Numerical Simulation of Powder Flow

Size: px
Start display at page:

Download "Numerical Simulation of Powder Flow"

Transcription

1 Numerical Simulation of Powder Flow Stefan Turek, Abderrahim Ouazzi Institut für Angewandte Mathematik, Univ. Dortmund Models for granular flow Numerical aspects Discussion and outlook p. 1/27

2 Motivation of our Resarch Preserve the high efficiency of special PDE solvers for flow problems p. 2/27

3 Motivation of our Resarch Preserve the high efficiency of special PDE solvers for flow problems High (guaranteed) accuracy for user-specific quantities! With minimal #d.o.f.s! Via robust solvers with optimal numerical complexity! Exploiting the huge sequential/parallel GFLOP/s rates! Realization for complex CFD? p. 2/27

4 CFD Software FEATFLOW Continuum mechanical description, for example ρ Du Dt S = µ = p + S + ρg, u = 0 p ǫ + D(u) D(u), µ = 2 sinφ Finite Elemente methods, iterative solvers Nonlinear models for granular flow based on generalized Navier-Stokes equations S = ν(µ, p, D(u))D(u) p. 3/27

5 Application to Granular Flow Pharmaceutical Industry, Food Processing, Soil Mechanics The behaviour of granular flow is different from that of fluids since it does not exhibit viscosity and the dominant interaction between particles is friction. [Nevertheless, numerical methods are similar.] We do not examine flow of large grains but smaller-sized bulk powders where a continuum approach may be more advantageous. [ generalized Navier-Stokes equations] p. 4/27

6 Regimes of Powder Flow (cf. Tardos) Stick-Slip Regime Uncertain Boundary Slow, Frictional Flow Regime (Quasi-Static Regime) Intermediate Flow Regime Increasing Fluctuations of (stress and) strain rate Rapid Granular Flow Regime f Fluid-like behavior n (n<1) Static Regime Dimensionless Shear Rate, * = [d p /g] 1/2 p. 5/27

7 Static Regime Assumption: The flow is slow enough so that any movement between 2 static states can be neglected. Advantages: static equilibrium equation can be applied theory predicts the onset of flow Disdvantages: no flow field can be predicted no flow rates result from theory Method of Slices (Jenkins 1895) It is (still) used for the design of silos! p. 6/27

8 Slow, Frictional Regime General equations of flow result from: adding inertial effects to the static equations considerations of continuity using a yield condition invoking a "flow rule" (Most) Important from industrial point of view! First model: Schaeffer (1987) p. 7/27

9 Intermediate + Rapid-Granular Regimes Intermediate: Both inter-particle friction and collisional energies are important. More research needed! Rapid-Granular: Short particle-particle contacts are important while frictional forces are neglected; particles behave as molecules in a dense gas. Equations of flow result from a Kinetic Theory type model: conservation of mass conservation of momentum conservation of energy p. 8/27

10 Characteristics of Slow Granular Flow Open a silo hopper and...??? The drag force for Schaeffer and Bingham flow acting on a cylinder is independent of the grain velocity, contrary to Stokes flow Stokes Bingham Schaeffer Velocity 0.7 Schaeffer Cylinder diameter When mechanical ploughs replaced draught animals, it was observed that ploughing at greater speeds does not require greater forces! (Schaeffer) p. 9/27

11 General Powder Flow Model Conservation of mass (u is the velocity vector) Dρ Dt = ρ t + (ρu) = 0 For an incompressible material the bulk density, ρ, is a constant: Equation of motion u = 0 ρ Du Dt = T + ρg with T = S + pi ("stress field" T, deviatoric part S, pressure p) p. 10/27

12 Constitutive Equations The constitutive equation is devoted to correlate between the deviatoric tensor S and the velocity u, through the rate of deformation D = 1 2 ( u + T u), and to assure the closure of the equations. Newtonian law Power law S = 2ν o D S = 2ν( D 2 )D, ν(z) = z r 2 1, r > 1 Schaeffer s law (1987): For a powder a constitutive equation was first introduced by Schaeffer (1987), which has to obey a von Mises yield condition; S = 2p sin φ, and Levy s flow rule; S = λd. We use this correlation to obtain the constitutive equation S = 2p sinφ D D p. 11/27

13 Generalized Navier-Stokes Equations The generalized incompressible Navier-Stokes problem reads: ρ Du Dt = p + (ν(p, D II)D) + ρg, u = 0 If we define the pseudo viscosity ν(, ) as function of D II (u) = 1 2 D : D and p, we obtain a full range of different nonlinear flow models : Power law defined for Bingham law defined for ν(z, p) = ν o z r 2 1 ν(z, p) = ν o z 1 2 Schaeffer s law (including the pressure) defined for ν(z, p) = 2 sin φ pz other laws with pressure-dependent viscosity... p. 12/27

14 Mathematical Challenges I Mathematical Analysis: For pressure-dependent viscosity: Hron/Malek/Necas/Rajagopal, Schaeffer Discretization method: LBB-stable FEM discretization? Uniqueness of the pressure? Inflow profiles? Operator-Splitting (a la Chorin, Van Kan)? Nonlinear solver: Newton techniques for this highly nonlinear problem? Decoupling of pressure and velocity? Linear multigrid solver: New types of saddle-point problems? p. 13/27

15 Mathematical Challenges II 1. Discretization method: The approximation of incompressible velocity fields is subject to the so-called LBB-condition min q h Q h max v h V h (q h, v h ) q h 0 v h 0 β > 0, (1) Discrete Korn s inequality v H 1 (τ) c( v 2 L + D(v) 2 2 L ) (2) τ τ h 2. Convection-dominated transport specially at high Reynolds number (Re = 1 ν ) 3. Boundary condition p. 14/27

16 Spatial Discretization Quadrilateral Rannacher-Turek Stokes Element Q 1 := { q ψ 1 T : q span < 1, x, y, x2 y 2 > } M4 P1 M1 M P2 M2 E1 E2 The degree of freedom are determined by the nodal functionals F a Γ := Γ 1 Advantage Γ {F (a,b) Γ ( ),Γ T h }, with vdγ or F b Γ := v(m Γ ) (m Γ midpoint of edge Γ) (3) Stable and efficient for incompressible flow. Compact data structures. P4 M3 P3 Disadvantage Not satisfying classical discrete Korn s inequality Numerical oscillations for convection dominated problem p. 15/27

17 Classical Stabilization Methods FEM streamline diffusion Ñ(u)v,w = N(u)v,w + N sd(u)v,w, where (4) N sd (u)v,w = (u v)(u w) dx. (5) T T h δ T T FEM upwinding Ñ(u)v,w = l k Λ l Γ lk u n lk dγ (6) [1 λ lk (u)(v(m k ) v(m l ))]w(m l ) Based on the local Reynolds number Re τ = u τ h h ν, we can either define 8 δ τ = δ h τ u Ω 2Re τ 1 + Re τ, λ lk (u h ) = >< >: δ Re τ 1 + δ Re τ if Re τ 0 1 2(1 δ Re τ ) otherwise (7) p. 16/27

18 New Edge-oriented FEM Stabilization Based only on the smoothness of the discrete solution we have developed the following jump term edge E max(γνh E, γ h 2 E) E [ u][ v]dσ withγ, γ [0.0001,0.1] (8) Only one generic stabilization takes care of all instabilities 1. due to Korn s inequality 2. due to convection dominated flow for medium and high Reynolds number, even for pure transport 3. due to problems with variable viscosity Independent of the local Reynolds number p. 17/27

19 Standing vortex Re = Cutline of the x-velocity component for the Standing Vortex problem Exact_solution eo_64x64 upw_64x64 sd_64x Exact_solution eo_128x128 upw_128x128 sd_128x Exact_solution eo_256x256 upw_256x256 sd_256x D presentation of the norm of the velocity (VECT MAG) for the Standing Vortex problem: edge-oriented (left) vs. streamline-diffusion (middle) and central (right) Upwind: significant smearing effects EO: preserves perfectly the solution with high accuracy p. 18/27

20 Nonlinear Solver: Newton Iteration Let u l being the initial state, the (continuous) Newton method consists of finding u such that Ω 2ν(D II (u l ), p l )D(u) : D(v)dx ν(d II (u l ), p l )[D(u l ) : D(u)][D(u l ) : D(v)]dx Ω + Ω = 2 2 ν(d II (u l ), p l )[D(u l ) : D(v)]pdx fv Ω Ω 2ν(D II (u l ), p l )D(u l ) : D(v)dx, v, (9) where i ν(, );i = 1,2 is the partial derivative of ν related to the first and second variable, respectively. p. 19/27

21 New Linear Algebraic Problem Every Newton step consists of finding (u, p) as solution of the linear system { A(u l, p l )u + δ u A (u l, p l )u + Bp + δ p B (u l, p l )p = R u (u l, p l ), B T u = R p (u l, p l ), (10) where R u (, ) and R p (, ) denote the corresponding nonlinear residual terms for the momentum and continuity equations, and the matrix A (u l, p l ) and B (u l, p l ) are defined as follows, respectively A (u l, p l )u,v = Ω 2 1 ν(d II (u l ), p l )[D(u l ) : D(u)][D(u l ) : D(v)]dx. (11) B (u l, p l )p,v = Ω 2 2 ν(d II (u l ), p l )[D(u l ) : D(v)]pdx. (12) p. 20/27

22 Schaeffer Model (I) The nonlinear pseudo viscosity has the form ν(p, z) = Q(p)z r 2 1 New type of (nonsymmetric) saddle-point problems; ( Au B + δ M δp (ũ, p) = p B ) B T 0 The (linear) solution depends on the choice of imposing the uniqueness, since dim(null(m δp )) = 1 ν = exp(βp) ǫ+ D(u) β Newton Fixed Point /3 200/ /3 250/ /3 238/2 ν = βp ǫ+ D(u) Newton 12/13 405/2 12/10 522/2 12/10 581/2 Fixed Point p. 21/27

23 Konfigurationen Stokes Bingham Schaeffer Schaeffer_without_convection Schaeffer_with_convection p. 22/27

24 Schaeffer Model (II) Schaeffer s law: The nonstationary equations are linearly ill-posed according to Schaeffer. Flow rate: The quantitative prediction of the flow rate through silo hoppers is wrong by more than 100% Add compressibility: This approach is an effort to regularize the instability. p. 23/27

25 Compressible Powder Models (cf. Tardos) General equation of motion for a powder ρ Du Dt = p + [ Continuity equation Normality condition ρ t q(p,ρ) ( D D 1 1 n ui n ui)] + ρg, with + (ρu) = 0, and u = q(p,ρ) p D 1 n ui Yield condition q(p,ρ) is given by: Powder properties Non-cohesive Cohesive Incompressible p sinφ p sinφ + ccos φ [ ] Compressible p sin φ 2 p p sinφρ 1 β C (p ρ 1β ) 2 ρ 1 β ρ 1 β p. 24/27

26 Summary: More mathematical research is needed to understand and to analyse the models for granular and powder flows. Numerical analysis of discretization and solution techniques? The physically correct choice of pressure (mean)values is not clear. How to prescribe velocity profiles? [Or: Fluxes?] p. 25/27

27 Outlook I: Hypoplastic Model by Kolymbas Re [ u t S = Q(p) D(u) + (u )u] = p + S + f, u = 0 D(u) (Schaeffer/Power Law/etc.) + T (Kolymbas) T t + (u )T = [TW WT] + C 1 1 (TD DT) 2 +C 2 tr(td) I + C 3 trd 2 T + C 4 trd 2 +ν(d)[ D t 1. FEM discretization and solver? 2. Free boundary? Fluid-Structure interaction? + (u )D + DW WD] 3. Numerical falsification of material/flow models!? trt T2 p. 26/27

28 Outlook II: Particulate Flow Development of simulation tools for the understanding of: 1. Interaction of solid particles with flow ( many complex objects?) 2. Behaviour of nonlinear fluid models Fictitious Boundary Method on adapted meshes + Operator-Splitting! Many particles? Nonlinear fluids? Wide range of applications! p. 27/27

Numerical simulation of powder flow by Finite Element methods

Numerical simulation of powder flow by Finite Element methods Numerical simulation of powder flow by Finite Element methods S. Turek and A. Ouazzi Institute of Applied Mathematics, University of Dortmund, 44227 Dortmund, Germany Abstract In contrast to most fluids,

More information

Efficient FEM-multigrid solver for granular material

Efficient FEM-multigrid solver for granular material Efficient FEM-multigrid solver for granular material S. Mandal, A. Ouazzi, S. Turek Chair for Applied Mathematics and Numerics (LSIII), TU Dortmund STW user committee meeting Enschede, 25th September,

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

FEM techniques for nonlinear fluids

FEM techniques for nonlinear fluids FEM techniques for nonlinear fluids From non-isothermal, pressure and shear dependent viscosity models to viscoelastic flow A. Ouazzi, H. Damanik, S. Turek Institute of Applied Mathematics, LS III, TU

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Monolithic FEM multigrid techniques for the simulation of viscoelastic flow

Monolithic FEM multigrid techniques for the simulation of viscoelastic flow Monolithic FEM multigrid techniques for the simulation of viscoelastic flow A. Ouazzi, H. Damanik, S. Turek, J. Hron Institute of Applied Mathematics, LS III, TU Dortmund http://www.featflow.de European

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Robust Monolithic - Multigrid FEM Solver for Three Fields Formulation Rising from non-newtonian Flow Problems

Robust Monolithic - Multigrid FEM Solver for Three Fields Formulation Rising from non-newtonian Flow Problems Robust Monolithic - Multigrid FEM Solver for Three Fields Formulation Rising from non-newtonian Flow Problems M. Aaqib Afaq Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund 13 July 2017

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel Conference Applications of Mathematics 1 in honor of the th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 1 STEADY AND UNSTEADY D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller Algebraic flux correction and its application to convection-dominated flow Matthias Möller matthias.moeller@math.uni-dortmund.de Institute of Applied Mathematics (LS III) University of Dortmund, Germany

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

A Multigrid LCR-FEM solver for viscoelastic fluids with application to problems with free surface

A Multigrid LCR-FEM solver for viscoelastic fluids with application to problems with free surface A Multigrid LCR-FEM solver for viscoelastic fluids with application to problems with free surface Damanik, H., Mierka, O., Ouazzi, A., Turek, S. (Lausanne, August 2013) Page 1 Motivation Polymer melts:

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Turbulentlike Quantitative Analysis on Energy Dissipation in Vibrated Granular Media

Turbulentlike Quantitative Analysis on Energy Dissipation in Vibrated Granular Media Copyright 011 Tech Science Press CMES, vol.71, no., pp.149-155, 011 Turbulentlike Quantitative Analysis on Energy Dissipation in Vibrated Granular Media Zhi Yuan Cui 1, Jiu Hui Wu 1 and Di Chen Li 1 Abstract:

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

Non-Newtonian Fluids and Finite Elements

Non-Newtonian Fluids and Finite Elements Non-Newtonian Fluids and Finite Elements Janice Giudice Oxford University Computing Laboratory Keble College Talk Outline Motivating Industrial Process Multiple Extrusion of Pastes Governing Equations

More information

fluid mechanics as a prominent discipline of application for numerical

fluid mechanics as a prominent discipline of application for numerical 1. fluid mechanics as a prominent discipline of application for numerical simulations: experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques,... theoretical fluid

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow Michael Köster, Michael Hinze, Stefan Turek Michael Köster Institute for Applied Mathematics TU Dortmund Trier,

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Transport equations, Navier Stokes equations Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

A monolithic FEM solver for fluid structure

A monolithic FEM solver for fluid structure A monolithic FEM solver for fluid structure interaction p. 1/1 A monolithic FEM solver for fluid structure interaction Stefan Turek, Jaroslav Hron jaroslav.hron@mathematik.uni-dortmund.de Department of

More information

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Vladimír Prokop, Karel Kozel Czech Technical University Faculty of Mechanical Engineering Department of Technical Mathematics Vladimír

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

On a variational inequality of Bingham and Navier-Stokes type in three dimension

On a variational inequality of Bingham and Navier-Stokes type in three dimension PDEs for multiphase ADvanced MATerials Palazzone, Cortona (Arezzo), Italy, September 17-21, 2012 On a variational inequality of Bingham and Navier-Stokes type in three dimension Takeshi FUKAO Kyoto University

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value

More information

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations Hervé Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40 herve.lemonnier@cea.fr, herve.lemonnier.sci.free.fr/tpf/tpf.htm

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

Clusters in granular flows : elements of a non-local rheology

Clusters in granular flows : elements of a non-local rheology CEA-Saclay/SPEC; Group Instabilities and Turbulence Clusters in granular flows : elements of a non-local rheology Olivier Dauchot together with many contributors: D. Bonamy, E. Bertin, S. Deboeuf, B. Andreotti,

More information

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS Conference Applications of Mathematics 212 in honor of the 6th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 212 ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Explaining and modelling the rheology of polymeric fluids with the kinetic theory Explaining and modelling the rheology of polymeric fluids with the kinetic theory Dmitry Shogin University of Stavanger The National IOR Centre of Norway IOR Norway 2016 Workshop April 25, 2016 Overview

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow

Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow Stefan Turek and Jaroslav Hron Institute for Applied Mathematics and Numerics,

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS 1 th Fall Rubber Colloquium EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS Jochen Kroll, Stefan Turek, Patrick Westervoß Institute of Applied Mathematics (LS III), TU Dortmund

More information

Chapter 1: Basic Concepts

Chapter 1: Basic Concepts What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

Code Verification of Multiphase Flow with MFIX

Code Verification of Multiphase Flow with MFIX Code Verification of Multiphase Flow with MFIX A N I R U D D H A C H O U D H A R Y ( A N I R U D D @ V T. E D U ), C H R I S T O P H E R J. ROY ( C J R O Y @ V T. E D U ), ( V I R G I N I A T E C H ) 23

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations AA210A Fundamentals of Compressible Flow Chapter 5 -The conservation equations 1 5.1 Leibniz rule for differentiation of integrals Differentiation under the integral sign. According to the fundamental

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 10: Case Study Computational Fluid Dynamics Michael Bader Winter 2012/2013 Module 10: Case Study Computational Fluid Dynamics, Winter 2012/2013 1 Fluid mechanics as a Discipline

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

On a class of numerical schemes. for compressible flows

On a class of numerical schemes. for compressible flows On a class of numerical schemes for compressible flows R. Herbin, with T. Gallouët, J.-C. Latché L. Gastaldo, D. Grapsas, W. Kheriji, T.T. N Guyen, N. Therme, C. Zaza. Aix-Marseille Université I.R.S.N.

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Isogeometric Analysis of the Navier Stokes Cahn Hilliard equations with application to incompressible two-phase flows

Isogeometric Analysis of the Navier Stokes Cahn Hilliard equations with application to incompressible two-phase flows Isogeometric Analysis of the Navier Stokes Cahn Hilliard equations with application to incompressible two-phase flows Babak S. Hosseini 1, Stefan Turek 1, Matthias Möller 2 1 TU Dortmund University, Institute

More information

Tectonic evolution at mid-ocean ridges: geodynamics and numerical modeling. Second HPC-GA Workshop

Tectonic evolution at mid-ocean ridges: geodynamics and numerical modeling. Second HPC-GA Workshop .. Tectonic evolution at mid-ocean ridges: geodynamics and numerical modeling. Second HPC-GA Workshop Marco Cuffaro, Edie Miglio, Mattia Penati, Marco Viganò Politecnico di Milano - MOX, Dipartimento di

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

Lattice Boltzmann Methods for Fluid Dynamics

Lattice Boltzmann Methods for Fluid Dynamics Lattice Boltzmann Methods for Fluid Dynamics Steven Orszag Department of Mathematics Yale University In collaboration with Hudong Chen, Isaac Goldhirsch, and Rick Shock Transient flow around a car LBGK

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 5

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 5 .9 Numerical Fluid Mechanics Fall 011 Lecture 5 REVIEW Lecture 4 Roots of nonlinear equations: Open Methods Fixed-point Iteration (General method or Picard Iteration), with examples Iteration rule: x g(

More information

Mathematical Theory of Non-Newtonian Fluid

Mathematical Theory of Non-Newtonian Fluid Mathematical Theory of Non-Newtonian Fluid 1. Derivation of the Incompressible Fluid Dynamics 2. Existence of Non-Newtonian Flow and its Dynamics 3. Existence in the Domain with Boundary Hyeong Ohk Bae

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

Numerische Simulation zur Herstellung monodisperser Tropfen in pneumatischen Ziehdüsen

Numerische Simulation zur Herstellung monodisperser Tropfen in pneumatischen Ziehdüsen Numerische Simulation zur Herstellung monodisperser Tropfen in pneumatischen Ziehdüsen DFG SPP 1423 Prozess-Spray Prof. Dr. Stefan Turek, Dr. Institut für Angewandte Mathematik, LS III Technische Universität

More information

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS FREE BOUNDARY PROBLEMS IN FLUID MECHANICS ANA MARIA SOANE AND ROUBEN ROSTAMIAN We consider a class of free boundary problems governed by the incompressible Navier-Stokes equations. Our objective is to

More information

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS Multimedia Course on Continuum Mechanics Overview Introduction Fluid Mechanics What is a Fluid? Pressure and Pascal s Law Constitutive Equations in Fluids Fluid Models

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information