University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm. Maximum score: 200 points

Size: px
Start display at page:

Download "University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm. Maximum score: 200 points"

Transcription

1 1 University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm Maximum score: 200 points NAME: SID #: You are given 180 minutes for this exam. You are allowed three sheets containing any information you wish on both sides. Derive all answers symbolically, then plug in the numbers, if appropriate. You may leave expressions such as 2, e, π unevaluated. Your description of the physics involved and symbolic answers are worth much more than the numerical answers. Show all work, and take particular care to explain what you are doing. Write directly on the exam, and if you need extra pages, make sure to put a note on the corresponding sheet. Cross out rather than erase parts of the problem you wish the grader to ignore. Box or circle final answers. There are six problems with points assigned as shown. Partial credit will be given for incomplete solutions, so attempt to do all problems. Some problems will take significantly longer than others, so judge time appropriately. At the beginning of the exam, please look through all problems and plan how you ll spend your time. If you need to ask a question, come to the proctor. Your question and the answer will be written on the board. Read all problems carefully. If you get stuck on a problem, move to another. Try to remain calm and work steadily. Good luck!

2 2 Useful formulae and values (to acceptable precision) Speed of light in vacuum c = m/s Planck constant h = J Planck constant, reduced h = h/2π = J Electron charge e = C Conversion constant hc = 197 ev nm Mass of the electron m e = MeV/c 2 = kg Mass of the proton m p = 938 MeV/c 2 = kg Permittivity of free space ɛ 0 = F/m Permeability of free space µ 0 = 4π 10 7 N/A 2 Fine structure constant α = e 2 /(4πɛ 0 hc) = 1/137 Classical electron radius r e = e 2 /(4πɛ 0 m e c 2 ) = 2.8 fm e Compton wavelength/2π λ e /2π = h/m e c = r e α 1 = 0.39 fm Bohr radius a 0 = 4πɛ 0 h 2 /m e e 2 = r e α 2 = m Rydberg energy R = m e e 4 /2(4πɛ 0 ) 2 h 2 = m e c 2 α 2 /2 = 13.6 ev Bohr magneton µ B = e h/2m e = MeV/T Wavefunction for the ground state of the hydrogen atom ψ 100 = (1/ πa 3 0 ) exp ( r/a 0)

3 3 1. (40 points) This is a little blitz problem to warm you up. This problem consists of ten questions, 4 points each. Circle correct answer for each part. (FYI: questions like these are frequently found on a Physics GRE exam) 1. If a charged pion that decays in 10 8 second in its own rest frame is to travel 30 meters in the laboratory before decaying, the pion s speed must be most nearly (a) m/s (b) m/s (c) m/s (d) m/s (e) m/s 2. If the total energy of a particle of mass m is equal to twice its rest energy, then the magnitude of the particle s relativistic momentum is (a) mc/2 (b) mc/ 2 4. A beam of light has a small wavelength spread δλ about a central wavelength λ. The beam travels in vacuum until it enters a glass plate at an angle θ relative to the normal to the plate, as shown in the figure below. The index of refraction of the glass is given by n(λ). The angular spread δθ of the refracted beam is given by (a) δθ = 1 n δλ (b) δθ = dn λ δλ (c) δθ = 1 λ dn dλ δλ (d) δθ = sin θ (e) δθ = δλ sin θ λ tan θ n dn dλ δλ (c) mc (d) 3mc (e) 2mc 3. A spherical, concave mirror is shown in the figure below. The focal point F and the location of the object O are indicated. At what point will the image be located? (a) I (b) II (c) III (d) IV (e) V 5. Blue light of wavelength λ = 480 nm is most strongly reflected off a thin film of oil on a glass slide when viewed near normal incidence. Assuming that the index of refraction of the oil is n o = 1.2 and that of the glass is n g = 1.6, what is the minimum thickness of the oil film (other than zero)?

4 4 (a) 150 nm (b) 200 nm (c) 240 nm (d) 300 nm (e) 480 nm 6. Unpolarized light of intensity I 0 is incident on a series of three polarizing filters. The axis of the second filter is oriented at 45 to that of the first filter, while the axis of the third filter is oriented at 90 to that of the first filter. What is the intensity of the light transmitted through the third filter? (a) 0 (b) I 0 /8 (c) I 0 /4 (d) I 0 /2 (e) I 0 / 2 7. What causes dichroism? (a) Difference in absorption properties of the material depending on polarization of the incident light (b) Difference refraction indices of the material depending on polarization of the incident light (c) Difference in density of the material depending on polarization of the incident light (d) Deviation of the lens from the ideal, hyperbolic shape (e) Dependence of the index of refraction on wavelength of the incident light a surface of this metal, determine the kinetic energy of the photoelectrons. (a) 1 ev (b) 2 ev (c) 3 ev (d) 4 ev (e) 6 ev 9. A free particle with initial kinetic energy E and de Broglie wavelength λ enters a region in which it has potential energy V. What is the particle s new de Broglie wavelength? (a) λ(1 + E/V ) (b) λ(1 V/E) (c) λ/(1 E/V ) (d) λ 1 + V/E (e) λ/ 1 V/E 10. The energy required to remove both electrons from the helium atom in its ground state is 79.0 ev. How much energy is required to ionize helium (i.e., to remove one electron)? (a) 24.6 ev (b) 39.5 ev (c) 51.8 ev (d) 54.4 ev (e) 65.4 ev 8. In the photoelectric effect, the threshold wavelength for a particular metal is λ 0 = 300 nm. If light of wavelength λ = 200 nm is incident on

5 5 2. (35 points) A relativistic electron with energy E = 9.0 GeV collides head-on with a relativistic positron with energy E + = 3.1 GeV, traveling in the opposite direction to the electron. In the resulting annihilation, a particle Υ(4S) is created in a reaction e + e Υ(4S). Find the mass of Υ(4S) and its velocity in the LAB frame. 3. (45 points) An optical system consists of a thin converging lens with focal distance f = 50 cm, and a iris attached to the back of the lens. A screen is placed b = 75 cm behind the iris. The system is illuminated with plane light waves of wavelength λ = 0.5 µm. Find the possible values of the radius of the iris such that the intensity at the center of the screen is maximal. 4. (30 points) Neutron diffraction is one of the methods used to determine crystal structure of a material. Imagine that a beam on mono-energetic neutrons (of mass m and kinetic energy K) impinging on a crystal lattice with atomic spacing d at the inclination angle θ (it is customary in crystallography to measure the angle from the plane of the crystal, as opposed to the normal to the surface). If neutron energy is relatively small (thermal or cold neutrons), they would typically reflect off the nuclei of the crystal lattice elastically. (a) (20 pts) At what angles would the intensity of the reflected neutrons be maximal? (b) (10 pts) What is the smallest possible spacing d that this imaging using thermal neutrons (K = ev, m = 939 MeV) could resolve? How do you think it compares to the typical crystal lattice spacing? K θ d 5. (25 points) A particle of mass m is confined in an infinite square well. The particle is in a stationary state with a probability density function P (1 cos αx), where α is a constant, and x is the distance from one edge of the well. Find the energy of the particle in this state. 6. (25 points) The wavefunction of an electron in 2P state of the hydrogen atom has a radial component R(r) r exp( r/2a 0 ), where a 0 is the Bohr radius. Find: (a) (10 points) The most probable distance between the electron and the proton r max ; (b) (10 points) Average distance between electron and proton r (c) (5 points) Explain qualitatively why the difference between energy levels of 2S 1/2 and 2P 1/2 states (known as Lamb shift).

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Physics H7C; Final. Monday, 5/12; 7-10 PM

Physics H7C; Final. Monday, 5/12; 7-10 PM Physics H7C; Final Monday, 5/12; 7-10 PM Write your responses below, or on extra paper if needed. Show your work, and take care to explain what you are doing; partial credit will be given for incomplete

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Physics 208 Final Exam December 15, 2008

Physics 208 Final Exam December 15, 2008 Page 1 Name: Student ID: Section #: Physics 208 Final Exam December 15, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must

More information

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37 1984 36. The critical angle for a transparent material in air is 30. The index of refraction of the material is most nearly (A) 0.33 (B) 0.50 (C) 1.0 (D) 1.5 (E) 2.0 37. An object is placed as shown in

More information

Printed Name: Signature: PHYSICS DEPARTMENT. Ph.D. Qualifying Examination, PART III. Modern and Applied Physics

Printed Name: Signature: PHYSICS DEPARTMENT. Ph.D. Qualifying Examination, PART III. Modern and Applied Physics Exam #: Printed Name: Signature: PHYSICS DEPARTMENT UNIVERSITY OF OREGON Ph.D. Qualifying Examination, PART III Modern and Applied Physics Friday, September 22, 2000, 1:00 p.m. to 5:00 p.m. The examination

More information

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system). Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges will yield

More information

Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018

Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018 Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with

More information

Graduate Written Examination Fall 2014 Part I

Graduate Written Examination Fall 2014 Part I Graduate Written Examination Fall 2014 Part I University of Minnesota School of Physics and Astronomy Aug. 19, 2014 Examination Instructions Part 1 of this exam consists of 10 problems of equal weight.

More information

Physics 126 Practice Exam #4 Professor Siegel

Physics 126 Practice Exam #4 Professor Siegel Physics 126 Practice Exam #4 Professor Siegel Name: Lab Day: 1. Light is usually thought of as wave-like in nature and electrons as particle-like. In which one of the following instances does light behave

More information

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3 1. A beam of light passes from air into water. Which is necessarily true? A) The frequency is unchanged and the wavelength increases. B) The frequency is unchanged and the wavelength decreases. C) The

More information

Graduate Written Examination Spring 2014 Part I Thursday, January 16th, :00am to 1:00pm

Graduate Written Examination Spring 2014 Part I Thursday, January 16th, :00am to 1:00pm Graduate Written Examination Spring 2014 Part I Thursday, January 16th, 2014 9:00am to 1:00pm University of Minnesota School of Physics and Astronomy Examination Instructions Part 1 of this exam consists

More information

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name:

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name: Physics 214 Midterm Exam Spring 215 Last Name: First Name NetID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Keep your calculator on your own desk. Calculators

More information

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova Exam 4 P202 Spring 2004 Instructor: Prof. Sinova Name: Date: 4/22/04 Section: All work must be shown to get credit for the answer marked. You must show or state your reasoning. If the answer marked does

More information

Physics 208 Final Exam Dec. 21, 2007

Physics 208 Final Exam Dec. 21, 2007 Page 1 Name: Student ID: Section #: Physics 208 Final Exam Dec. 21, 2007 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must

More information

Fall 2012 Qualifying Exam. Part I

Fall 2012 Qualifying Exam. Part I Fall 2012 Qualifying Exam Part I Calculators are allowed. No reference material may be used. Please clearly mark the problems you have solved and want to be graded. Do only mark the required number of

More information

Physics 273 Practice Exam II Fall 2011 Prof. Mohan Kalelkar

Physics 273 Practice Exam II Fall 2011 Prof. Mohan Kalelkar Physics 273 Practice Exam II Fall 2011 Prof. Mohan Kalelkar Your name sticker with exam code 1. The exam will last from 1:45pm to 2:50pm. Use a # 2 pencil to make entries on the answer sheet. Enter the

More information

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Final Practice Solutions Use the following information for problems 1 and. A beam of white light with frequency between 4.00 x 10 14 Hz and 7.90 x 10 14 Hz is incident on a sodium surface, which

More information

Physics 228 Final MAY 12, 2009 Profs. Rabe and Coleman. Useful Information. Your name sticker. with exam code

Physics 228 Final MAY 12, 2009 Profs. Rabe and Coleman. Useful Information. Your name sticker. with exam code Your name sticker with eam code Physics 228 Final MAY 12, 2009 Profs. Rabe and Coleman guess. At the end of the eam, hand in the answer sheet and the cover page. Retain this question paper for future reference

More information

Physics 208 Final Exam December 15, 2008

Physics 208 Final Exam December 15, 2008 Page 1 Name: Solutions Student ID: Section #: Physics 208 Final Exam December 15, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final

More information

Examination Radiation Physics - 8N120, 2 November

Examination Radiation Physics - 8N120, 2 November Examination Radiation Physics - 8N0, November 0-4.00-7.00 Four general remarks: This exam consists of 6 assignments on a total of pages. There is a table on page listing the maximum number of that can

More information

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo Canadian Association of Physicists SUPPORTING PHYSICS RESEARCH AND EDUCATION IN CANADA 2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I University of Minnesota School of Physics and Astronomy GRADUATE WRITTEN EXAMINATION Fall 2018 PART I Monday, August 20 th, 2018 9:00 am to 1:00 pm Part 1 of this exam consists of 10 problems of equal

More information

Chapter 2 Problem Solutions

Chapter 2 Problem Solutions Chapter Problem Solutions 1. If Planck's constant were smaller than it is, would quantum phenomena be more or less conspicuous than they are now? Planck s constant gives a measure of the energy at which

More information

Physics 208 Final Exam May 12, 2008

Physics 208 Final Exam May 12, 2008 Page 1 Name: Solutions Student ID: Section #: Physics 208 Final Exam May 12, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer

More information

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan Sharif University of Technology Physics Department Modern Physics Spring 2016 Prof. Akhavan Problems Set #5. Due on: 03 th of April / 15 th of Farvardin. 1 Blackbody Radiation. (Required text book is Modern

More information

normalized spectral amplitude R(λ)

normalized spectral amplitude R(λ) Mid-Term Exam 2 Physics 23 Modern Physics Tuesday October 23, 2 Point distribution: All questions are worth points 5 points. Questions # - #6 are multiple choice and answers should be bubbled onto the

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

Examination cover sheet

Examination cover sheet Student name: Student number: Examination cover sheet (to be completed by the examiner) Course name: Radiation Physics Course code: 8CM10/8N120 Date: 20-01-2016 Start time: 13:30 End time : 16:30 Number

More information

Physics 111 Homework Solutions Week #9 - Friday

Physics 111 Homework Solutions Week #9 - Friday Physics 111 Homework Solutions Week #9 - Friday Tuesday, March 1, 2011 Chapter 24 Questions 246 The Compton shift in wavelength for the proton and the electron are given by Δλ p = h ( 1 cosφ) and Δλ e

More information

2013 CAP Prize Examination

2013 CAP Prize Examination Canadian Association of Physicists SUPPORTING PHYSICS RESEARCH AND EDUCATION IN CANADA 2013 CAP Prize Examination Compiled by the Department of Physics & Engineering Physics, University of Saskatchewan

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30

Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30 Examination Radiation Physics - 8N120 5 November 2014, 13:30-16:30 Four general remarks: This exam consists of 8 assignments on a total of 3 pages. There is a table on page 4 listing the maximum number

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 214 Part I Instructions: The following problems are intended to probe your understanding of basic physical principles. When answering

More information

Common Exam Department of Physics University of Utah August 28, 2004

Common Exam Department of Physics University of Utah August 28, 2004 Common Exam - 2004 Department of Physics University of Utah August 28, 2004 Examination booklets have been provided for recording your work and your solutions. Please note that there is a separate booklet

More information

Exam Review Practice Questions. Electric Forces. the force is zero. Four charges are fixed at the corners of a square of sides 4 m as shown.

Exam Review Practice Questions. Electric Forces. the force is zero. Four charges are fixed at the corners of a square of sides 4 m as shown. Exam Review Practice Questions Electric Forces QUESTION 1 Three charges of equal magnitude are positioned as shown, with Q3 equidistant from Q1 and Q2. Q1 and Q3 are positive charges; Q2 is negative. What

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Final Exam, Part A. December 12, Score:

Final Exam, Part A. December 12, Score: Physics 152 December 12, 2005 Final Exam, Part A Roster No.: Score: Exam time limit: 2 hours. You may use a calculator and both sides of TWO sheets of notes, handwritten only. Closed book; no collaboration.

More information

Lecture 2: Quantum Mechanics and Relativity

Lecture 2: Quantum Mechanics and Relativity Lecture 2: Quantum Mechanics and Relativity Atom Atomic number A Number of protons Z Number of neutrons A-Z Number of electrons Z Charge of electron = charge of proton ~1.6 10-19 C Size of the atom ~10-10

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

PHY114 S11 Final Exam

PHY114 S11 Final Exam PHY4 S Final Exam S. G. Rajeev May 4 0 7:5 pm to 9:5 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.

More information

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning of any

More information

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks)

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks) AQA Questions from 2004 to 2006 Particle Physics 239 94 1. (a) An ion of plutonium Pu has an overall charge of +1.6 10 19 C. For this ion state the number of (i) protons... neutrons... (iii) electrons...

More information

Name : Roll No. :.. Invigilator s Signature :.. CS/B.Tech/SEM-2/PH-201/2010 2010 ENGINEERING PHYSICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

Fall 2011 Qualifying Exam. Part I

Fall 2011 Qualifying Exam. Part I Fall 2011 Qualifying Exam Part I Calculators are allowed. No reference material may be used. Please clearly mark the problems you have solved and want to be graded. Mark exactly eight problems in section

More information

Mid Term Exam 1. Feb 13, 2009

Mid Term Exam 1. Feb 13, 2009 Name: ID: Mid Term Exam 1 Phys 48 Feb 13, 009 Print your name and ID number clearly above. To receive full credit you must show all your work. If you only provide your final answer (in the boxes) and do

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) NAME: August 2009--------------------------------------------------------------------------------------------------------------------------------- 11 41.

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Name (printed) Lab Section(+2 pts) Name (signed as on ID) Show all work. Partial credit may be given. Answers should include the

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Advanced Higher Physics

Advanced Higher Physics Wallace Hall Academy Physics Department Advanced Higher Physics Quanta Problems AH Physics: Quanta 1 2015 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration g 9.8 m s -2 Radius

More information

Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017

Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017 Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017 08:00 13:00, Room FR4 (Oskar Klein Auditorium) No tools allowed except calculator (provided at the exam) and the attached

More information

FALL 2004 Final Exam, Part A

FALL 2004 Final Exam, Part A Physics 152 FALL 2004 Final Exam, Part A Roster No.: Score: 23 pts. possible Exam time limit: 2 hours. You may use a calculator and both sides of 2 sheets of notes, handwritten only. Closed book; no collaboration.

More information

Physics 208 Final Exam

Physics 208 Final Exam Physics 208 Final Exam Name You are graded on your work, with partial credit. See the last pages of the exam for formula sheets. Please be clear and well-organized, so that we can easily follow each step

More information

Physics 107 Final Exam May 6, Your Name: 1. Questions

Physics 107 Final Exam May 6, Your Name: 1. Questions Physics 107 Final Exam May 6, 1996 Your Name: 1. Questions 1. 9. 17. 5.. 10. 18. 6. 3. 11. 19. 7. 4. 1. 0. 8. 5. 13. 1. 9. 6. 14.. 30. 7. 15. 3. 8. 16. 4.. Problems 1. 4. 7. 10. 13.. 5. 8. 11. 14. 3. 6.

More information

Final Exam - Solutions PHYS/ECE Fall 2011

Final Exam - Solutions PHYS/ECE Fall 2011 Final Exam - Solutions PHYS/ECE 34 - Fall 211 Problem 1 Cosmic Rays The telescope array project in Millard County, UT can detect cosmic rays with energies up to E 1 2 ev. The cosmic rays are of unknown

More information

Last Name: First Name Network-ID

Last Name: First Name Network-ID Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a

More information

Chem 6, 10 Section Spring Exam 2 Solutions

Chem 6, 10 Section Spring Exam 2 Solutions Exam 2 Solutions 1. (4 + 6 + 5 points) Dartmouth s FM radio station, WDCR, broadcasts by emitting from its antenna photons of frequency 99.3 MHz (99.3 10 6 Hz). (a) What is the energy of a single WDCR

More information

Candidacy Exam Department of Physics October 6, 2012 Part I

Candidacy Exam Department of Physics October 6, 2012 Part I Candidacy Exam Department of Physics October 6, 212 Part I Instructions: The following problems are intended to probe your understanding of basic physical principles. When answering each question, indicate

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

*S45369A0124* Pearson Edexcel WPH04/01. S45369A 2013 Pearson Education Ltd. International Advanced Level Physics Advanced Unit 4: Physics on the Move

*S45369A0124* Pearson Edexcel WPH04/01. S45369A 2013 Pearson Education Ltd. International Advanced Level Physics Advanced Unit 4: Physics on the Move Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Physics Advanced Unit 4: Physics on the Move Candidate Number Sample Assessment Material Time: 1 hour

More information

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by.

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by. Planck s s Radiation Law Planck made two modifications to the classical theory The oscillators (of electromagnetic origin) can only have certain discrete energies determined by E n = n h ν with n is an

More information

General Physics (PHY 2140) Lecture 15

General Physics (PHY 2140) Lecture 15 General Physics (PHY 2140) Lecture 15 Modern Physics Chapter 27 1. Quantum Physics The Compton Effect Photons and EM Waves Wave Properties of Particles Wave Functions The Uncertainty Principle http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE 2012 Semifinal Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2012 Semifinal Exam DO NOT DISTRIBUTE THIS PAGE Important Instructions for the Exam Supervisor This examination consists of two parts. Part A has

More information

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase 2015 April 24 Exam 3 Physics 106 Circle the letter of the single best answer. Each question is worth 1 point Physical Constants: proton charge = e = 1.60 10 19 C proton mass = m p = 1.67 10 27 kg electron

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I Name :. Roll No. :..... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/2011-12 2011 PHYSICS-I Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

Common Exam Department of Physics University of Utah August 24, 2002

Common Exam Department of Physics University of Utah August 24, 2002 Common Exam - 2002 Department of Physics University of Utah August 24, 2002 Examination booklets have been provided for recording your work and your solutions. Please note that there is a separate booklet

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

ESSENTIAL QUANTUM PHYSICS PETER LANDSHOFF. University of Cambridge ALLEN METHERELL. University of Central Florida GARETH REES. University of Cambridge

ESSENTIAL QUANTUM PHYSICS PETER LANDSHOFF. University of Cambridge ALLEN METHERELL. University of Central Florida GARETH REES. University of Cambridge ESSENTIAL QUANTUM PHYSICS PETER LANDSHOFF University of Cambridge ALLEN METHERELL University of Central Florida GARETH REES University of Cambridge CAMBRIDGE UNIVERSITY PRESS Constants of quantum physics

More information

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART II. MONDAY, May 5, :00 AM 1:00 PM

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART II. MONDAY, May 5, :00 AM 1:00 PM Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART II MONDAY, May 5, 2014 9:00 AM 1:00 PM ROOM 245 PHYSICS RESEARCH BUILDING INSTRUCTIONS: This examination consists

More information

Physics Exam 2009 University of Houston Math Contest. Name: School: There is no penalty for guessing.

Physics Exam 2009 University of Houston Math Contest. Name: School: There is no penalty for guessing. Physics Exam 2009 University of Houston Math Contest Name: School: Please read the questions carefully and give a clear indication of your answer on each question. There is no penalty for guessing. Judges

More information

Physics 208 Exam 3 Nov. 28, 2006

Physics 208 Exam 3 Nov. 28, 2006 Name: Student ID: Section #: Physics 208 Exam 3 Nov. 28, 2006 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed in

More information

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A)

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A) Physics 223 practice final exam, Form X!! Fall 2017 Name Write your answers (one per question) on a Scantron form (882E) using a pencil. Write your name above. Return this exam with your scantron upon

More information

AP Physics B Summer Assignment

AP Physics B Summer Assignment BERGEN COUNTY TECHNICAL SCHOOL AP Physics B Summer Assignment 2011 Solve all problems on separate paper. This will be due the first week of school. If you need any help you can e-mail Mr. Zavorotniy at

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

Physics 111 Homework Solutions Week #9 - Thursday

Physics 111 Homework Solutions Week #9 - Thursday Physics 111 Homework Solutions Week #9 - Thursday Monday, March 1, 2010 Chapter 24 241 Based on special relativity we know that as a particle with mass travels near the speed of light its mass increases

More information

Spring 2007 Qualifier- Part I 7-minute Questions

Spring 2007 Qualifier- Part I 7-minute Questions Spring 007 Qualifier- Part I 7-minute Questions 1. Calculate the magnetic induction B in the gap of a C-shaped iron core electromagnet wound with n turns of a wire carrying current I as shown in the figure.

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 12-1A: INTERACTIONS OF MATTER WITH RADIATION Questions From Reading Activity? Essential Idea: The microscopic quantum world offers a range of phenomena,

More information

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 See Homework #95 in "Chapter 12-Electrostatics" for the table of "Useful nformation" on atomic particles. 01. What is the energy

More information

Unit 6 Modern Physics

Unit 6 Modern Physics Unit 6 Modern Physics Early Booklet E.C.: + 1 Unit 6 Hwk. Pts.: / 46 Unit 6 Lab Pts.: / 16 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Modern Physics 1. A photon s energy

More information

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet. Chapters 15-30 PHYS 1402 - Brooks This practice test is similar to the actual final. The final exam will focus on questions involving solving problems, and not so much on conceptual questions. The final

More information

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1]

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1] 1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. 1 (a) (b) Name the effect described above....[1] The variation with frequency f of the maximum

More information

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1 Physics 3650 Quiz 1 October 1, 009 Name SOLUTION 1. If the displacement of the object, x, is related to velocity, v, according to the relation x = A v, the constant, A, has the dimension of which of the

More information

PHYSICS 109 FINAL EXAMINATION

PHYSICS 109 FINAL EXAMINATION PRINTED NAME: PHYSICS 109 FINAL EXAMINATION Problem January 24, 2002 8:30 11:30 am Jadwin A09 Score 1 /20 2 /10 3 /20 4 /20 5 /20 6 /10 7 /20 Total /120 When you are told to begin, check that this examination

More information

CHM320 PRACTICE EXAM #1 (SPRING 2018)

CHM320 PRACTICE EXAM #1 (SPRING 2018) CHM320 PRACTICE EXAM #1 (SPRING 2018) Name: Score: NOTE: You must show your work, with sufficient number of intermediate steps. No credit will be awarded if you simply write down the answers from memory

More information

UNM Physics 262, Fall 2006 SAMPLE Midterm Exam 3: Quantum Mechanics

UNM Physics 262, Fall 2006 SAMPLE Midterm Exam 3: Quantum Mechanics UNM Physics 262, Fall 2006 SAMPLE Midterm Exam 3: Quantum Mechanics Name and/or CPS number: Show all your work for full credit. Remember that quantities have units and vectors have components (or magnitude

More information

January 2017 Qualifying Exam

January 2017 Qualifying Exam January 2017 Qualifying Exam Part I Calculators are allowed. No reference material may be used. Please clearly mark the problems you have solved and want to be graded. Do only mark the required number

More information