Constraints on Neutrino Electromagnetic Properties via Atomic Ionizations with Germanium Detectors at sub-kev Sensitivities

Size: px
Start display at page:

Download "Constraints on Neutrino Electromagnetic Properties via Atomic Ionizations with Germanium Detectors at sub-kev Sensitivities"

Transcription

1 Constraints on Neutrino Electromagnetic Properties via Atomic Ionizations with Germanium Detectors at sub-kev Sensitivities Chih-Pan Wu National Taiwan University Collaborators: Jiunn-Wei Chen, Chih-Liang Wu (NTU) Chen-Pang Liu, Hsin-Chang Chi (NDHU) Henry T. Wong, Lakhwinder Singh (AS & TEXONO) 1

2 How neutrino EM properties play an important role? nonzero millicharge exists anomalous magnetic moment exists Finite neutrino masses and mixings Chirality Charge quantization Dirac or Majorana CP phase n i W l g n j 2

3 3 TEXONO Kuo-Sheng Nuclear Power Station in Taiwan Neutrino Magnetic Moment Neutrino Millicharge

4 ν Ge Atomic Ionization (AI) 4

5 Atomic effects are important at sub-kev sensitivities 5

6 Ab initio Method for AI Free Electron Approx. (FEA) Equivalent Photon Approx. (EPA) 4-momentum transferred for fixed T in ν Ge AI: 6

7 Ab initio MCRRPA Theory for Atomic Ionization MCRRPA: multiconfiguration relativistic random phase approximation Hartree-Fock : RPA: RRPA: MCRRPA: Solve self consistently by reducing the N-body system to single-particle problem by effective mean field Include 2 particle 2 hole excitation D. Bohm and D. Pines (1952) Describe heavy noble gas (Dirac Eq.) W.R. Johnson, C.D. Lin and A. Dalgarno (1976) More than one configuration. Important for open shell system, where energy gap < closed shell K.-N. Huang and W.R. Johnson (1982) 7

8 H ( t) H V( t) One-electron Hamiltonian + Atomic Coulomb interaction Time-dependent interaction it it V ( t) [ n ( r ) e n ( r ) e ] I i i u a ( r, t) (t) is a Slater determinant of one-electron orbitals and invoke variational principle ( t) i H VI ( t) ( t) 0 t to obtain equations for u a ( r, t). RPA: Expand u a ( r, t) i t a i t i t u ( r, t) e [ u ( r) w ( r) e w ( r) e...] a into time-indep. orbitals in power of external potential a a a i MCRRPA: Approximate the many-body wave function (t) by a superposition of configuration functions (t) ( t) C ( t) ( t) 8

9 Atomic Structure of Ge For J=1, λ=1 Selection Rules: Angular Momentum Selection Rule: Parity Selection Rule: 9

10 Benchmark: Ge Photoionization Exp. data: Ge solid Theory: Ge atom (gas) Above 100 ev error under 5%. 10

11 Numerical Results: Weak Interaction Ev e 1MeV Ev e 10 kev cutoff : T Max E 2E v e 2 v e m e 0.38 kev High E ν & T, ours agreed with FEA. 11

12 Numerical Results: NMM Ev e 10 kev Ev e 1MeV EPA failed at High E ν. Ours is ~50% smaller than FEA at sub-kev. 12

13 Numerical Results: Millicharge Ev e 10 kev Ev e 1MeV mv e 0.2 ev EPA worked well due to kinematic factors of F 1 form factor receive a strong weight at peripheral scattering angles. 13

14 Experimental Limit Neutrino Magnetic Moment (NMM) Neutrino Millicharge 14

15 Summary Ab initio calculation of atomic ionization (AI) is important for Neutrino Detector threshold extend to sub-kev regime. - FEA works well only for both incident neutrino energy & transferred energy are much higher than atomic scale. - EPA works well when the forward scattering are dominated (Q 0), like F 1 form factor. Comparison with experimental data can set an upper-bound for neutrino EM properties. 15

16 Outlook Propose to Other Usages: Ge atomic ionization for light dark matter direct detection and others Detector Improvement: Solid effect - motivates even lower threshold Ge & Si detectors Other Detectors: Xe & Ar atomic ionization 16

17 Reference: J.-W. Chen et al., Phys. Lett. B 731, 159 (2014). J.-W. Chen, C.-P. Liu, C.-F. Liu, and C.-L. Wu, Phys. Rev. D 88, (2013). C. Giunti and A. Studenikin, arxiv: (2014). P. Vogel and J. Engel, Phys. Rev. D 39, 3378 (1989). K.-N. Huang and W. R. Johnson, Phys. Rev. A 25, 634 (1982). [MCRRPA Theory] J. Beringer et al., Phys. Rev. D 86, (2012). [PDG] H. T. Wong et al., Phys. Rev. D 75, (2007). [TEXONO] A. G. Beda et al., Phys. Part. Nucl. Lett. 10, 139 (2013). [GEMMA] H.-B. Li et al., Phys. Rev. Lett. 110, (2013). [TEXONO-PPCGe] B. L. Henke, E.M. Gullikson, and J.C. Davis, At. Data Nucl. Data Tables 54, 181 (1993). Thanks for your attention! 17

18 BACKUP SLIDES 18

19 Neutrino Intensity Spectrum Spectra shape for reactor neutrino due to individual production channel Total spectrum at the typical power reactor operation of Kuo-Sheng Nuclear Power Station 19

20 Two Approximations --- I Equivalent Photon Approx. 20

21 Two Approximations --- II Free Electron Approx. 21

22 Toy: ν-h atomic ionization, exact result obtained Equivalent Photon Approx. binding momentum of hydrogen: αm e Free Electron Approx. 22

23 ν Ge Kinematic Function 23

24 ν Ge Response Function 24

Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities

Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities Chih-Pan Wu Dept. of Physics, National Taiwan University Collaborators: Jiunn-Wei Chen, Chih-Liang Wu (NTU) Chen-Pang

More information

Coherency in Neutrino-Nucleus Elastic Scattering

Coherency in Neutrino-Nucleus Elastic Scattering Coherency in Neutrino-Nucleus Elastic Scattering S. Kerman, V. Sharma, M. Deniz, H. T. Wong, J.-W. Chen, H. B. Li, S. T. Lin, C.-P. Liu and Q. Yue (TEXONO Collaboration) Institute of Physics, Academia

More information

The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies

The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies model energy given to electrons = ionization + scintillation in e.g. liquid nobles see also

More information

Neutrino Oscillation Workshop, Conca Specchuilla, Otranto, Italy 13/09/2014. Alexander Studenikin Moscow State University & JINR -Dubna

Neutrino Oscillation Workshop, Conca Specchuilla, Otranto, Italy 13/09/2014. Alexander Studenikin Moscow State University & JINR -Dubna Neutrino magnetic moment and millicharge: new limits and phenomenology Neutrino Oscillation Workshop, Conca Specchuilla, Otranto, Italy 13/09/2014 Alexander Studenikin Moscow State University & JINR -Dubna

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Neutrino and dark matter physics with sub-kev germanium detectors

Neutrino and dark matter physics with sub-kev germanium detectors PRAMANA c Indian Academy of Sciences Vol. 83, No. 5 journal of November 204 physics pp. 829 838 Neutrino and dark matter physics with sub-kev germanium detectors ARUN KUMAR SOMA,2, LAKHWINDER SINGH,2,

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

Radiation and the Atom

Radiation and the Atom Radiation and the Atom PHYS Lecture Departamento de Física Instituto Superior de Engenharia do Porto cav@isep.ipp.pt Overview SI Units and Prefixes Radiation Electromagnetic Radiation Electromagnetic Spectrum

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Physics 100 PIXE F06

Physics 100 PIXE F06 Introduction: Ion Target Interaction Elastic Atomic Collisions Very low energies, typically below a few kev Surface composition and structure Ion Scattering spectrometry (ISS) Inelastic Atomic Collisions

More information

D. Medvedev GEMMA and vgen Nalchik, June 6, Investigation of neutrino properties with Ge detectors on KNPP

D. Medvedev GEMMA and vgen Nalchik, June 6, Investigation of neutrino properties with Ge detectors on KNPP D. Medvedev GEMMA and vgen Nalchik, June 6, 2017 ν Investigation of neutrino properties with Ge detectors on KNPP Kalininskaya Nuclear Power Plant (KNPP) GEMMA vgen DANSS Udomlya, ~ 280 km to the North

More information

Direct Detection of! sub-gev Dark Matter

Direct Detection of! sub-gev Dark Matter Direct Detection of! sub-gev Dark Matter Rouven Essig C.N. Yang Institute for Theoretical Physics, Stony Brook Sackler Conference, Harvard, May 18, 2014 An ongoing program Direct Detection of sub-gev Dark

More information

Introduction to Nuclear and Particle Physics

Introduction to Nuclear and Particle Physics Introduction to Nuclear and Particle Physics Sascha Vogel Elena Bratkovskaya Marcus Bleicher Wednesday, 14:15-16:45 FIS Lecture Hall Lecturers Elena Bratkovskaya Marcus Bleicher svogel@th.physik.uni-frankfurt.de

More information

ECT Lecture 2. - Reactor Antineutrino Detection - The Discovery of Neutrinos. Thierry Lasserre (Saclay)

ECT Lecture 2. - Reactor Antineutrino Detection - The Discovery of Neutrinos. Thierry Lasserre (Saclay) ECT Lecture 2 - Reactor Antineutrino Detection - The Discovery of Neutrinos Thierry Lasserre (Saclay) Reactor Neutrino Detection Inverse Beta Decay p + anti-v e à e + + n cross section @2 MeV : 5 10-43

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

Chapter VI: Beta decay

Chapter VI: Beta decay Chapter VI: Beta decay 1 Summary 1. General principles 2. Energy release in decay 3. Fermi theory of decay 4. Selections rules 5. Electron capture decay 6. Other decays 2 General principles (1) The decay

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering - The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering C. Buck, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg, T. Rink, H. Strecker, T. Schierhuber and V. Wagner Max-Planck-Institut

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Recent development in Neutrino Physics and Astrophysics LNGS, September 4-7, 2017

Recent development in Neutrino Physics and Astrophysics LNGS, September 4-7, 2017 Limits on the neutrino magnetic moments Oleg Smirnov, JINR (Dubna) on behalf of the Borexino collaboration Recent development in Neutrino Physics and Astrophysics LNGS, September 4-7, 2017 Why neutrino

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

Many-body and model-potential calculations of low-energy photoionization parameters for francium

Many-body and model-potential calculations of low-energy photoionization parameters for francium Many-body and model-potential calculations of low-energy photoionization parameters for francium A. Derevianko and W. R. Johnson Department of Physics, Notre Dame University, Notre Dame, Indiana 46556

More information

Спиновый свет нейтрино: переходы между различными массовыми состояниями

Спиновый свет нейтрино: переходы между различными массовыми состояниями Спиновый свет нейтрино: Neutrino quantum states and spin light in matter переходы между различными массовыми состояниями Объединенный Семинар ОИЯИ и МГУ по физике нейтрино. Магнитный момент нейтрино А.В.

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? CENPA REU Summer Seminar Series University of Washington, Seattle, WA July 22, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of

More information

arxiv: v1 [physics.ins-det] 8 Feb 2016

arxiv: v1 [physics.ins-det] 8 Feb 2016 arxiv:1602.02462v1 [physics.ins-det] 8 Feb 2016 The CDEX Dark Matter Program at the China Jinping Underground Laboratory Qian Yue 1, Kejun Kang, Jianming Li Department of Engineering Physics, Tsinghua

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa16/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2 Hadronic Cross Section Measurements with ISR and the Implications on g µ 2 Konrad Griessinger on behalf of the BABAR Collaboration Institut for Nuclear Physics Mainz University Determination of Fundamental

More information

The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter

The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter a, Guey-Lin Lin b, Yen-Hsun Lin b and Fanrong Xu c a Department of Physics, Tamkang University New Taipei City 25137, Taiwan b Institute

More information

Atomic Structure Ch , 9.6, 9.7

Atomic Structure Ch , 9.6, 9.7 Ch. 9.2-4, 9.6, 9.7 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton:

More information

Atomic double slit: Coherence transfer through excitation and (Auger) decay processes. S. Fritzsche, Kassel University Göteborg, 3rd June 2006

Atomic double slit: Coherence transfer through excitation and (Auger) decay processes. S. Fritzsche, Kassel University Göteborg, 3rd June 2006 Atomic double slit: Coherence transfer through excitation and (Auger) decay processes S. Fritzsche, Kassel University Göteborg, 3rd June 2006 Experiments with double slits (Feynman-Lectures 1962) Interference

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Physics 492 Lecture 19

Physics 492 Lecture 19 Physics 492 Lecture 19 Main points of last lecture: Relativistic transformations Four vectors Invarients, Proper time Inner products of vectors Momentum Main points of today s lecture: Momentum Example:

More information

arxiv: v2 [hep-ph] 9 Jun 2016

arxiv: v2 [hep-ph] 9 Jun 2016 NCTS-ECP/53 Coherency in Neutrino-Nucleus Elastic Scattering arxiv:63.76v hep-ph] 9 Jun 6 S. Kerman,, V. Sharma,, 3 M. Deniz,, H.T. Wong,, J.-W. Chen, 4 H.B. Li, S.T. Lin, 5 C.-P. Liu, 6 and Q. Yue 7 4

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

64-311/5: Atomic and Molecular Spectra

64-311/5: Atomic and Molecular Spectra 64-311-Questions.doc 64-311/5: Atomic and Molecular Spectra Dr T Reddish (Room 89-1 Essex Hall) SECTION 1: REVISION QUESTIONS FROM 64-310/14 ε ο = 8.854187817 x 10-1 Fm -1, h = 1.0545766 x 10-34 Js, e

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

SCA calculations of the proton induced alignment using relativistic Hartree-Fock wavefunctions

SCA calculations of the proton induced alignment using relativistic Hartree-Fock wavefunctions SCA calculations of the proton induced alignment using relativistic Hartree-Fock wavefunctions Z.Halabuka, W.Perger and D.Trautmann Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

Ab initio rotational bands in medium and heavy nuclei

Ab initio rotational bands in medium and heavy nuclei Ab initio rotational bands in medium and heavy nuclei Calvin W. Johnson This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 Physics 102: Lecture 26 X-rays Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 X-Rays Photons with energy in approx range 100eV to 100,000eV. This large energy means they

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T. W. Donnelly (M.I.T.),.), I. Sick (Univ. Basel) Summary

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Sterile Neutrinos & Neutral Current Scattering

Sterile Neutrinos & Neutral Current Scattering Sterile Neutrinos & Neutral Current Scattering SNAC 2011 Virginia Tech, VA J. A. Formaggio MIT Motivation for Measurement Technique Sources and Detectors Projected Sensitivity Motivation for Measurement

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

Milestones in the history of beta decay

Milestones in the history of beta decay Milestones in the history of beta decay Figure : Continuous spectrum of electrons from the β decay of RadiumE ( 210 Bi), as measured by Ellis and Wooster (1927). Figure : Cloud chamber track of a recoiling

More information

CHM2045 S13: Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHM2045 S13: Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM2045 S13: Exam #1 2013.02.01 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What value of l is represented by a d orbital? A) 2 B) 1 C) 0 D)

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Low Energy [Neutrino &] Dark Matter Physics with sub-kev Germanium Detectors

Low Energy [Neutrino &] Dark Matter Physics with sub-kev Germanium Detectors Low Energy [Neutrino &] Dark Matter Physics with sub-kev Germanium Detectors Overview (Collaboration; Program; History) Facilities : KSNL & CJPL Detector & Physics Highlights Dark Matter Results & Plans

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

Usage of GEANT 4 versions: 6, 7 & 8 in BABAR

Usage of GEANT 4 versions: 6, 7 & 8 in BABAR Usage of GEANT 4 versions: 6, 7 & 8 in BABAR Swagato Banerjee Computing in High Energy and Nuclear Physics (CHEP) 4 September 27, Victoria. SLAC-Based B-Factory: PEP II & BABAR The BABAR Detector: Simulation

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Disclaimer Particle Detectors are very complex, a lot of physics is behind the detection

More information

Characterization of the sub-kev Germanium detector

Characterization of the sub-kev Germanium detector Indian J Phys (March 2018) 92(3):401 408 https://doi.org/10.1007/s12648-017-1116-x ORIGINAL PAPER Characterization of the sub-kev Germanium detector M K Singh 1,2 *, M K Singh 1,2, V Sharma 1,2, L Singh

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Self-consistent study of spin-isospin resonances and its application in astrophysics

Self-consistent study of spin-isospin resonances and its application in astrophysics Tensor Interaction in Nuclear and Hadron Physics November 1 3, Beihang University, Beijing, China Self-consistent study of spin-isospin resonances and its application in astrophysics Haozhao Liang School

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei. Motivation Spins and excited states of double-magic nucleus 16 O Decay spectra are caused by electro-magnetic transitions. g-spectroscopy deals with g-ray detection and is one of the most relevant methods

More information

Lecture 7. both processes have characteristic associated time Consequence strong interactions conserve more quantum numbers then weak interactions

Lecture 7. both processes have characteristic associated time Consequence strong interactions conserve more quantum numbers then weak interactions Lecture 7 Conserved quantities: energy, momentum, angular momentum Conserved quantum numbers: baryon number, strangeness, Particles can be produced by strong interactions eg. pair of K mesons with opposite

More information

The Nature and Magnitude of Neutrino Mass

The Nature and Magnitude of Neutrino Mass The Nature and Magnitude of Neutrino Mass Kaushik Roy Stony Brook University September 14 2015 Outline What we know Our current knowledge regarding neutrino masses. What we do not know Open questions related

More information

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Spin and Stability. PHY 3101 D. Acosta Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1 Neutrino Phenomenology Boris Kayser INSS August, 2013 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2 1 2 Without the neutrino,

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Recent Results and Status of TEXONON Experiments

Recent Results and Status of TEXONON Experiments PROCEEDINGS Recent Results and Status of TEXONON Experiments and Henry T. Wong (on behalf of the TEXONO Collaboration) Institute of Physics, Academia Sinica, Taipei 11529, Taiwan E-mail:vsingh@phys.sinica.edu.tw,htwong@phys.sinica.edu.tw

More information

Chapter VI: Ionizations and excitations

Chapter VI: Ionizations and excitations Chapter VI: Ionizations and excitations 1 Content Introduction Ionization in gases Ionization in solids Fano factor 2 Introduction (1) Ionizations created by charged particles (incident particles or particles

More information

Neutrinoless Double Beta Decay for Particle Physicists

Neutrinoless Double Beta Decay for Particle Physicists Neutrinoless Double Beta Decay for Particle Physicists GK PhD Presentation Björn Lehnert Institut für Kern- und Teilchenphysik Berlin, 04/10/2011 About this talk Double beta decay: Particle physics implications

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

NUCLEAR STRUCTURE AB INITIO

NUCLEAR STRUCTURE AB INITIO December, 6:8 WSPC/Trim Size: 9in x 6in for Proceedings master NUCLEAR STRUCTURE AB INITIO H. FELDMEIER AND T. NEFF Gesellschaft für Schwerionenforschung mbh Planckstr., D-69 Darmstadt, Germany E-mail:

More information

Energy levels and radiative rates for Ne-like ions from Cu to Ga

Energy levels and radiative rates for Ne-like ions from Cu to Ga Pramana J. Phys. (2017) 89:79 DOI 10.1007/s12043-017-1469-x Indian Academy of Sciences Energy levels and radiative rates for Ne-like ions from Cu to Ga NARENDRA SINGH and SUNNY AGGARWAL Department of Physics,

More information

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution 2012 4 12 16 Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution Yifei Niu Supervisor: Prof. Jie Meng School of Physics, Peking University, China April 12, 2012 Collaborators:

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

RPA and The Shell Model

RPA and The Shell Model RPA and The Shell Model Calvin W. Johnson San Diego State University Ionel Stetcu Louisiana State University & University of Arizona I. Stetcu and C. W. Johnson, Phys. Rev. C 66 034301 (2002) C. W. Johnson

More information

Neutrino nucleus coherent scattering - Prospects of future reactor experiments with germanium detectors

Neutrino nucleus coherent scattering - Prospects of future reactor experiments with germanium detectors Neutrino nucleus coherent scattering - Prospects of future reactor experiments with germanium detectors Marco Salathe 1, Thomas Rink 2 8 December 2015 Applied Antineutrino Physics - Virginia Tech 1 marco.salathe@mpi-hd.mpg.de,

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information