab Manal for Engrd 202, Virtal Torsion Experiment Alminm modle Introdction In this modle, o will perform data redction and analsis for circlar cross section alminm samples. B plotting the torqe vs. twist

More information

Second-Order Wave Equation

Second-Order Wave Equation Second-Order Wave Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 3 December 016 1 Introdction The classical wave eqation is a second-order

More information

P142 University of Rochester NAME S. Manly Fall 2010

P142 University of Rochester NAME S. Manly Fall 2010 Final Exam (December 20, 2010) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given. Problem

More information

Final Exam April 21, a) No books, notes, or other such materials are permitted.

Final Exam April 21, a) No books, notes, or other such materials are permitted. Phys 5 Spring 004 Name: Final Exam April, 004 INSTRUCTIONS: a) No books, notes, or other such materials are permitted. b) You may use a calculator. c) You must solve all problems beginning with the equations

More information

5. Aberration Theory

5. Aberration Theory 5. Aberration Theory Last lecture Matrix methods in paraxial optics matrix for a two-lens system, principal planes This lecture Wavefront aberrations Chromatic Aberration Third-order (Seidel) aberration

More information

Problem Class 4. More State Machines (Problem Sheet 3 con t)

Problem Class 4. More State Machines (Problem Sheet 3 con t) Problem Class 4 More State Machines (Problem Sheet 3 con t) Peter Cheng Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.imperial.ac.k/pcheng/ee2_digital/ E-mail: p.cheng@imperial.ac.k

More information

Chapter 1. Ray Optics

Chapter 1. Ray Optics Chapter 1. Ray Optics Postulates of Ray Optics n c v A ds B Reflection and Refraction Fermat s Principle: Law of Reflection Fermat s principle: Light rays will travel from point A to point B in a medium

More information

Problem Score 1 /30 2 /15 3 /15 4 /20 5 /20 6 /20 7 /15 8 /25 9 /20 10 /20 Total /200

Problem Score 1 /30 2 /15 3 /15 4 /20 5 /20 6 /20 7 /15 8 /25 9 /20 10 /20 Total /200 PHYS 2114 Final Exam December 15, 2005 Time of Discussion Section: Name: Instructions: Do not open exam until so instructed. Write name and discussion time above; do not write anything in table at right.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

A Model-Free Adaptive Control of Pulsed GTAW

A Model-Free Adaptive Control of Pulsed GTAW A Model-Free Adaptive Control of Plsed GTAW F.L. Lv 1, S.B. Chen 1, and S.W. Dai 1 Institte of Welding Technology, Shanghai Jiao Tong University, Shanghai 00030, P.R. China Department of Atomatic Control,

More information

Essentials of optimal control theory in ECON 4140

Essentials of optimal control theory in ECON 4140 Essentials of optimal control theory in ECON 4140 Things yo need to know (and a detail yo need not care abot). A few words abot dynamic optimization in general. Dynamic optimization can be thoght of as

More information

Lecture: Corporate Income Tax - Unlevered firms

Lecture: Corporate Income Tax - Unlevered firms Lectre: Corporate Income Tax - Unlevered firms Ltz Krschwitz & Andreas Löffler Disconted Cash Flow, Section 2.1, Otline 2.1 Unlevered firms Similar companies Notation 2.1.1 Valation eqation 2.1.2 Weak

More information

11.3 The Telescope. object. Figure 1 A Galilean telescope eye. reflecting telescope: telescope that uses a parabolic mirror to focus light

11.3 The Telescope. object. Figure 1 A Galilean telescope eye. reflecting telescope: telescope that uses a parabolic mirror to focus light (b) Most s are now made of two or more lenses. What kind of lenses are involved in Huygenian, Ramsden, Periplan, and Kellner designs? Which of those s is the best one to use? Why? (c) The Dutch naturalist

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Sources of Non Stationarity in the Semivariogram

Sources of Non Stationarity in the Semivariogram Sorces of Non Stationarity in the Semivariogram Migel A. Cba and Oy Leangthong Traditional ncertainty characterization techniqes sch as Simple Kriging or Seqential Gassian Simlation rely on stationary

More information

Uncertainties of measurement

Uncertainties of measurement Uncertainties of measrement Laboratory tas A temperatre sensor is connected as a voltage divider according to the schematic diagram on Fig.. The temperatre sensor is a thermistor type B5764K [] with nominal

More information

Version 087 EX4 ditmire (58335) 1

Version 087 EX4 ditmire (58335) 1 Version 087 EX4 ditmire (58335) This print-out should have 3 questions. Multiple-choice questions ma continue on the next column or page find all choices before answering. 00 (part of ) 0.0 points A material

More information

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics . Solving Eqations in Qadratic Form, Eqations Redcible to Qadratics Now that we can solve all qadratic eqations we want to solve eqations that are not eactl qadratic bt can either be made to look qadratic

More information

1.061 / 1.61 Transport Processes in the Environment

1.061 / 1.61 Transport Processes in the Environment MIT OpenCorseWare http://ocw.mit.ed 1.061 / 1.61 Transport Processes in the Environment Fall 008 For information abot citing these materials or or Terms of Use, visit: http://ocw.mit.ed/terms. Answer 8.1

More information

Bertrand s Theorem. October 8, µr 2 + V (r) 0 = dv eff dr. 3 + dv. f (r 0 )

Bertrand s Theorem. October 8, µr 2 + V (r) 0 = dv eff dr. 3 + dv. f (r 0 ) Bertrand s Theorem October 8, Circlar orbits The eective potential, V e = has a minimm or maximm at r i and only i so we mst have = dv e L µr + V r = L µ 3 + dv = L µ 3 r r = L µ 3 At this radis, there

More information

CHM 424 EXAM 2 - COVER PAGE FALL

CHM 424 EXAM 2 - COVER PAGE FALL CHM 44 EXAM - COVER PAGE FALL 006 There are seven numbered pages with five questions. Answer the questions on the exam. Exams done in ink are eligible for regrade, those done in pencil will not be regraded.

More information

EE 119 Homework 2. 4 o

EE 119 Homework 2. 4 o EE 119 Homework 2 Professor: Jeff Bokor TA: Xi Luo Due Tuesday, Feb 9 th 2010 (Please submit your answers in EE119 homework box located in 240 Cory Hall) 1. (a) In class, the angle of deviation (δ) has

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Optical Instruments. Optical Instruments 1. Physics 123, Fall 2012

Optical Instruments. Optical Instruments 1. Physics 123, Fall 2012 Optical Instruments 1 Physics 123, Fall 2012 Name Optical Instruments I. Magnifier The lens in the human eye adjusts its shape to change the focal length, so that objects at a variety of distances can

More information

PLANETARY ORBITS. According to MATTER (Re-examined) Nainan K. Varghese,

PLANETARY ORBITS. According to MATTER (Re-examined) Nainan K. Varghese, PLANETARY ORBITS According to MATTER (Re-examined) Nainan K. Varghese, matterdoc@gmail.com http://www.matterdoc.info Abstract: It is an established fact that sn is a moving macro body in space. By simple

More information

VS203B midterm exam version A

VS203B midterm exam version A VS03B midterm exam version A VS03B Midterm Exam Solutions (versions A and B are the same except for the ordering of multiple choice answers Dr. Roorda Date: April 8 009 Permitted aids: pens/pencils, eraser,

More information

MAE 320 Thermodynamics HW 4 Assignment

MAE 320 Thermodynamics HW 4 Assignment MAE 0 Thermodynamics HW 4 Assignment The homework is de Friday, October 7 th, 06. Each problem is worth the points indicated. Copying of the soltion from any sorce is not acceptable. (). Mltiple choice

More information

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.710 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C Integration - By sbstittion PhysicsAndMathsTtor.com. Using the sbstittion cos +, or otherwise, show that e cos + sin d e(e ) (Total marks). (a) Using the sbstittion cos, or otherwise, find the eact vale

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

= 115V. = = = C/m 2

= 115V. = = = C/m 2 SPHS Class th Physics Solution. parallel-plate air capacitor has a plate area of cm and separation 5mm. potential difference of V is established between its plates by a battery. fter disconnecting a battery,

More information

Higher Maths A1.3 Recurrence Relations - Revision

Higher Maths A1.3 Recurrence Relations - Revision Higher Maths A Recrrence Relations - Revision This revision pack covers the skills at Unit Assessment exam level or Recrrence Relations so yo can evalate yor learning o this otcome It is important that

More information

Physics 1212 Exam #1

Physics 1212 Exam #1 Physics 1212 Exam #1 Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, a non-progammable, non-algebra scientific calculator, and a

More information

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010 Solution ME 33 EXAM # FALL SEMESTER 1 8: PM 9:3 PM Nov., 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work

More information

Experiment 3 The Simple Magnifier, Microscope, and Telescope

Experiment 3 The Simple Magnifier, Microscope, and Telescope Experiment 3 The Simple Magnifier, Microscope, and Telescope Introduction Experiments 1 and 2 dealt primarily with the measurement of the focal lengths of simple lenses and spherical s. The question of

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10.

Correction key. Example of an appropriate method. be the wind vector x = 120 and x = y = 160 and y = 10. Correction key 1 D Example of an appropriate method /4 Let x, y be the wind vector (km) y 100, 150 x, y 10, 160 100 x, 150 y 10, 160 100 withot wind with wind 100 + x = 10 and x = 0 150 + y = 160 and y

More information

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors Lecture 2: Basic Astronomical Optics Prisms, Lenses, and Mirrors Basic Optical Elements Refraction (Lenses) No longer used for large telescopes Widely used for instrument optics Reflection (mirrors) Widely

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fndamentals of Physics I Lectres 7 and 8 Motion in Two Dimensions A/Prof Tay Sen Chan 1 Grond Rles Switch off yor handphone and paer Switch off yor laptop compter and keep it No talkin while lectre

More information

The University of Georgia Department of Physics and Astronomy Graduate Qualifying Exam Part I (Dated: August 9, 2010)

The University of Georgia Department of Physics and Astronomy Graduate Qualifying Exam Part I (Dated: August 9, 2010) The University of Georgia Department of Physics and Astronomy Graduate Qualifying Exam Part I (Dated: August 9, 010) Instructions: Attempt all problems. Start each problem on a new sheet of paper, and

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Astro 500 A500/L-7 1

Astro 500 A500/L-7 1 Astro 500 1 Telescopes & Optics Outline Defining the telescope & observatory Mounts Foci Optical designs Geometric optics Aberrations Conceptually separate Critical for understanding telescope and instrument

More information

Simulation investigation of the Z-source NPC inverter

Simulation investigation of the Z-source NPC inverter octoral school of energy- and geo-technology Janary 5 20, 2007. Kressaare, Estonia Simlation investigation of the Z-sorce NPC inverter Ryszard Strzelecki, Natalia Strzelecka Gdynia Maritime University,

More information

4.2 First-Order Logic

4.2 First-Order Logic 64 First-Order Logic and Type Theory The problem can be seen in the two qestionable rles In the existential introdction, the term a has not yet been introdced into the derivation and its se can therefore

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

m = Average Rate of Change (Secant Slope) Example:

m = Average Rate of Change (Secant Slope) Example: Average Rate o Change Secant Slope Deinition: The average change secant slope o a nction over a particlar interval [a, b] or [a, ]. Eample: What is the average rate o change o the nction over the interval

More information

Modelling by Differential Equations from Properties of Phenomenon to its Investigation

Modelling by Differential Equations from Properties of Phenomenon to its Investigation Modelling by Differential Eqations from Properties of Phenomenon to its Investigation V. Kleiza and O. Prvinis Kanas University of Technology, Lithania Abstract The Panevezys camps of Kanas University

More information

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0 Chapter Inverse Circlar Fnctions and Trigonometric Eqations Section. Inverse Circlar Fnctions. onetoone. range. cos... = tan.. Sketch the reflection of the graph of f across the line =. 7. (a) [, ] é ù

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PK K I N E M A T I C S Syllabs : Frame of reference. Motion in a straight line : Position-time graph, speed and velocity. Uniform and non-niform motion, average speed and instantaneos velocity. Uniformly

More information

Setting The K Value And Polarization Mode Of The Delta Undulator

Setting The K Value And Polarization Mode Of The Delta Undulator LCLS-TN-4- Setting The Vale And Polarization Mode Of The Delta Undlator Zachary Wolf, Heinz-Dieter Nhn SLAC September 4, 04 Abstract This note provides the details for setting the longitdinal positions

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Friday, January 14, 2011 1:00PM to 3:00PM General Physics (Part I) Section 5. Two hours are permitted for the completion of this section

More information

Objectives: We will learn about filters that are carried out in the frequency domain.

Objectives: We will learn about filters that are carried out in the frequency domain. Chapter Freqency Domain Processing Objectives: We will learn abot ilters that are carried ot in the reqency domain. In addition to being the base or linear iltering, Forier Transorm oers considerable lexibility

More information

Level 2 Physics, 2004

Level 2 Physics, 2004 For Supervisor s 2 9 0 2 5 4 Level 2 Physics, 2004 90254 Demonstrate understanding of wave phenomena Credits: Four 2.00 pm Thursday 18 November 2004 Check that the National Student Number (NSN) on your

More information

MEG 741 Energy and Variational Methods in Mechanics I

MEG 741 Energy and Variational Methods in Mechanics I MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

Lesson 81: The Cross Product of Vectors

Lesson 81: The Cross Product of Vectors Lesson 8: The Cross Prodct of Vectors IBHL - SANTOWSKI In this lesson yo will learn how to find the cross prodct of two ectors how to find an orthogonal ector to a plane defined by two ectors how to find

More information

Physics 1252 Section Exam #1D

Physics 1252 Section Exam #1D Thu, 01 February 2018 Name: Physics 1252 Section 45299 Exam #1D Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator,

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 A & B Final Exam Formulæ & Constants Fall 2016 Unless otherwise directed, use the gravitational definition of weight, all problems take place on Earth, drag is to be neglected, and all pulleys

More information

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1 David Buckley, SAAO 24 Feb 2012 NASSP OT1: Telescopes I-1 1 What Do Telescopes Do? They collect light They form images of distant objects The images are analyzed by instruments The human eye Photographic

More information

Physics 1252 Sec.A Exam #1A

Physics 1252 Sec.A Exam #1A Physics 1252 Sec.A Exam #1A Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions Chem 4501 Introdction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Nmber 10 Soltions 1. McQarrie and Simon, 10-4. Paraphrase: Apply Eler s theorem

More information

Mean Value Formulae for Laplace and Heat Equation

Mean Value Formulae for Laplace and Heat Equation Mean Vale Formlae for Laplace and Heat Eqation Abhinav Parihar December 7, 03 Abstract Here I discss a method to constrct the mean vale theorem for the heat eqation. To constrct sch a formla ab initio,

More information

Methods for Advanced Mathematics (C3) FRIDAY 11 JANUARY 2008

Methods for Advanced Mathematics (C3) FRIDAY 11 JANUARY 2008 ADVANCED GCE 4753/ MATHEMATICS (MEI) Methods for Advanced Mathematics (C3) FRIDAY JANUARY 8 Additional materials: Answer Booklet (8 pages) Graph paper MEI Eamination Formlae and Tables (MF) Morning Time:

More information