A Multigrid LCR-FEM solver for viscoelastic fluids with application to problems with free surface

Size: px
Start display at page:

Download "A Multigrid LCR-FEM solver for viscoelastic fluids with application to problems with free surface"

Transcription

1 A Multigrid LCR-FEM solver for viscoelastic fluids with application to problems with free surface Damanik, H., Mierka, O., Ouazzi, A., Turek, S. (Lausanne, August 2013) Page 1

2 Motivation Polymer melts: One of industrial interests + Physically fascinating + Rheologically difficult - Numerically challenging - Highly accurate, robust numerical solver which represents the rheological nature is still challenging Page 2

3 Polymer as Viscoelastic model Viscoelastic fluid models (D. D. Joseph): Integral form τ t = 1 t t s WW 2 e WW Differential form: Upper-convected derivative More practical to implement than integral form Represent many viscoelastic models F s, t F(s, t) T dd t + u τ τ τ T = f τ Conformation tensor (τ), velocity (u), source (f τ ) Not able to capture high stress gradient at higher We number f τ can be Oldroyd-B, Giesekus, FENE, PTT, WM, Pom-Pom Page 3

4 Numerical Results Cutline of Stress_11 component at y = 1.0 We = 1.5 with LCR Old Formulation Vs Lcr We= 0.5 We= 1.5 stress_ ,00 0,20 0,40 0,60 0,80 1,00 x We = 0.5 with Old formulation Page 4

5 Log-conformation Reformulation Experience (Kupferman et. al): Stresses grow exponentially Conformation tensor looses positive properties during numerics t + u τ τ τ T = f τ ψ = Ω + B + Nτ 1 + u τ Ωτ τω 2Bτ = f τ τ = e ψ + u ψ Ωψ ψω 2B = g ψ Page 5

6 LCR based models LCR based viscoelastic fluid: Ability to capture high stress gradients at higher We number Positivity preserving by design τ = e ψ Numerically more stable with appropriate FEM ψ + u ψ Ωψ ψω 2B = g ψ LCR tensor (ψ), velocity (u), source (g ψ ) u = Ω + B + Nτ 1 g ψ can be Oldroyd-B, Giesekus, FENE, PTT, WM, Pom-Pom Page 6

7 Exemplary models Model OdB Gie FENE LPTT XPTT WM Pom LCR based viscoelastic fluid: ( I τ) ( τ) f g( ψ) 1 / λ 1/ λ (exp( ψ) I) 2 1/ λ ( I τ α( τ I) ) 1/ λ (f (R) τ αf (R) I) 1/ λ (1 + ε(tr( τ) 3))( I τ) 1/ λ (exp( ε(tr( τ) 3)))( I τ) 1/ λ( γ ) ( τ I) 1/ λ (f ( τ) 2α + ατ + ( α 1) I) b 1/ λ (exp( ψ) I) αexp( ψ)(exp( ψ) I) 1/ λ (f(r) αf(r)exp( ψ)) 1/ λ (1 + ε(tr(exp( ψ)) 3))(exp( ψ) I) 1/ λ (exp( ε(tr(exp( ψ)) 3)))(exp( ψ) I) 1/ λ( γ ) ( I exp( ψ)) 1/ λ (f ( ψ) 2α + αexp( ψ) + ( α 1)exp( ψ)) b 2 ) Relaxation time (λ) Page 7

8 Multiphysics flow model Navier-Stokes equation (u, p) ρ + u u = + σ s + 1 λ η pe ψ, u = 0 + Nonlinear viscosities σ s =2η s γ, Θ, p D, γ = tt D 2 + Temperature effects with Boussinesq and viscous dissipation (Θ) ρc p + Viscoelastic fluid models (ψ) ψ + u ψ Ωψ ψω 2B = g ψ + Multiphase flow with Level-Set equation φ + u Θ = k 1 2 Θ+k 2 D: D + u φ = 0 Page 8

9 Discretizations In Time: Second order Crank-Nicolson Can be adaptively applied In Space: Higher order finite element (Arnoldi) Inf-sup stable for velocity and pressure High order: good for accuracy Discontinuous pressure: good for solver & physics Edge oriented FEM for numerical stabilitation (Burman) Page 9

10 Discrete system Saddle point problem: u consists of all numerical variables except pressure Newton with multigrid as well-known solver Monolithic way of solving A B 0 B T u p = rhs u rhs p A consists of differential operators B is gradient operator Page 10

11 Newton iteration Newton for nonlinear system: Strongly coupled problem Automatic damping control ω n for each nonlinear step Black-box for many given viscoelastic models x n+1 = x n + ω n (xn ) 1 R(x n ) Quadratic convergence when iterative solutions are close Solution x n+1 = (u, p), Residual equation R(x n ) Black-box is made possible by divided difference technique (x n ) ii = R i x n + εe j R i x n + εe j 2ε Page 11

12 Multigrid iteration Multigrid for linearized system: Full-Vanka for strongly coupled Jacobian in local system Full prolongation Black-box for many given viscoelastic models u l+1 p l+1 = u l p l " + " ω A u Ω i kk Ωi B T Ω 0 i patch Ω i 1 defu Ωi def p Ωi Page 12

13 Numerical examples 1 Flow around cylinder: Mod. Gie FENE-P FENE-C WM-Lr WM-Cr WM-Ca LPPT/ XPPT Par α=0.01 α = 0, L2=100 α = 1, L2=100 l=0.01 k=0.01, l=0.01, m=0.01, n=0.01 a = 0.95, b = 0.95, k= 0.01, l = 0.01, m = 0.01, n = 0.01 Pom ε=0.01 α=0.01, ν = 0.2, r = 1 Page 13

14 Numerical examples 1 Flow around cylinder: Lev. Oldroyd-B Giesekus FENE-P FENE-CR LPTT R [5/1] [5/1] [5/1] [5/1] [5/1] R [5/1] [4/1] [5/1] [5/1] [5/1] R [3/1] [3/1] [3/1] [3/1] [3/1] R [2/2] [2/2] [2/2] [2/2] [2/2] R [2/2] [2/2] [2/2] [2/2] [2/2] XPTT WM-Larson WM-Cross WM-Carreau Pom-Pom R [5/1] [5/1] [5/1] [5/1] [4/1] R [5/1] [4/1] [5/1] [5/1] [5/1] R [3/1] [3/1] [3/1] [3/1] [3/1] R [2/2] [2/2] [2/2] [2/2] [2/2] R [2/2] [2/2] [2/2] [2/2] [2/2] Newton-multigrid behaviour for We=0.1 Page 14

15 Numerical examples 1 Flow around cylinder: We Oldroyd-B Giesekus FENE-P FENE-CR LPTT [2] [2] [2] [2] [2] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [4] [3] [4] [4] [3] [3] [3] [4] [4] [3] [3] [3] [4] [4] [3] [5] [5] [3] [3] [3] XPTT WM-Larson WM-Cross WM-Carreau Pom-Pom [2] [2] [2] [2] [4] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [4] [4] [4] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [4] Moderate number of nonlinear steps for all models Page 15

16 Numerical examples 1 Flow around cylinder: We=1.2 Different drag behaviour of different models at increasing We number Page 16

17 Numerical examples 2 Rising bubble in viscoelastic fluid: Material 1: Viscoelastic fluid described by the Oldroyd-B model Material 2: Newtonian fluid Page 17

18 Numerical examples 2 Rising bubble in viscoelastic fluid: A better visualisation from the data before. cheating bubbles Multiphase flow in a cylindrical coordinate system is ongoing Page 18

19 Numerical examples 3 3D flow around a sphere: An LCR based FEM solver for 3D viscoelastic flow Tests with Oldroyd-B for We=0.3 and 0.6 We=0.3 We=0.6 Page 19

20 Numerical examples 4 3D flow around cylinder: An LCR based FEM solver for 3D viscoelastic flow Tests with Oldroyd-B Invariance in z-direction for We=1.6, agreement with Sahin et. al Page 20

21 Numerical examples 5 Polymer stretching: A 2D+1 membrane model (Sollogoub et. Al) ee = 0 e 2μμ + 2μ tt D I = ee + U τ τ τ T = 1 λ f Level set-fem +(U )φ = 0 Source: Schöppner, Wibbeke 2012 Page 21

22 Numerical examples 5 Polymer stretching: A 2D+1 membrane model from Sollogoub et. al 0,25 0,2 0,15 0,1 0, ,5 1 L2 Sollogoub L3 1,5 1 0, ,5 1 L2 Sollogoub L3 Page 22

23 Conclusion We have presented: LCR-based viscoelastic models Higher order FEM discretizations Black-box Newton-multigrid solver Numerical examples: o 2D benchmark flow around cylinder o Rising bubble surrounded by viscoelastic fluid o 3D solver for LCR-based viscoelastic models o Polymer stretching We would like in the future: 3D viscoelatic multiphase Collection of different viscoelastic models FBM and viscoelastic integral model Page 23

24 Thank you for listening! Page 24

FEM techniques for nonlinear fluids

FEM techniques for nonlinear fluids FEM techniques for nonlinear fluids From non-isothermal, pressure and shear dependent viscosity models to viscoelastic flow A. Ouazzi, H. Damanik, S. Turek Institute of Applied Mathematics, LS III, TU

More information

Monolithic FEM multigrid techniques for the simulation of viscoelastic flow

Monolithic FEM multigrid techniques for the simulation of viscoelastic flow Monolithic FEM multigrid techniques for the simulation of viscoelastic flow A. Ouazzi, H. Damanik, S. Turek, J. Hron Institute of Applied Mathematics, LS III, TU Dortmund http://www.featflow.de European

More information

Robust Monolithic - Multigrid FEM Solver for Three Fields Formulation Rising from non-newtonian Flow Problems

Robust Monolithic - Multigrid FEM Solver for Three Fields Formulation Rising from non-newtonian Flow Problems Robust Monolithic - Multigrid FEM Solver for Three Fields Formulation Rising from non-newtonian Flow Problems M. Aaqib Afaq Institute for Applied Mathematics and Numerics (LSIII) TU Dortmund 13 July 2017

More information

Efficient FEM-multigrid solver for granular material

Efficient FEM-multigrid solver for granular material Efficient FEM-multigrid solver for granular material S. Mandal, A. Ouazzi, S. Turek Chair for Applied Mathematics and Numerics (LSIII), TU Dortmund STW user committee meeting Enschede, 25th September,

More information

Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models

Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models H. Damanik a,, J. Hron b, A. Ouazzi a, S. Turek a a Institut für Angewante Mathematik, TU Dortmund, Germany b Institute

More information

A monolithic FEM solver for fluid structure

A monolithic FEM solver for fluid structure A monolithic FEM solver for fluid structure interaction p. 1/1 A monolithic FEM solver for fluid structure interaction Stefan Turek, Jaroslav Hron jaroslav.hron@mathematik.uni-dortmund.de Department of

More information

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS 1 th Fall Rubber Colloquium EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS Jochen Kroll, Stefan Turek, Patrick Westervoß Institute of Applied Mathematics (LS III), TU Dortmund

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

The Polymers Tug Back

The Polymers Tug Back Tugging at Polymers in Turbulent Flow The Polymers Tug Back Jean-Luc Thiffeault http://plasma.ap.columbia.edu/ jeanluc Department of Applied Physics and Applied Mathematics Columbia University Tugging

More information

5 The Oldroyd-B fluid

5 The Oldroyd-B fluid 5 The Oldroyd-B fluid Last time we started from a microscopic dumbbell with a linear entropic spring, and derived the Oldroyd-B equations: A u = u ρ + u u = σ 2 pi + η u + u 3 + u A A u u A = τ Note that

More information

Non-Newtonian Fluids and Finite Elements

Non-Newtonian Fluids and Finite Elements Non-Newtonian Fluids and Finite Elements Janice Giudice Oxford University Computing Laboratory Keble College Talk Outline Motivating Industrial Process Multiple Extrusion of Pastes Governing Equations

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

Numerical Simulation of Powder Flow

Numerical Simulation of Powder Flow Numerical Simulation of Powder Flow Stefan Turek, Abderrahim Ouazzi Institut für Angewandte Mathematik, Univ. Dortmund http://www.mathematik.uni-dortmund.de/ls3 http://www.featflow.de Models for granular

More information

Numerische Simulation zur Herstellung monodisperser Tropfen in pneumatischen Ziehdüsen

Numerische Simulation zur Herstellung monodisperser Tropfen in pneumatischen Ziehdüsen Numerische Simulation zur Herstellung monodisperser Tropfen in pneumatischen Ziehdüsen DFG SPP 1423 Prozess-Spray Prof. Dr. Stefan Turek, Dr. Institut für Angewandte Mathematik, LS III Technische Universität

More information

Lecture 2: Constitutive Relations

Lecture 2: Constitutive Relations Lecture 2: Constitutive Relations E. J. Hinch 1 Introduction This lecture discusses equations of motion for non-newtonian fluids. Any fluid must satisfy conservation of momentum ρ Du = p + σ + ρg (1) Dt

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

A numerical approximation with IP/SUPG algorithm for P-T-T viscoelastic flows

A numerical approximation with IP/SUPG algorithm for P-T-T viscoelastic flows Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 6 (2016, 152 161 Research Article A numerical approximation with IP/SUPG algorithm for P-T-T viscoelastic flows Lei Hou a, Yunqing Feng a,, Lin

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS Paulo J. Oliveira Departamento de Engenharia Electromecânica, Universidade da Beira Interior Rua Marquês D'Ávila e Bolama, 600

More information

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston Using Comsol Multiphysics to Model Viscoelastic Fluid Flow Bruce A. Finlayson, Professor Emeritus Department of Chemical Engineering University of Washington, Seattle, WA 98195-1750 finlayson@cheme.washington.edu

More information

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011 Notes by: Andy Thaler Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011 Many complex fluids are shear-thinning. Such a fluid has a shear

More information

Deformation of bovine eye fluid structure interaction between viscoelastic vitreous, non-linear elastic lens and sclera

Deformation of bovine eye fluid structure interaction between viscoelastic vitreous, non-linear elastic lens and sclera Karel October Tůma 24, Simulation 2018 of a bovine eye 1/19 Deformation of bovine eye fluid structure interaction between viscoelastic vitreous, non-linear elastic lens and sclera Karel Tůma 1 joint work

More information

A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation

A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation J. Non-Newtonian Fluid Mech. 147 (2007) 189 199 A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation Oscar M. Coronado a, Dhruv Arora a, Marek

More information

Oldroyd Viscoelastic Model Lecture Notes

Oldroyd Viscoelastic Model Lecture Notes Oldroyd Viscoelastic Model Lecture Notes Drew Wollman Portland State University Maseeh College of Engineering and Computer Science Department of Mechanical and Materials Engineering ME 510: Non-Newtonian

More information

Interfacial hoop stress and viscoelastic free surface flow instability. Michael D. Graham University of Wisconsin-Madison

Interfacial hoop stress and viscoelastic free surface flow instability. Michael D. Graham University of Wisconsin-Madison Interfacial hoop stress and viscoelastic free surface flow instability Michael D. Graham University of Wisconsin-Madison Free surface instabilities of viscoelastic flows Eccentric cylinders (Varela-Lopez

More information

Efficient simulation techniques for incompressible two-phase flow

Efficient simulation techniques for incompressible two-phase flow 3D-Surface Engineering für Werkzeugsysteme der Blechformteilefertigung - Erzeugung, Modellierung, Bearbeitung - Efficient simulation techniques for incompressible two-phase flow O. Mierka, O. Ouazzi, T.

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Transport equations, Navier Stokes equations Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav

More information

Rotating-surface-driven non-newtonian flow in a cylindrical enclosure

Rotating-surface-driven non-newtonian flow in a cylindrical enclosure Korea-Australia Rheology Journal Vol. 22, No. 4, December 2010 pp. 265-272 Rotating-surface-driven non-newtonian flow in a cylindrical enclosure Yalin Kaptan 1, *, Ali Ecder 2 and Kunt Atalik 2 1 Hansung

More information

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Excerpt from the Proceedings of the COMSOL Conference 9 Boston Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Daoyun Song *1, Rakesh K. Gupta 1 and Rajendra P. Chhabra

More information

Modeling of straight jet dynamics in electrospinning of polymer nanofibers

Modeling of straight jet dynamics in electrospinning of polymer nanofibers Modeling of straight jet dynamics in electrospinning of polymer nanofibers Rohan Pandya 1, Kumar Akash 2, Venkataramana Runkana 1 1 Tata Research Development and Design Centre, Tata Consultancy Services,

More information

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Modelling the Rheology of Semi-Concentrated Polymeric Composites THALES Project No 1188 Modelling the Rheology of Semi-Concentrated Polymeric Composites Research Team Evan Mitsoulis (PI), Professor, NTUA, Greece Costas Papoulias (Research Student), NTUA, Greece Souzanna

More information

Micro and Macro in the Dynamics of Dilute Polymer Solutions

Micro and Macro in the Dynamics of Dilute Polymer Solutions Micro and Macro in the Dynamics of Dilute Polymer Solutions Ravi Prakash Jagadeeshan Complex Fluid Mechanics Closed form equations Constitutive Equations Stress Calculator Simulations (BDS etc) Homogeneous

More information

A new numerical framework to simulate viscoelastic free-surface flows with the finitevolume

A new numerical framework to simulate viscoelastic free-surface flows with the finitevolume Journal of Physics: Conference Series PAPER OPEN ACCESS A new numerical framework to simulate viscoelastic free-surface flows with the finitevolume method Related content - Gravitational collapse and topology

More information

Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints

Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints M. Razzaq 1, J. Hron 2 and S. Turek 3 1 Institute of Applied Mathematics, TU Dortmund,

More information

Simple constitutive models for linear and branched polymers

Simple constitutive models for linear and branched polymers J. Non-Newtonian Fluid Mech. 116 (2003) 1 17 Simple constitutive models for linear and branched polymers Roger I. Tanner, Simin Nasseri School of Aerospace, Mechanical and Mechatronic Engineering, University

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

On the congruence of some network and pom-pom models

On the congruence of some network and pom-pom models Korea-Australia Rheology Journal Vol 8, No, March 2006 pp 9-4 On the congruence of some network and pom-pom models Roger I Tanner* School of Aerospace, Mechanical and Mechatronic Engineering, University

More information

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow Michael Köster, Michael Hinze, Stefan Turek Michael Köster Institute for Applied Mathematics TU Dortmund Trier,

More information

MODELLING MULTIPHASE FLOWS OF DISCRETE PARTICLES IN VISCOELASTIC FLUIDS

MODELLING MULTIPHASE FLOWS OF DISCRETE PARTICLES IN VISCOELASTIC FLUIDS MODELLING MULTIPHASE FLOWS OF DISCRETE PARTICLES IN VISCOELASTIC FLUIDS R. RIBEIRO 1, C. FERNANDES 1, S.A. FAROUGHI 2, G.H. McKINLEY 2 AND J.M. NÓBREGA 1 1 Institute for Polymers and Composites/i3N, University

More information

Viscoelasticity in mantle convection

Viscoelasticity in mantle convection Mgr. et Mgr. Vojtěch Patočka Supervised by: RNDr. Ondřej Čadek, CSc. [patocka@karel.troja.mff.cuni.cz] 5th June 2015 Content Method of implementation Model Method Testing the method Thermal convection

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

SOME THOUGHTS ON DIFFERENTIAL VISCOELASTIC MODELS AND THEIR NUMERICAL SOLUTION

SOME THOUGHTS ON DIFFERENTIAL VISCOELASTIC MODELS AND THEIR NUMERICAL SOLUTION CONFERENCE ON COMPLEX FLOWS OF COMPLEX FLUIDS University of Liverpool, UK, March 17-19, 2008 SOME THOUGHTS ON DIFFERENTIAL VISCOELASTIC MODELS AND THEIR NUMERICAL SOLUTION Paulo J. Oliveira Universidade

More information

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS FREE BOUNDARY PROBLEMS IN FLUID MECHANICS ANA MARIA SOANE AND ROUBEN ROSTAMIAN We consider a class of free boundary problems governed by the incompressible Navier-Stokes equations. Our objective is to

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

Role of polymers in the mixing of Rayleigh-Taylor turbulence

Role of polymers in the mixing of Rayleigh-Taylor turbulence Physics Department University of Genova Italy Role of polymers in the mixing of Rayleigh-Taylor turbulence Andrea Mazzino andrea.mazzino@unige.it Guido Boffetta: University of Torino (Italy) Stefano Musacchio:

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS FINITE STRAIN EFFECTS IN SOLIDS Consider an elastic solid in shear: Shear Stress σ(γ) = Gγ If we apply a shear in the opposite direction: Shear Stress σ( γ) = Gγ = σ(γ) This means that the shear stress

More information

Model-based analysis of polymer drag reduction in a turbulent channel flow

Model-based analysis of polymer drag reduction in a turbulent channel flow 2013 American Control Conference ACC Washington, DC, USA, June 17-19, 2013 Model-based analysis of polymer drag reduction in a turbulent channel flow Binh K. Lieu and Mihailo R. Jovanović Abstract We develop

More information

Some remarks on grad-div stabilization of incompressible flow simulations

Some remarks on grad-div stabilization of incompressible flow simulations Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University Göttingen M. Stynes Workshop Numerical Analysis

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

Viscoelastic Flows in Abrupt Contraction-Expansions

Viscoelastic Flows in Abrupt Contraction-Expansions Viscoelastic Flows in Abrupt Contraction-Expansions I. Fluid Rheology extension. In this note (I of IV) we summarize the rheological properties of the test fluid in shear and The viscoelastic fluid consists

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Code Verification of Multiphase Flow with MFIX

Code Verification of Multiphase Flow with MFIX Code Verification of Multiphase Flow with MFIX A N I R U D D H A C H O U D H A R Y ( A N I R U D D @ V T. E D U ), C H R I S T O P H E R J. ROY ( C J R O Y @ V T. E D U ), ( V I R G I N I A T E C H ) 23

More information

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay Dipartimento di Ingegneria Industriale, Università di Bergamo CERMICS-ENPC

More information

An introduction to implicit constitutive theory to describe the response of bodies

An introduction to implicit constitutive theory to describe the response of bodies An introduction to implicit constitutive theory to describe the response of bodies Vít Průša prusv@karlin.mff.cuni.cz Mathematical Institute, Charles University in Prague 3 July 2012 Balance laws, Navier

More information

SOME DYNAMICAL FEATURES OF THE TURBULENT FLOW OF A VISCOELASTIC FLUID FOR REDUCED DRAG

SOME DYNAMICAL FEATURES OF THE TURBULENT FLOW OF A VISCOELASTIC FLUID FOR REDUCED DRAG SOME DYNAMICAL FEATURES OF THE TURBULENT FLOW OF A VISCOELASTIC FLUID FOR REDUCED DRAG L. Thais Université de Lille Nord de France, USTL F9 Lille, France Laboratoire de Mécanique de Lille CNRS, UMR 817

More information

Finite Element-Fictitious Boundary Methods for the Numerical Simulation of Particulate Flows

Finite Element-Fictitious Boundary Methods for the Numerical Simulation of Particulate Flows Finite Element-Fictitious Boundary Methods for the Numerical Simulation of Particulate Flows Stefan Turek, Raphael Münster, Otto Mierka Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

Regularization modeling of turbulent mixing; sweeping the scales

Regularization modeling of turbulent mixing; sweeping the scales Regularization modeling of turbulent mixing; sweeping the scales Bernard J. Geurts Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven) D 2 HFest, July 22-28, 2007 Turbulence

More information

Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids

Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids Flow Turbulence Combust 2013) 90:69 94 DOI 10.1007/s10494-012-9424-x Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids P. R. Resende F. T. Pinho B. A. Younis K. Kim R. Sureshkumar Received:

More information

Madrid, 8-9 julio 2013

Madrid, 8-9 julio 2013 VI CURSO DE INTRODUCCION A LA REOLOGÍA Madrid, 8-9 julio 2013 NON-LINEAR VISCOELASTICITY Prof. Dr. Críspulo Gallegos Dpto. Ingeniería Química. Universidad de Huelva & Institute of Non-Newtonian Fluid Mechanics

More information

A Mixed Finite Element Formulation for Solving Phase Change Problems with Convection

A Mixed Finite Element Formulation for Solving Phase Change Problems with Convection A Mixed Finite Element Formulation for Solving Phase Change Problems with Convection Youssef Belhamadia 1, Abdoulaye S. Kane 2, and André Fortin 3 1 University of Alberta, Campus Saint-Jean and Department

More information

Purely irrotational theories of the effects of viscosity and viscoelasticity on capillary instability of a liquid cylinder

Purely irrotational theories of the effects of viscosity and viscoelasticity on capillary instability of a liquid cylinder ve-march17.tex 1 Purely irrotational theories of the effects of viscosity and viscoelasticity on capillary instability of a liquid cylinder J. Wang, D. D. Joseph and T. Funada Department of Aerospace Engineering

More information

Direct Simulation of the Motion of Solid Particles in Couette and Poiseuille Flows of Viscoelastic Fluids

Direct Simulation of the Motion of Solid Particles in Couette and Poiseuille Flows of Viscoelastic Fluids Direct Simulation of the Motion of Solid Particles in Couette and Poiseuille Flows of Viscoelastic Fluids by P. Y. Huang 1, J. Feng 2, H. H. Hu 3 and D. D. Joseph 1 1 Department of Aerospace Engineering

More information

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials. Rheology and Constitutive Equations Rheology = Greek verb to flow Rheology is the study of the flow and deformation of materials. The focus of rheology is primarily on the study of fundamental, or constitutive,

More information

Guideline for Rheological Measurements

Guideline for Rheological Measurements Guideline for Rheological Measurements Typical Measurements, Diagrams and Analyses in Rheology www.anton-paar.com General Information: = Measurement = Diagram = Analysis Important Rheological Variables:

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Numerical simulation of a viscous Oldroyd-B model

Numerical simulation of a viscous Oldroyd-B model Numerical simulation of a viscous Oldroyd-B model Bangwei She, Mária Lukáčová JGU-Mainz cooperation with Prof. M.Tabata, H. Notsu, A. Tezuka Waseda University IRTG 1529 Mathematical fluid dynamics Sino-German

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation

Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation Raanan Fattal a Raz Kupferman b, a School of Computer Science and Engineering, The Hebrew

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 13-14 December, 2017 1 / 30 Forewords

More information

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, Germany,

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, Germany, Volker John On the numerical simulation of population balance systems Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany, Free University of Berlin, Department

More information

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Explaining and modelling the rheology of polymeric fluids with the kinetic theory Explaining and modelling the rheology of polymeric fluids with the kinetic theory Dmitry Shogin University of Stavanger The National IOR Centre of Norway IOR Norway 2016 Workshop April 25, 2016 Overview

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Stability analysis of constitutive equations for polymer melts in viscometric flows

Stability analysis of constitutive equations for polymer melts in viscometric flows J. Non-Newtonian Fluid Mech. 103 (2002) 221 250 Stability analysis of constitutive equations for polymer melts in viscometric flows Anne M. Grillet 1, Arjen C.B. Bogaerds, Gerrit W.M. Peters, Frank P.T.

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Purely irrotational theories of the effects of viscosity and viscoelasticity on capillary instability of a liquid cylinder

Purely irrotational theories of the effects of viscosity and viscoelasticity on capillary instability of a liquid cylinder . Non-Newtonian Fluid Mech. 19 (005 106 116 Purely irrotational theories of the effects of viscosity and viscoelasticity on capillary instability of a liquid cylinder. Wang a, D.D. oseph a,, T. Funada

More information

12.1 Viscous potential flow (VPF)

12.1 Viscous potential flow (VPF) 1 Energy equation for irrotational theories of gas-liquid flow:: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF), dissipation method (DM) 1.1 Viscous potential flow

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch Transport equation cavitation models in an unstructured flow solver Kilian Claramunt, Charles Hirsch SHF Conference on hydraulic machines and cavitation / air in water pipes June 5-6, 2013, Grenoble, France

More information

Effect of Thermal Radiation on the Casson Thin Liquid Film Flow over a Stretching Sheet

Effect of Thermal Radiation on the Casson Thin Liquid Film Flow over a Stretching Sheet Global Journal of Pure and Applied Mathematics. ISSN 0973-768 Volume 3, Number 6 (207), pp. 575-592 Research India Publications http://www.ripublication.com Effect of Thermal Radiation on the Casson Thin

More information

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES Kazuya Yokomizo 1, Makoto Iwamura 2 and Hideki Tomiyama 1 1 The Japan Steel Works, LTD., Hiroshima Research Laboratory,

More information

Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus

Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus T.S.L Radhika, Aditya Vikram Singh Abstract In this paper, the flow of an incompressible non Newtonian

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow

Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow Aaron P.R. berle, Donald G. Baird, and Peter Wapperom* Departments of Chemical

More information

Pressure corrections for viscoelastic potential flow analysis of capillary instability

Pressure corrections for viscoelastic potential flow analysis of capillary instability ve-july29-4.tex 1 Pressure corrections for viscoelastic potential flow analysis of capillary instability J. Wang, D. D. Joseph and T. Funada Department of Aerospace Engineering and Mechanics, University

More information

very elongated in streamwise direction

very elongated in streamwise direction Linear analyses: Input-output vs. Stability Has much of the phenomenology of boundary la ut analysis of Linearized Navier-Stokes (Cont.) AMPLIFICATION: 1 y. z x 1 STABILITY: Transitional v = (bypass) T

More information

Numerical simulation and benchmarking of fluid-structure interaction with application to hemodynamics

Numerical simulation and benchmarking of fluid-structure interaction with application to hemodynamics Numerical simulation and benchmarking of fluid-structure interaction with application to hemodynamics M. Razzaq a,, S. Turek a J. Hron a,b, J. F. Acker a with support by F. Weichert c, I. Q. Grunwald,

More information

Vít Průša (joint work with K.R. Rajagopal) 30 October Mathematical Institute, Charles University

Vít Průša (joint work with K.R. Rajagopal) 30 October Mathematical Institute, Charles University On models for viscoelastic fluid-like materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck Boussinesq type approximations Vít Průša (joint work with

More information

Chapter 3: Newtonian Fluid Mechanics. Molecular Forces (contact) this is the tough one. choose a surface through P

Chapter 3: Newtonian Fluid Mechanics. Molecular Forces (contact) this is the tough one. choose a surface through P // Molecular Constitutive Modeling Begin with a picture (model) of the kind of material that interests you Derive how stress is produced by deformation of that picture Write the stress as a function of

More information

Outline. Motivation Governing equations and numerical methods Results: Discussion:

Outline. Motivation Governing equations and numerical methods Results: Discussion: Bifurcation phenomena in strong extensional flows (in a cross-slot geometry) F. A. Cruz 1,*, R. J. Poole 2, F. T. Pinho 3, P.J. Oliveira 4, M. A. Alves 1 1 Departamento de Engenharia Química, CEFT, Faculdade

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information