A Laser gyroscope system to detect gravito-magnetic effect on Earth. (G-GranSasso, INFN Comm. II)

Size: px
Start display at page:

Download "A Laser gyroscope system to detect gravito-magnetic effect on Earth. (G-GranSasso, INFN Comm. II)"

Transcription

1 A Laser gyroscope system to detect gravito-magnetic effect on Earth (G-GranSasso, INFN Comm. II)

2 it is a long story, started inside Virgo, in the near future it will move in a different direction, but it will probably come back for the Third Generation Gravitational Waves antennas Our Papers and Internal notes About the use of gyro-lasers in gravitational waves interferometric detectors VIR-0019E-07 G-Pisa gyrolaser after 1 year of operation and consideration about its use to improve Virgo Inverted Pendulum control VIR-0021A-09 Premininary Analysis of the Gyrolaser G-Pisa VIR-0444A-10 Rotational sensitivity of the G-Pisa gyrolaser, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 pp (2010) doi: /tuffc arxiv: v1 [physics.optics] Performances of G-Pisa : a middle size gyrolaser, Class. Quantum Gravity (2010) doi: / /27/8/ Active control and sensitivity of the G-Pisa gyrolaser, Nuovo Cimento Soc. Ital. Fis. B-Basic Top. Phys., 125 pp (2010) doi: /ncb/i Measuring the Virgo area tilt noise with a laser gyroscope, 46th Rencontres de Moriond and GPhyS Colloquium on Gravitational Waves and Experimental Gravity (2011) arxiv: v1 [physics.ins-det] A 1.82 m 2 ring laser gyroscope for nano-rotational motion sensing arxiv: v3 [physics.ins-det] Measuring Gravito-magnetic Effects by Multi Ring-Laser Gyroscope arxiv: v1 [gr-qc] A laser gyroscope system to detect the Gravito-Magnetic effect on Earth arxiv: v1 [gr-qc] Moriond2011 and Neutel 2011 G-Pisa, angular rotation inertial sensor, ringlaser has taken data continuously during SR3 and SR4 G-Pisa will be soon be moved to our Lab in Pisa, and in 2012 we will complete the analysis of the data Taken at the Virgo site 2

3 3

4 Sagnac Effect (Electromagnetic waves under the effect of rotation) ct + =2 R+R t + t + =2 R(c- R) ct - =2 R-R t - t - =2 R/(c+ R) 2 4 R L c( t t ) c L 8 2 c A

5 A Ring Laser in short 5

6 G-GranSasso Germany, Italy and NewZealand field of interest in function of the sensitivity G ring laser rad/sec Sidereal day seismology tides geodesy 6 General Relativity

7 Sagnac signal on the Earth Metric: (Minkowski spacetime+ perturbation) Inertial reference system Co-moving inertial reference system Non-inertial rotating reference system + Null geodesics A GI A GM GI L c R L c R c R 2 3 cos ûr ûn sin û û n 7

8 Measuring relativistic precessions Comparison of Earth rotation Ω measured with respect to LF (local frame) and distant stars i.e. Ω VLBI : both vectors must be referred to the same reference system Ω Ω VLBI Ω LT Ω GEO Ω REL IERS measurements Lense-thirring and geodetic Geophysical signals and environmental noise Ω VLBI changes in modulus and direction due to LoD variations and polar motion Ω LT-GEO can be assumed constant. Variations are 6 order of magnitude smaller Ω REL relative rotations must be identified and subtracted at low frequency A viable solution: multi-axial ringlaser system 8

9 G Wettzell, known signals and required accuracy 9

10 Key points of the apparatus Each rings should be larger than 16m perimeter, 24m is a good compromise. Zerodur Blocks of this size are not available. We propose to use a modular ring, an evolution of the G-Pisa design, which is less expensive than G in Wettzell and can be adapted to model the tridimensional array. Stability necessary 1 part in Relative orientation of the rings important, it must be monitored with nrad precision 10

11 G-GranSasso 3 rings are the minimum, but 6 is a good choice to have redundancy, which can be used to cross check and control of the systematic errors (backscatter noise) Cube: 6 independent rings, 24 mirrors Octahedron: 3 rings with 6 mirrors, each mirror is part of two rings 11

12 UnderGround laboratory LNGS has excellent qualities since it is very deep and has a very high termal stability Other sites can be considered as well LNGS has two close VLBI stations: Medicina and Matera 12

13 Quiet locations for the experiment are in general preferable It is a well known fact that LNGS has a rather high seismicity. A recent study by Wasserman and Igel have shown that only horizontal motions are high, the vertical one is as expected for a quiet site. A possible explanation is that the high seismicity comes from the air flux; which can be cured by closing the tunnel with special doors. 13

14 The G-Pisa design (GEOSENSOR) can be easily adapted to a cube structure Ingeneering work necessary for the octahedral arrangement 14

15 The beauty of an Octahedron several constrains relative angle between rings /2 3 linear Fabry-Perot along the diagonals, relative angles monitoring 6 rings are feasible 15

16 It is important to study with more details the Fabry- Perot cavities along the diagonals 16

17 17

18 18

19 Conclusions so far Large ring-lasers are approaching the sensitivity goal of 7X10-14 rad/s (1 day of integration) IERS gives LoD with a relative error of few x enough to estimate relativistic effects (a factor 10 improvement with VLBI2010, Wettzell the first station of this kind, expected operative in 2012, whole network expected operational in 2015) Symmetry and redundancy help to control geometry over long time periods (years) To estimate Ω and Ω GEO// + Ω LT// no need of absolute orientations of the cube edges with respect VLBI reference frame Measure the parallel component at 10% accuracy after 3 months 1% accuracy seems feasible (2-3 years) LNGS is in principle a good location for this experiment, node B in particular In 2012 we will continue our work as G-GranSasso, INFn Comm II. 19

The GINGER project and status of the GINGERino prototype at LNGS

The GINGER project and status of the GINGERino prototype at LNGS Journal of Physics: Conference Series PAPER OPEN ACCESS The GINGER project and status of the GINGERino prototype at LNGS To cite this article: A Ortolan et al 2016 J. Phys.: Conf. Ser. 718 072003 Related

More information

Using Ring Laser Systems to Measure Gravitomagnetic Effects on Earth

Using Ring Laser Systems to Measure Gravitomagnetic Effects on Earth Using Ring Laser Systems to Measure Gravitomagnetic Effects on Earth Matteo Luca Ruggiero 1 1 RELGRAV @ Politecnico di Torino, INFN Sezione di Torino GREAT-ES Workshop, Porto ML Ruggiero (RELGRAV@PoliTo,

More information

High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects Journal of Physics: Conference Series PAPER OPEN ACCESS High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects To cite this article: N Beverini et al 2016 J. Phys.: Conf. Ser.

More information

arxiv: v1 [gr-qc] 24 Jun 2011

arxiv: v1 [gr-qc] 24 Jun 2011 Measuring gravito-magnetic effects by multi ring-laser gyroscope F. Bosi, a G. Cella, b and A. Di Virgilio c INFN Sez. di Pisa, Pisa, Italy A.Ortolan d Laboratori Nazionali di Legnaro, INFN Legnaro (Padova),

More information

Experimental determination of gravitomagnetic effects by means of ring lasers arxiv: v1 [gr-qc] 12 Dec 2012

Experimental determination of gravitomagnetic effects by means of ring lasers arxiv: v1 [gr-qc] 12 Dec 2012 Experimental determination of gravitomagnetic effects by means of ring lasers arxiv:1212.2880v1 [gr-qc] 12 Dec 2012 Angelo Tartaglia Politecnico, corso Duca degli Abruzzi 24, 10129 Torino, Italy, and INFN

More information

Recent Advances in High Resolution Rotation Sensing

Recent Advances in High Resolution Rotation Sensing Recent Advances in High Resolution Rotation Sensing U. Schreiber 1,2, A. Gebauer 1, R. Hurst 2, J.-P. Wells 2 1 Forschungseinrichtung Satellitengeodäsie, Technische Universität München, Germany 2 Department

More information

Gyroscopes IN GEneral Relativity

Gyroscopes IN GEneral Relativity 25-09-2014, Pisa Gyroscopes IN GEneral Relativity Jacopo Belf Istituto Nazionale di Fisica Nucleare, Pisa Congresso Nazionale SIF 2014, Pisa. The collaboration J. Belfi, F. Bosi, G. Cella, R. Santagata,

More information

Hands on GINGER: Seismic Wave measurement

Hands on GINGER: Seismic Wave measurement Università degli Studi di Genova, Dipartimento di Fisica, Genova, Italy INFN, Sezione di Genova, Genova, Italy E-mail: federico.ferraro@ge.infn.it Angela Di Virgilio INFN, Sezione di Pisa, Pisa, Italy

More information

Inertial Frame frame-dragging

Inertial Frame frame-dragging Frame Dragging Frame Dragging An Inertial Frame is a frame that is not accelerating (in the sense of proper acceleration that would be detected by an accelerometer). In Einstein s theory of General Relativity

More information

I. Introduction. Abstract

I. Introduction. Abstract First deep underground observation of rotational signals from an earthquake at teleseismic distance using a large ring laser gyroscope Andreino Simonelli 1,3,6,, Jacopo Belfi 1, Nicolò Beverini 1,2, Giorgio

More information

Gravitational Waves. Physics, Technology, Astronomy and Opportunities. Unnikrishnan. C. S. Tata Institute of Fundamental Research Mumbai

Gravitational Waves. Physics, Technology, Astronomy and Opportunities. Unnikrishnan. C. S. Tata Institute of Fundamental Research Mumbai Physics, Technology, Astronomy and Opportunities Unnikrishnan. C. S. Tata Institute of Fundamental Research Mumbai unni@tifr.res.in www.tifr.res.in/~filab The Structure of Physics: Laws of Motion a = F/

More information

The gravitational wave detector VIRGO

The gravitational wave detector VIRGO The gravitational wave detector VIRGO for the VIRGO collaboration Raffaele Flaminio Laboratoire d Annecy-le-Vieux de Physique des Particules (LAPP) IN2P3 - CNRS Summary I. A bit of gravitational wave physics

More information

First Results of GINGERino, a deep underground ring-laser arxiv: v3 [physics.ins-det] 29 Mar 2016

First Results of GINGERino, a deep underground ring-laser arxiv: v3 [physics.ins-det] 29 Mar 2016 First Results of GINGERino, a deep underground ring-laser arxiv:1601.02874v3 [physics.ins-det] 29 Mar 2016 J. Belfi 1, N. Beverini 1,2, F. Bosi 3, G. Carelli 1,2, D. Cuccato 3,4, G. De Luca 5, A. Di Virgilio

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

The sensitivity of atom interferometers to gravitational waves

The sensitivity of atom interferometers to gravitational waves The sensitivity of atom interferometers to gravitational waves The Galileo Galilei Institute for Theoretical Physics Arcetri, Florence February 24, 2009 Pacôme DELVA ESA DG-PI Advanced Concepts Team Gravitational

More information

FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT

FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT INTRODUCTION Frame-Dragging and Gravitomagnetism EXPERIMENTS Past, Past, present and future experimental efforts to measure frame-dragging Measurements

More information

Direct measurement of diurnal polar motion by ring laser gyroscopes

Direct measurement of diurnal polar motion by ring laser gyroscopes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jb002803, 2004 Direct measurement of diurnal polar motion by ring laser gyroscopes K. U. Schreiber, A. Velikoseltsev, and M. Rothacher Forschungseinrichtung

More information

Gravitational Waves Theory - Sources - Detection

Gravitational Waves Theory - Sources - Detection Gravitational Waves Theory - Sources - Detection Kostas Glampedakis Contents Part I: Theory of gravitational waves. Properties. Wave generation/the quadrupole formula. Basic estimates. Part II: Gravitational

More information

GROUND NOISE STUDIES USING THE TAMA300 GRAVITATIONAL-WAVE DETECTOR AND RELATED HIGHLY-SENSITIVE INSTRUMENTS

GROUND NOISE STUDIES USING THE TAMA300 GRAVITATIONAL-WAVE DETECTOR AND RELATED HIGHLY-SENSITIVE INSTRUMENTS GROUND NOISE STUDIES USING THE TAMA300 GRAVITATIONAL-WAVE DETECTOR AND RELATED HIGHLY-SENSITIVE INSTRUMENTS Akito ARAYA Earthquake Research Institute, University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-0032,

More information

Measuring the Whirling of Spacetime

Measuring the Whirling of Spacetime Measuring the Whirling of Spacetime Lecture series on Experimental Gravity (revised version) Kostas Glampedakis Prologue: does spin gravitate? M 1 M 2 System I: F = GM 1M 2 r 2 J 1 J 2 System II: M 1?

More information

The Laser-Interferometric Gravitational Compass

The Laser-Interferometric Gravitational Compass The Laser-Interferometric Gravitational Compass M.D.Maia New Physics in Space Intitute for Theoretical Physics-ITP South American Institute for Fundamental Research-SAIRF São Paulo, November 2016 Gravitational

More information

arxiv:physics/ v1 30 Jun 2004

arxiv:physics/ v1 30 Jun 2004 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B06405, doi:10.1029/2003jb002803, 2004 arxiv:physics/0406156 v1 30 Jun 2004 Direct measurement of diurnal polar motion by ring laser gyroscopes K. U. Schreiber,

More information

Geodetic Very Long Baseline Interferometry (VLBI)

Geodetic Very Long Baseline Interferometry (VLBI) Geodetic Very Long Baseline Interferometry (VLBI) A brief Note compiled by: Prof. Madhav N. Kulkarni, IIT Bombay Since the inception of the Very Long Baseline Interferometry (VLBI) system in 1967, this

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Angela Di Virgilio. INFN Sezione di Pisa

Angela Di Virgilio. INFN Sezione di Pisa Angela Di Virgilio INFN Sezione di Pisa Trento, September 2013 2 Trento, September 2013 3 Small ring laser OFG Aircraft Navigation Submarine Navigation G-Pisa G (Wettzell) 10-4 10-6 10-8 10-10 10-12 10-14

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Sensor Technology Stephen Bruder 1 Aly El-Osery 2 1 Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA 2 Electrical

More information

What s Not Wrong With Faster-Than-Light Neutrinos

What s Not Wrong With Faster-Than-Light Neutrinos What s Not Wrong With Faster-Than-Light Neutrinos Care and Feeding of Relativistic Measurements Eric L. Michelsen (emichels/physics.ucsd.edu) UCSD CASS Journal Club Topics The problem The size of the problem

More information

Mapping Inspiral Sensitivity of Gravitational Wave Detectors

Mapping Inspiral Sensitivity of Gravitational Wave Detectors Mapping Inspiral Sensitivity of Gravitational Wave Detectors Anthony D. Castiglia Mentor: John T. Whelan Rochester Institute of Technology 12 August, 2011 Acknowledgments Mentor: John T. Whelan NSF Grant

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

Cold atom gyroscope with 1 nrad.s -1 rotation stability

Cold atom gyroscope with 1 nrad.s -1 rotation stability Cold atom gyroscope with 1 nrad.s -1 rotation stability D. Savoie, I. Dutta, B. Fang, B. Venon, N. Miélec, R. Sapam, C. Garrido Alzar, R. Geiger and A. Landragin LNE-SYRTE, Observatoire de Paris IACI team

More information

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Atom Interferometric Gravity Wave Detectors Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Outline Basic concepts Current instrumentation AGIS detectors Space-based/LEO

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

State-of-the-art physical models for calculating atmospheric pressure loading effects

State-of-the-art physical models for calculating atmospheric pressure loading effects State-of-the-art physical models for calculating atmospheric pressure loading effects Dudy D. Wijaya, Böhm J., Schindelegger M., Karbon M., Schuh H. Institute of Geodesy and Geophysics, TU Vienna Geodätische

More information

Mach, Thirring & Lense, Gödel - getting dizzy in space-time

Mach, Thirring & Lense, Gödel - getting dizzy in space-time Mach, Thirring & Lense, Gödel - getting dizzy in space-time Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Institute for Theoretical Physics University of Vienna

More information

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Jan Harms INFN, Sezione di Firenze On behalf of LIGO and Virgo 1 Global Network of Detectors LIGO GEO VIRGO KAGRA LIGO 2 Commissioning

More information

Discovery of Gravita/onal Waves

Discovery of Gravita/onal Waves Discovery of Gravita/onal Waves Avto Kharchilava QuarkNet Workshop, August 2016 https://www.ligo.caltech.edu/news/ligo20160211 Gravity Einstein s General theory of relativity: Gravity is a manifestation

More information

PRECESSIONS IN RELATIVITY

PRECESSIONS IN RELATIVITY PRECESSIONS IN RELATIVITY COSTANTINO SIGISMONDI University of Rome La Sapienza Physics dept. and ICRA, Piazzale A. Moro 5 00185 Rome, Italy. e-mail: sigismondi@icra.it From Mercury s perihelion precession

More information

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018 Gravitational wave memory and gauge invariance David Garfinkle Solvay workshop, Brussels May 18, 2018 Talk outline Gravitational wave memory Gauge invariance in perturbation theory Perturbative and gauge

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs:

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs: Sensors: Needs: Data redundancy Data for both situations: eclipse and sun Question of sampling frequency Location and size/weight Ability to resist to environment Low consumption Low price a) Gyroscope

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information

Gravitorotational Dragging

Gravitorotational Dragging 1 Gravitorotational Dragging Mohamed E. Hassani 1 Institute for Fundamental Research BP.197, CTR, GHARDAIA 478, ALGERIA Abstract: Previous work on the concept of gravitorotational acceleration field (GRAF)

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

arxiv: v1 [gr-qc] 11 Sep 2014

arxiv: v1 [gr-qc] 11 Sep 2014 Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 arxiv:1409.3370v1 [gr-qc] 11 Sep 2014 OPEN PROBLEMS IN GRAVITATIONAL PHYSICS S. Capozziello

More information

The status of VIRGO. To cite this version: HAL Id: in2p

The status of VIRGO. To cite this version: HAL Id: in2p The status of VIRGO E. Tournefier, F. Acernese, P. Amico, M. Al-Shourbagy, S. Aoudia, S. Avino, D. Babusci, G. Ballardin, R. Barillé, F. Barone, et al. To cite this version: E. Tournefier, F. Acernese,

More information

by M.W. Evans, British Civil List (

by M.W. Evans, British Civil List ( Derivation of relativity and the Sagnac Effect from the rotation of the Minkowski and other metrics of the ECE Orbital Theorem: the effect of rotation on spectra. by M.W. Evans, British Civil List (www.aias.us)

More information

Explorations of Planck-scale Noise in Noncommutative Holographic Spacetime 1

Explorations of Planck-scale Noise in Noncommutative Holographic Spacetime 1 Explorations of Planck-scale Noise in Noncommutative Holographic Spacetime 1 Ohkyung Kwon 1 C. J. Hogan, "Interferometers as Holograpic Clocks," arxiv:1002.4880 [gr-qc] Motivation Events in spacetime are

More information

Lense Thirring precession in Plebański Demiański Spacetimes

Lense Thirring precession in Plebański Demiański Spacetimes Eur. Phys. J. C (2013 73:253 DOI 10.1140/epjc/s10052-013-253-1 Regular Article - Theoretical Physics Lense Thirring precession in Plebański Demiański Spacetimes Chandrachur Chakraborty 1,a, Partha Pratim

More information

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics Remi Geiger, SYRTE for the MIGA consortium EGAS 46, July 3rd 2014, Lille, France http://syrte.obspm.fr/tfc/capteurs_inertiels

More information

Optical Cavity Tests of Lorentz Invariance

Optical Cavity Tests of Lorentz Invariance Light driven Nuclear-Particle physics and Cosmology 2017 (Pacifico Yokohama) April 20, 2017 Optical Cavity Tests of Lorentz Invariance Yuta Michimura Department of Physics, University of Tokyo H. Takeda,

More information

LIGO: The Laser Interferometer Gravitational Wave Observatory

LIGO: The Laser Interferometer Gravitational Wave Observatory LIGO: The Laser Interferometer Gravitational Wave Observatory Credit: Werner Benger/ZIB/AEI/CCT-LSU Michael Landry LIGO Hanford Observatory/Caltech for the LIGO Scientific Collaboration (LSC) http://www.ligo.org

More information

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY 1 1. Newtonian Theory (p. 2) 2. General Relativistic Corrections

More information

November 24, Energy Extraction from Black Holes. T. Daniel Brennan. Special Relativity. General Relativity. Black Holes.

November 24, Energy Extraction from Black Holes. T. Daniel Brennan. Special Relativity. General Relativity. Black Holes. from November 24, 2014 1 2 3 4 5 Problem with Electricity and Magnetism In the late 1800 s physicists realized there was a problem with electromagnetism: the speed of light was given in terms of fundamental

More information

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC General Relativity: Einstein s Theory of Gravitation Presented By Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC The Motivations of General Relativity General Relativity, or GR, was created

More information

Modern Physics notes Paul Fendley Lecture 35. Born, chapter III (most of which should be review for you), chapter VII

Modern Physics notes Paul Fendley Lecture 35. Born, chapter III (most of which should be review for you), chapter VII Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 35 Curved spacetime black holes Born, chapter III (most of which should be review for you), chapter VII Fowler, Remarks on General Relativity

More information

GG S Global Geodetic Observing System (GGOS): Status and Future. Markus Rothacher, Ruth Neilan, Hans-Peter Plag

GG S Global Geodetic Observing System (GGOS): Status and Future. Markus Rothacher, Ruth Neilan, Hans-Peter Plag 2020 Global Geodetic Observing System (GGOS): Status and Future Markus Rothacher, Ruth Neilan, Hans-Peter Plag GeoForschungsZentrum Potsdam (GFZ) Jet Propulsion Laboratory (JPL) University of Nevada, Reno

More information

arxiv: v3 [gr-qc] 31 Aug 2011

arxiv: v3 [gr-qc] 31 Aug 2011 Gravo-Magnetic force in the MOND regime Qasem Exirifard School of Physics, Institute for Research in Fundamental Sciences, Tehran 19538-33511, Iran We derive the gravomagnetic field in the Λ-CDM and Modified

More information

Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003

Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003 GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L08309, doi:10.1029/2004gl022336, 2005 Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003 Heiner Igel, 1 Ulrich Schreiber, 2 Asher

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves M. Tacca Laboratoire AstroParticule et Cosmologie (APC) - Paris Journée GPhys - 2016 July 6th General

More information

Fundamental Physics at ACT. Sante Carloni, ACT

Fundamental Physics at ACT. Sante Carloni, ACT Fundamental Physics at ACT Sante Carloni, ACT Areas of Interest Research in Fundamental Physics is focused on the impact that new ideas in physics can have on the space sector. ACT Fundamental Physics

More information

Physics of Extreme Gravitomagnetic and Gravity-Like Fields for Novel Space Propulsion and Energy Generation

Physics of Extreme Gravitomagnetic and Gravity-Like Fields for Novel Space Propulsion and Energy Generation Physics of Extreme Gravitomagnetic and Gravity-Like Fields for Novel Space Propulsion and Energy Generation Jochem Hauser 1, Walter Dröscher 2 Abstract - Gravity in the form of Newtonian gravity is the

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

Mathematical and Physical Foundations of Extended Gravity (II)

Mathematical and Physical Foundations of Extended Gravity (II) Mathematical and Physical Foundations of Extended Gravity (II) -The Gravitational Waves era- Salvatore Capozziello Università di Napoli Federico II INFN sez. di Napoli SIGRAV Open Fundamental Issues! What

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Beyond Einstein: gravitational waves from extended gravities

Beyond Einstein: gravitational waves from extended gravities Beyond Einstein: gravitational waves from extended gravities Salvatore Capozziello Università di Napoli Federico II and INFN sez. di Napoli in collaboration with Mariafelicia De Laurentis Institute for

More information

The Horizon Energy of a Black Hole

The Horizon Energy of a Black Hole arxiv:1712.08462v1 [gr-qc] 19 Dec 2017 The Horizon Energy of a Black Hole Yuan K. Ha Department of Physics, Temple University Philadelphia, Pennsylvania 19122 U.S.A. yuanha@temple.edu December 1, 2017

More information

How to listen to the Universe?

How to listen to the Universe? How to listen to the Universe? Optimising future GW observatories for astrophysical sources Stefan Hild NIKHEF, May 2009 Overview Microphones to detect gravitational waves Why haven t we heard GW so far?

More information

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley,

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley, A GENERAL RELATIVITY WORKBOOK Thomas A. Moore Pomona College University Science Books Mill Valley, California CONTENTS Preface xv 1. INTRODUCTION 1 Concept Summary 2 Homework Problems 9 General Relativity

More information

10 General Relativistic Models for Space-time Coordinates and Equations of Motion

10 General Relativistic Models for Space-time Coordinates and Equations of Motion 10 General Relativistic Models for Space-time Coordinates and Equations of Motion 10.1 Time Coordinates IAU resolution A4 (1991) set the framework presently used to define the barycentric reference system

More information

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA W. Z. Korth, PHZ6607, Fall 2008 Outline Introduction What is LISA? Gravitational waves Characteristics Detection (LISA design) Sources Stochastic Monochromatic

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

General relativistic effects on the orbit of the S2 star with GRAVITY

General relativistic effects on the orbit of the S2 star with GRAVITY General relativistic effects on the orbit of the S2 star with GRAVITY Marion Grould Collaborators: Frédéric Vincent, Thibaut Paumard & Guy Perrin GPhys, June 19 th 2017 The Galactic center the S2 star

More information

Displacement Noises in Laser Interferometric Gravitational Wave Detectors

Displacement Noises in Laser Interferometric Gravitational Wave Detectors Gravitational Wave Physics @ University of Tokyo Dec 12, 2017 Displacement Noises in Laser Interferometric Gravitational Wave Detectors Yuta Michimura Department of Physics, University of Tokyo Slides

More information

arxiv: v1 [gr-qc] 10 Jun 2009

arxiv: v1 [gr-qc] 10 Jun 2009 MULTIPOLE CORRECTIONS TO PERIHELION AND NODE LINE PRECESSION arxiv:0906.1981v1 [gr-qc] 10 Jun 2009 L. FERNÁNDEZ-JAMBRINA ETSI Navales, Universidad Politécnica de Madrid, Arco de la Victoria s/n, E-28040-Madrid

More information

Fundamental Station Wettzell - geodetic observatory -

Fundamental Station Wettzell - geodetic observatory - Fundamental Station Wettzell - geodetic observatory - Wolfgang Schlüter Bundesamt für Kartographie und Geodäsie, Fundamental Station Wettzell Germany Radiometer Workshop, Wettzell, 10.10.06 Evolvement

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

In Search of the Spacetime Torsion

In Search of the Spacetime Torsion In Search of the Spacetime Torsion J. G. Pereira Instituto de Física Teórica Universidade Estadual Paulista São Paulo, Brazil XLII Rencontres de Moriond: Gravitational Waves and Experimental Gravity La

More information

Searching for gravitational waves

Searching for gravitational waves Searching for gravitational waves Matteo Barsuglia (barsuglia@apc.univ-paris7.fr) CNRS - Laboratoire Astroparticule et Cosmologie 1 The gravitational waves (GW) Perturbations of the space-time metrics

More information

Gauss Modes. Paul Fulda

Gauss Modes. Paul Fulda Interferometry Interferometry with with LaguerreLaguerreGauss Gauss Modes Modes Paul Paul Fulda Fulda University University of of Birmingham Birmingham E.T. E.T. WP3 WP3 Meeting Meeting -- -- 09/06/2009

More information

Einstein s Theory of Gravity. December 13, 2017

Einstein s Theory of Gravity. December 13, 2017 December 13, 2017 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G ρ( x) x x d 3 x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

Phys 4390: General Relativity

Phys 4390: General Relativity Phys 4390: General Relativity Dr. David McNutt, 1 (call me Dave) 1 Department of Physics Saint Mary s University January 9, 2015 1 / 27 Dr. David McNutt, (call me Dave) Phys 4390: General Relativity My

More information

Galileo gravitational Redshift test with Eccentric satellites (GREAT)

Galileo gravitational Redshift test with Eccentric satellites (GREAT) Galileo gravitational Redshift test with Eccentric satellites (GREAT) P. DELVA and N. PUCHADES SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6, LNE

More information

Figure 1: An example of the stretching and contracting of space-time caused by a gravitational wave.

Figure 1: An example of the stretching and contracting of space-time caused by a gravitational wave. SEARCHING FOR GRAVITATIONAL WAVES Nelson Christensen, for the LIGO Scientific Collaboration Physics and Astronomy, Carleton College, Northfield, Minnesota 55057 USA Abstract The search for gravitational

More information

Visualization of Antenna Pattern Factors via Projected Detector Tensors

Visualization of Antenna Pattern Factors via Projected Detector Tensors Visualization of Antenna Pattern Factors via Projected Detector Tensors John T. Whelan Sat Jan 8 1:07:07 01-0500 commitid: c38334c... CLEAN Abstract This note shows how the response of an interferometric

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

May 3, 2012: Some news: luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of on March 28, 2011,

May 3, 2012: Some news: luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of on March 28, 2011, May 3, 2012: Some news: luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696 on March 28, 2011, in the constellation Draco, 2?-4? million light years

More information

State of the art cold atom gyroscope without dead times

State of the art cold atom gyroscope without dead times State of the art cold atom gyroscope without dead times Remi Geiger SYRTE, Observatoire de Paris GDR IQFA Telecom Paris November 18 th, 2016 I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar,

More information

Einstein s Equations. July 1, 2008

Einstein s Equations. July 1, 2008 July 1, 2008 Newtonian Gravity I Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

Gravitational wave detection with Virgo and LIGO experiment - Case of the long bursts

Gravitational wave detection with Virgo and LIGO experiment - Case of the long bursts Gravitational wave detection with Virgo and LIGO experiment - Case of the long bursts Samuel Franco Supervisor: Patrice Hello Laboratoire de l Accélérateur Linéaire (Orsay) 06/12/2013 Samuel Franco (LAL)

More information

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas 4 th international LISA Symposium July 22, 2002 @ Penn State University Seiji Kawamura National Astronomical

More information

Overview of future interferometric GW detectors

Overview of future interferometric GW detectors Overview of future interferometric GW detectors Giovanni Andrea Prodi, University of Trento and INFN, many credits to Michele Punturo, INFN Perugia New perspectives on Neutron Star Interiors Oct.9-13 2017,

More information

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016 ENTER RELATIVITY RVBAUTISTA THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION The laws of mechanics must be the same in all inertial

More information

The Gravitational origin of Velocity Time Dilation

The Gravitational origin of Velocity Time Dilation The Gravitational origin of Velocity Time Dilation A generalization of the Lorentz Factor for comparable masses Arindam Sinha February, 204 Abstract Does velocity time dilation (clock drift) depend on

More information