CIRCUIT IMPEDANCE. By: Enzo Paterno Date: 05/2007

Size: px
Start display at page:

Download "CIRCUIT IMPEDANCE. By: Enzo Paterno Date: 05/2007"

Transcription

1 IMPEDANE IUIT IMPEDANE By: Enzo Paterno Date: 05/007 5/007 Enzo Paterno

2 Inductors Source Acknowledgement: 3//03

3 IMPEDANE - IMPEDANE OF EEMENTS 5/007 Enzo Paterno 3

4 IMPEDANE - esistance: [ Ω ] ESISTIVE EEMENT Since v and i are in phase, has an angle of 0 V θ [ Ω] I θ 0 j0 e j0 5/007 Enzo Paterno 4

5 IMPEDANE - Inductance: Since v leads i by 90, has an angle of 90 [ H ] INDUTIVE EATANE V θ 90 ω [ Ω] I θ 5/007 Enzo Paterno 5 j 90 e π j

6 IMPEDANE - apacitance: Since I leads v by 90, has an angle of - 90 [ F ] APAITIVE EATANE V θ [ Ω] ω I θ π j 5/007 Enzo Paterno 6 j e j

7 IMPEDANE DIAGAM The impedance diagram is a complex plane that is used to plot the impedance of the various components (i.e.,, ) of A circuits. This diagram is used to compute the total impedance of a particular circuit. j Time domain frequency Domain V P.707 V p V p / sqrt() j 90 0 c jc 90 5/007 Enzo Paterno 7 -j

8 EAMPE Using complex algebra, find the current i for the circuit below. Sketch the waveforms of v and i. 5/007 Enzo Paterno 8

9 EAMPE Find the voltage v for the circuit below: i.5sin(377t 60 ) 0.06 H v - 5/007 Enzo Paterno 9

10 EAMPE i.5sin(377t 0.06 H 60 ) Note : ω 377 (0.06) 6.03 Ω I (.707)(.5) 60º.06 60º º V I (.06) (6.03) 90 º 60 º V º v (.44) (6.39) sin( 377 t 50º ) v 9.04 sin( 377t 50 ) 5/007 Enzo Paterno 0

11 EAMPE Using complex algebra, find the voltage v for the circuit below. Sketch the waveforms of v and i. 5/007 Enzo Paterno

12 EAMPE Find the impedance in Ohms of the series circuit elements that must be enclosed in the box for the indicated voltage and current to exist at the input terminals: I 0 ma 40º E 80 V 30º - Give answer in polar and rectangular forms! 5/007 Enzo Paterno

13 EAMPE I 0 ma 40º E 80 V 30º - E I 80v 30 4kΩ 80 0mA 40 4kΩ 80 -Y -80º 4k cos 80 j4k 5/007 Enzo Paterno 3 sin kω J kω

14 EAMPE Using complex algebra, find the voltage v for the circuit below. Sketch the waveforms of v and i. 5/007 Enzo Paterno 4

15 IUIT IMPEDANE IMPEDANE OF SEIES IUITS 5/007 Enzo Paterno 5

16 IMPEDANE OF SEIES IUITS I. N T I The total impedance of a series configuration circuit is the sum of individual impedances: T 3 N 5/007 Enzo Paterno 6

17 IMPEDANE OF SEIES IUITS Example: circuit A B T AB AB AB AB 0 j 90 tan tan tanθ tan( θ ) tanθ tan( θ ) -θ θ Odd function 5/007 Enzo Paterno 7 a - a

18 IMPEDANE OF SEIES IUITS Example: circuit A B T AB AB AB 0 j 90 tan 5/007 Enzo Paterno 8

19 IMPEDANE OF SEIES IUITS Example: circuit A B T AB AB AB AB 0 j j( ( 3 90 j ) ) 5/007 Enzo Paterno 9 tan 90

20 IMPEDANE OF SEIES IUITS j T j is always positive T tan T j -j T tan 5/007 Enzo Paterno 0

21 SEIES IUITS T 3 N I V T. N I The current is the same through each element just as for dc circuits: I V T 5/007 Enzo Paterno

22 SEIES IUITS T 3 N V I T. N I The voltage across each element can be found using Ohm s law just as for dc circuits: V i V I i,,3, i I, V I, V 3 I 3 5/007 Enzo Paterno

23 SEIES IUITS T 3 N V I T. N I The voltage across each element can be found using the VD just as for dc circuits: V i V i i T,,3, 5/007 Enzo Paterno 3

24 SEIES IUITS T 3 N V I T. N I Kirchhoff s voltage law can be applied in the same manner just as for dc circuits: V i N V i i 5/007 Enzo Paterno 4

25 IMPEDANE - T 3 N I V T. N I Example: Average Power to the circuit can be obtained using: IV p T cos θ θ T is the angle difference between E and I 5/007 Enzo Paterno 5 T V 00 0 I P 00(0) cos 53.3 P W

26 EAMPE Draw the impedance diagram for the circuit below and find the total impedance. 5/007 Enzo Paterno 6

27 EAMPE Determine the input impedance to the series network given below. Draw the impedance diagram. 5/007 Enzo Paterno 7

28 EAMPE Using the voltage divider rule, find the voltage across each element of the circuit below. 5/007 Enzo Paterno 8

29 EAMPE 5/007 Enzo Paterno 9

30 KT FEQUENY ESPONSE FEQUENY ESPONSE OF THE IUIT 5/007 Enzo Paterno 30

31 5/007 Enzo Paterno 3 Vin ] [ ) ( Ω f f π ω Angle Magnitude j j T T T T T tan tan ω KT T FEQUENY ESPONSE T Vout

32 KT G FEQUENY ESPONSE Vout G G Vin ( jc) Jc Vout Vin c c c c c Vin ( c 90 ) c tan c 90 c c tan c c c c c 5/007 Enzo Paterno 3

33 5/007 Enzo Paterno 33 ( ) 4 f f G c G π π ω KT G FEQUENY ESPONSE Frequency cutoff G f G f G f π

34 PF - G FEQUENY ESPONSE 0 0(.707) 4.4 v 6 Voltage Magnitude ,000 0,000 00,000,000,000 0,000,000 Frequency (Hz) f Vc 5/007 Enzo Paterno 34

35 KT FEQUENY ESPONSE FEQUENY ESPONSE OF THE IUIT 5/007 Enzo Paterno 35

36 5/007 Enzo Paterno 36 Vin ] [ ) ( Ω f f π ω Angle Magnitude j j T T T T T tan tan ω KT T FEQUENY ESPONSE T Vout

37 5/007 Enzo Paterno 37 G Vin Vout G J j Vin Vout tan 90 tan 90 ) ( KT G FEQUENY ESPONSE

38 5/007 Enzo Paterno 38 f G π ω KT G FEQUENY frequency cutoff 0 G f G f G f π

39 HPF - G FEQUENY ESPONSE 0 0(.707) 4.4 v 6 Voltage Magnitude ,000 0,000 00,000,000,000 0,000,000 Frequency (Hz) f Vr V 5/007 Enzo Paterno 39

40 IUIT IMPEDANE IMPEDANE OF PAAE IUITS 5/007 Enzo Paterno 40

41 ADMITTANE In ac circuits, we define admittance (Y) as being equal to /. The unit of measure for admittance as defined by the SI system is Siemens (S) and it s a measure of how well an ac circuit allows (admit), current to flow in the circuit. Example: For a resistor, we get: Example: // 5/007 Enzo Paterno 4

42 SUSEPTANE Susceptance is the reciprocal of reactance (/) is called and is a measure of how susceptible an element is to the passage of current through it. Susceptance is also measured in siemens and is represented by the capital letter B. Susceptance is analogous to the conductance of a resistor: Inductor: apacitor: 5/007 Enzo Paterno 4

43 PAAE IUITS For the network below: a. Find the admittance of each parallel branch. 5/007 Enzo Paterno 43

44 PAAE IUITS For the network below: b. Determine the input admittance. 5/007 Enzo Paterno 44

45 PAAE IUITS For the network below: c. alculate the input impedance. // // 3 5/007 Enzo Paterno 45

46 PAAE IUITS For the network below: d. Draw the admittance diagram. Y T Y Y Y 5/007 Enzo Paterno 46

47 PAAE ac NETWOKS I j i j T IY Y T j I N j i j 5/007 Enzo Paterno 47

Series and Parallel ac Circuits

Series and Parallel ac Circuits Series and Parallel ac Circuits 15 Objectives Become familiar with the characteristics of series and parallel ac networks and be able to find current, voltage, and power levels for each element. Be able

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 1 2. i 2 + i 8 0 3. i 3 + i 20 1 i esolutions Manual - Powered by Cognero Page 1 4. i 100 1 5. i 77 i 6. i 4 + i 12 2 7. i 5 + i 9 2i esolutions Manual - Powered by Cognero Page 2 8.

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 2. i 2 + i 8 3. i 3 + i 20 4. i 100 5. i 77 esolutions Manual - Powered by Cognero Page 1 6. i 4 + i 12 7. i 5 + i 9 8. i 18 Simplify. 9. (3 + 2i) + ( 4 + 6i) 10. (7 4i) + (2 3i) 11.

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09 LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09 ENGR. M. MANSOOR ASHRAF INTRODUCTION Thus far our analysis has been restricted for the most part to dc circuits: those circuits excited by constant or time-invariant

More information

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges IHLAN OLLEGE chool of Engineering & Technology ev. 0 W. lonecker ev. (8/6/0) J. Bradbury INT 307 Instrumentation Test Equipment Teaching Unit 6 A Bridges Unit 6: A Bridges OBJETIVE:. To explain the operation

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase circuits ersion EE T, Kharagpur esson 6 Solution of urrent in Parallel and Seriesparallel ircuits ersion EE T, Kharagpur n the last lesson, the following points were described:. How

More information

Chapter 10: Sinusoids and Phasors

Chapter 10: Sinusoids and Phasors Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Almost all electrical systems, whether signal or power, operate with alternating currents and voltages. We have seen that when any circuit is disturbed (switched on or

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

PARALLEL A.C. CIRCUITS

PARALLEL A.C. CIRCUITS C H A P T E R 4 earning Objectives Solving Parallel Circuits Vector or Phasor Method Admittance Method Application of Admittance Method Complex or Phasor Algebra Series-Parallel Circuits Series Equivalent

More information

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output Two Port Networks Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output What is a Port? It is a pair of terminals through which a current

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

ECE 1311: Electric Circuits. Chapter 2: Basic laws

ECE 1311: Electric Circuits. Chapter 2: Basic laws ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's

More information

Chapter 6 Objectives

Chapter 6 Objectives hapter 6 Engr8 ircuit Analysis Dr urtis Nelson hapter 6 Objectives Understand relationships between voltage, current, power, and energy in inductors and capacitors; Know that current must be continuous

More information

Sinusoids and Phasors

Sinusoids and Phasors CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are time-varying. In this chapter, we are particularly interested in sinusoidally time-varying

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Chapter 2 Circuit Elements

Chapter 2 Circuit Elements hapter ircuit Elements hapter ircuit Elements.... Introduction.... ircuit Element onstruction....3 esistor....4 Inductor... 4.5 apacitor... 6.6 Element Basics... 8.6. Element eciprocals... 8.6. eactance...

More information

1 S = G R R = G. Enzo Paterno

1 S = G R R = G. Enzo Paterno ECET esistie Circuits esistie Circuits: - Ohm s Law - Kirchhoff s Laws - Single-Loop Circuits - Single-Node Pair Circuits - Series Circuits - Parallel Circuits - Series-Parallel Circuits Enzo Paterno ECET

More information

BME/ISE 3511 Bioelectronics - Test Five Review Notes Fall 2015

BME/ISE 3511 Bioelectronics - Test Five Review Notes Fall 2015 BME/ISE 35 Bioelectronics - Test Five Review Notes Fall 205 Test Five Topics: RMS Resistive Power oss (I 2 R) A Reactance, Impedance, Power Factor R ircuit Analysis alculate Series R Impedance alculate

More information

Chapter 9 Objectives

Chapter 9 Objectives Chapter 9 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 9 Objectives Understand the concept of a phasor; Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

AC Circuit Analysis and Measurement Lab Assignment 8

AC Circuit Analysis and Measurement Lab Assignment 8 Electric Circuit Lab Assignments elcirc_lab87.fm - 1 AC Circuit Analysis and Measurement Lab Assignment 8 Introduction When analyzing an electric circuit that contains reactive components, inductors and

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Notes on Electric Circuits (Dr. Ramakant Srivastava)

Notes on Electric Circuits (Dr. Ramakant Srivastava) Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow

More information

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). . Transformers Transformer Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). f the primary side is connected to an AC voltage source v (t), an AC flux (t) will be

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016 BME/ISE 35 Bioelectronics - Test Six ourse Notes Fall 06 Alternating urrent apacitive & Inductive Reactance and omplex Impedance R & R ircuit Analyses (D Transients, Time onstants, Steady State) Electrical

More information

Review of DC Electric Circuit. DC Electric Circuits Examples (source:

Review of DC Electric Circuit. DC Electric Circuits Examples (source: Review of DC Electric Circuit DC Electric Circuits Examples (source: http://hyperphysics.phyastr.gsu.edu/hbase/electric/dcex.html) 1 Review - DC Electric Circuit Multisim Circuit Simulation DC Circuit

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42 EE 05 Dr. A. Zidouri Electric Circuits Two-Port Circuits Two-Port Parameters Lecture #4-1 - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o ntroduction to two-port circuits

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Announcements: Today: more AC circuits

Announcements: Today: more AC circuits Announcements: Today: more AC circuits I 0 I rms Current through a light bulb I 0 I rms I t = I 0 cos ωt I 0 Current through a LED I t = I 0 cos ωt Θ(cos ωt ) Theta function (is zero for a negative argument)

More information

ES51919/ES51920 LCR meter chipset

ES51919/ES51920 LCR meter chipset ES51919/ES51920 LCR meter chipset Features 19,999/1,999 counts dual LCD display Application Handheld LCR bridge meter Current consumption: Typ. 25mA @ 100kHz QFP-100L package for ES51919 SSOP-48L package

More information

Note 11: Alternating Current (AC) Circuits

Note 11: Alternating Current (AC) Circuits Note 11: Alternating Current (AC) Circuits V R No phase difference between the voltage difference and the current and max For alternating voltage Vmax sin t, the resistor current is ir sin t. the instantaneous

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

More information

Learning Material Ver 1.2

Learning Material Ver 1.2 RLC Resonance Trainer Learning Material Ver.2 Designed & Manufactured by: 4-A, Electronic Complex, Pardesipura, Indore- 452 00 India, Tel.: 9-73-42500, Telefax: 9-73-4202959, Toll free: 800-03-5050, E-mail:

More information

DOING PHYSICS WITH MATLAB

DOING PHYSICS WITH MATLAB DOING PHYSIS WITH MATAB THE FINITE DIFFERENE METHOD FOR THE NUMERIA ANAYSIS OF IRUITS ONTAINING RESISTORS, APAITORS AND INDUTORS MATAB DOWNOAD DIRETORY N01.m Voltage and current for a resistor, capacitor

More information

FUNDAMENTALS. Introduction. 1.1 Electric Signals. Chapter 1

FUNDAMENTALS. Introduction. 1.1 Electric Signals. Chapter 1 hapter FUNDAMENTALS Introduction This chapter analyses the fundamental notions that everyone needs when exploring the field of electronics. We will start the chapter with the beginning, talking about electric

More information

BIOEN 302, Section 3: AC electronics

BIOEN 302, Section 3: AC electronics BIOEN 3, Section 3: AC electronics For this section, you will need to have very present the basics of complex number calculus (see Section for a brief overview) and EE5 s section on phasors.. Representation

More information

RC, RL, and LCR Circuits

RC, RL, and LCR Circuits RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Mauro Forti October 27, 2018 Constitutive Relations in the Frequency Domain Consider a network with independent voltage and current sources at the same angular frequency

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 18 121025 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review RMS Values Complex Numbers Phasors Complex Impedance Circuit Analysis

More information

EE-0001 PEEE Refresher Course. Week 1: Engineering Fundamentals

EE-0001 PEEE Refresher Course. Week 1: Engineering Fundamentals EE-000 PEEE efresher Course Week : Engineering Fundamentals Engineering Fundamentals Bentley Chapters & Camara Chapters,, & 3 Electrical Quantities Energy (work), power, charge, current Electrostatic pressure,

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

rms high f ( Irms rms low f low f high f f L

rms high f ( Irms rms low f low f high f f L Physics 4 Homework lutions - Walker hapter 4 onceptual Exercises. The inductive reactance is given by ω π f At very high frequencies (i.e. as f frequencies well above onance) ( gets very large. ). This

More information

ECE 241L Fundamentals of Electrical Engineering. Experiment 6 AC Circuits

ECE 241L Fundamentals of Electrical Engineering. Experiment 6 AC Circuits ECE 241L Fundamentals of Electrical Engineering Experiment 6 AC Circuits A. Objectives: Objectives: I. Calculate amplitude and phase angles of a-c voltages and impedances II. Calculate the reactance and

More information

Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

More information

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ELEC273 Lecture Notes Set 11 AC Circuit Theorems ELEC273 Lecture Notes Set C Circuit Theorems The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 5, 207 from 9:00 to 2:00 (confirmed)

More information

EIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002.

EIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002. FE/EIT eview Circuits Instructor: uss Tatro eferences John A. Camara, Electrical Engineering eference Manual, 6 th edition, Professional Publications, Inc, 00. John A. Camara, Practice Problems for the

More information

6.1 Introduction

6.1 Introduction 6. Introduction A.C Circuits made up of resistors, inductors and capacitors are said to be resonant circuits when the current drawn from the supply is in phase with the impressed sinusoidal voltage. Then.

More information

ECE Networks & Systems

ECE Networks & Systems ECE 342 1. Networks & Systems Jose E. Schutt Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 What is Capacitance? 1 2 3 Voltage=0 No Charge No Current Voltage build

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

More information

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011 Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits Nov. 7 & 9, 2011 Material from Textbook by Alexander & Sadiku and Electrical Engineering: Principles & Applications,

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

mywbut.com Mesh Analysis

mywbut.com Mesh Analysis Mesh Analysis 1 Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide more general and powerful circuit analysis tool based on Kirchhoff s voltage law (KVL) only.

More information

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30 Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8 Trigonometric Identities cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees) cos θ sin θ 0 0 1 0

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Chapter 1W Basic Electromagnetic Concepts

Chapter 1W Basic Electromagnetic Concepts Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples

More information

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/ Name (print): Lab (circle): W8 Th8 Th11 Th2 F8 Trigonometric Identities ( cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos θ π ) 2 Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees)

More information

Experiment Guide for RC Circuits

Experiment Guide for RC Circuits Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Frequency Selective Circuits (Filters) Low Pass Filter. Lecture #36

EE 205 Dr. A. Zidouri. Electric Circuits II. Frequency Selective Circuits (Filters) Low Pass Filter. Lecture #36 EE 05 Dr. A. Zidouri Electric ircuits II Frequency Selective ircuits (Filters) ow Pass Filter ecture #36 - - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o Introduction

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the

More information

Electrical Eng. fundamental Lecture 1

Electrical Eng. fundamental Lecture 1 Electrical Eng. fundamental Lecture 1 Contact details: h-elhelw@staffs.ac.uk Introduction Electrical systems pervade our lives; they are found in home, school, workplaces, factories,

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Resistor. l A. Factors affecting the resistance are 1. Cross-sectional area, A 2. Length, l 3. Resistivity, ρ

Resistor. l A. Factors affecting the resistance are 1. Cross-sectional area, A 2. Length, l 3. Resistivity, ρ Chapter 2 Basic Laws. Ohm s Law 2. Branches, loops and nodes definition 3. Kirchhoff s Law 4. Series resistors circuit and voltage division. 5. Equivalent parallel circuit and current division. 6. Wye-Delta

More information

Homwork AC circuits. due Friday Oct 8, 2017

Homwork AC circuits. due Friday Oct 8, 2017 Homwork AC circuits due Friday Oct 8, 2017 Validate your answers (show your work) using a Matlab Live Script and Simulink models. Include these computations and models with your homework. 1 Problem 1 Worksheet

More information

EXPERIMENT THREE DC CIRCUITS

EXPERIMENT THREE DC CIRCUITS EXEMET THEE DC CCUT EQUMET EEDED: ) DC ower upply ) DMM 3) esistors 4) EL THEOY Kirchhoff's Laws: Kirchhoff's oltage Law: The algebraic sum of the voltages around any closed path is zero. v i i 0 3. Kirchhoff's

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined

More information

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week /5/ Physics 6 Lecture Filters Today Basics: Analog versus Digital; Passive versus Active Basic concepts and types of filters Passband, Stopband, Cut-off, Slope, Knee, Decibels, and Bode plots Active Components

More information