Madrid, 8-9 julio 2013

Size: px
Start display at page:

Download "Madrid, 8-9 julio 2013"

Transcription

1 VI CURSO DE INTRODUCCION A LA REOLOGÍA Madrid, 8-9 julio 2013 NON-LINEAR VISCOELASTICITY Prof. Dr. Críspulo Gallegos Dpto. Ingeniería Química. Universidad de Huelva & Institute of Non-Newtonian Fluid Mechanics (UK)

2 OUTLINE 1. Introduction 2. Continuous Mechanics description of non-linear phenomena 3. Normal Stresses 4. Relationships between viscometric functions and linear viscoelastic functions 5. Extensional flow

3 1. INTRODUCTION Linear viscoelastic behavior is exhibited by a material that is subjected to a deformation that is either very small or very slow. Linear properties are of interest, because they are closely related to molecular structure. On the other hand, the industrial processing of viscoelastic materials always involves large, rapid deformations in which the behavior is nonlinear.

4 1. INTRODUCTION For linear behavior, the Boltzmann superposition principle describes the response to any deformation, as long as it is very small or very slow. When a viscoelastic material is subjected to a deformation that is neither very small nor very slow, its behaviour is no longer linear, and there is no universal rheological constitutive equation that can predict the response of the material to such a deformation. One approach to describing nonlinear behaviour is based on continuum mechanics principles and attempts to establish a rheological constitutive equation to replace the Boltzmann principle.

5 1. INTRODUCTION While continuum mechanics models sometimes contain elements inspired by molecular or thermodynamic concepts, they are basically empirical. This means that their applicability outside of the conditions under which their predictions can be tested by experiment is unreliable. Another approach is to build up a model of flow behavior starting from a picture of the material at the molecular level. This is very complex, and some degree of success has been achieved only when the problem is drastically simplified: attention is focused on one molecule, with the influence of the surrounding molecules modeled by representing them as a tube or a series of slip-links that severely restrict the motion of the molecule of interest.

6 2. CONTINUOUS MECHANICS DESCRIPTION Wagner (1979) proposed the introduction of a nonlinear memory function to correct some of the deficiencies of the rubberlike liquid model. Taking into account that the relaxation of stress following a large step strain can often be separated into time-dependent and straindependent factors, Wagner proposed the use of a memory function defined as the product of the linear memory function and the damping function. This function h(i 1,I 2 ) depends on the Finger strain tensor: ij t ( ) m( t t) h( I1, I 2 t ) B ( t, t) dt In this model, the damping function is an empirical function whose parameters are determined by fitting experimental data. This model predicts material shear-thinning characteristics. ij

7 2. CONTINUOUS MECHANICS DESCRIPTION SIMPLE SHEAR t ( t) m( t t') h( ) ( t, t') d t' h( ) G(, t t' ) G( t t' )

8 h () 2. CONTINUOUS MECHANICS DESCRIPTION Simple exponential (Wagner): Sum of exponentials (Osaki): h( ) exp Sigmoidal-type equations (Soskey-Winter, Papanastasiou et al, ): k h( ) a exp k ( a) exp k h( ) h( ) 1 1 a 2 2 1,0 0,8 0,6 egg yolk sucrose ester 0 % 8 % 1 % 7 % 2 % 6 % 4 % 4 % 6 % 2 % 7 % 1 % 8 % 0 % Soskey-Winter's model h( ) 1 1 a b 0,4 0,2 0,0 0,0 0,5 1,0 1,5 2,0

9 2. CONTINUOUS MECHANICS DESCRIPTION SHEAR HISTORY t t' h t, t ' ' dg t t, dt dt' LINEAR RELAXATION MODULUS Transient viscosity: G ( t) H ( ) e t / d (ln( )) 1 t, t H ( ) e tt' / h( ) t, t' d ln dt'

10 2. CONTINUOUS MECHANICS DESCRIPTION t t for t t ' ' WAGNER DAMPING FUNCTION ln 1 2 d k H e h k SOSKEY-WINTER DAMPING FUNCTION b a h 1 1 ' ln ' ' 1 ) ( / ' dt d t t t t a e H b t t SHEAR HISTORY FOR STEADY-STATE CONDITIONS

11 2. CONTINUOUS MECHANICS DESCRIPTION B (Pa.s) 10 4 (Pa.s) Experim ental data Sos key-winter function Wagner function Carreau A model s s s -1 Soskey-Winter f unction Shear rate (s -1 ) t (s) Experimental and predicted values of the steady-state viscosity for a lubricating grease (T = 25ºC) Experimental and predicted values of the transient flow viscosity for a lubricating grease (T = 25ºC).

12 2. CONTINUOUS MECHANICS DESCRIPTION n g ( t t')/ ( t) i e i e k ( t, t') ( t t') dt' i 1 i ( ) n i 1 g i i 1 ki 2 (Pa.s) Experimental flow curve Fit from continuous spectrum Fit from discrete spectrum 10 3 Experimental and predicted values of the steady-state viscosity for a food emulsion showing wall-slip phenomena (T = 25ºC) (1/s)

13 3. NORMAL STRESSES In large deformations, normal stress differences in shear flow may appear due to non-linear viscoelasticity effects. In this sense, unless the shear rate is very low, nonlinearity manifests itself by a dependency of viscosity on shear rate and the appearance of differences between the normal stresses in three orthogonal directions. Simple shear and other flows that are rheologically equivalent to it are called viscometric flows. The components of the shear rate tensor are shown below: ij

14 3. NORMAL STRESSES Three material functions completely describe the nonlinear behavior of a fluid in a viscometric flow, the viscosity and the first and second normal stress differences. These are called the viscometric functions: ( ) / N ( 1 ) N ( 2 ) 22 33

15 3. NORMAL STRESSES The first and second normal stress difference coefficients are defined as follows: 2 ( ) N ( ) / ( ) N ( ) / 2 2 Newtonian fluid Non-Newtonian fluid Weissenberg effect N 1 N2 0 Interesting effects: Barus effect (die swell)

16 3. NORMAL STRESSES N 1 m 1 m 2 In a wide range of shear rates

17 3. NORMAL STRESSES A plot of N1 vs. σ at various temperatures for the polymer solution D2, which is a 10% w/v solution of polyisobutylene (Oppanol B50) in dekalin N 1 a a is approximately 2

18 3. NORMAL STRESSES Viscometric data for a Boger fluid: 0.184% polyisobutylene in a mixture of kerosene and polybutene. 25ºC.

19 4. RELATIONSHIPS BETWEEN VISCOMETRIC FUNCTIONS AND LINEAR VISCOELASTIC FUNCTIONS Since the departure from a Newtonian response in the viscometric functions and the dynamic functions can be ascribed to viscoelasticity, it is not surprising to find that there are relationships between the various rheometrical functions. It is not difficult to deduce the exact relationships in the lower limits of frequency and shear rate:

20 4. RELATIONSHIPS BETWEEN VISCOMETRIC FUNCTIONS AND LINEAR VISCOELASTIC FUNCTIONS Various attempts have been made to develop empirical relationships between η and η' at other than the lower limits of shear rate and frequency. The most popular, and most successful in this respect, certainly for polymeric liquids, is the so-called Cox-Merz rule, which proposes that η should be the same function of the shear rate as η* is of ω.

21 4. RELATIONSHIPS BETWEEN VISCOMETRIC FUNCTIONS AND LINEAR VISCOELASTIC FUNCTIONS The Cox-Merz rule applied to the polymer solution D1, which is a 2% w/v polyisobutylene solution in dekalin. 25ºC.

22 4. RELATIONSHIPS BETWEEN VISCOMETRIC FUNCTIONS AND LINEAR VISCOELASTIC FUNCTIONS A relationship analogous to the Cox-Merz rule could be expected between G' and N1: Asymptotic approach of oscillatory and steady shear parameters. Steady shear and dynamic data for the polymer solution D3, which is a 1.5% w/v polyisobutylene solution in dekalin. 20ºC.

23 5. EXTENSIONAL FLOW

24 5. EXTENSIONAL FLOW Extensional flows are of particular importance in the study of nonlinear viscoelasticity. In this type of flow, material elements are stretched very rapidly along streamlines. Uniaxial (tensile), equibiaxial (usually called biaxial), and planar extension have all been used, but the response to uniaxial extension is the easiest to generate, and the response to this deformation has been found to be quite sensitive to certain aspects of polymer molecular structure.

25 5. EXTENSIONAL FLOW A good example is found in the flow of a particle in and out of a short tube, which is the kind of flow experienced when liquids such as ketchup, washing-up liquid and skin lotion are squeezed from plastic bottles, or when toothpastes, meat pastes and processed cheese are squeezed from tubes.

26 5. EXTENSIONAL FLOW UNIAXIAL EXTENSION

27 5. EXTENSIONAL FLOW Effect of open siphon

28 5. EXTENSIONAL FLOW

29 5. EXTENSIONAL FLOW

30 5. EXTENSIONAL FLOW

31 5. EXTENSIONAL FLOW

32 5. EXTENSIONAL FLOW A fluid for which the extensional viscosity increases with increasing strain rate is said to be 'tension-thickening', whilst, if decreases with increasing strain rate, it is said to be 'tension-thinning'. Experimentally, it is often not possible to reach the steady state. Under these circumstances, it is convenient to define a transient extensional viscosity, which is clearly a function of t as well as. ( t, ) ( t, ) / E At longer times, it is generally assumed that the stress will approach a limiting constant value E lim (, ) E t t ( ) E

33 5. EXTENSIONAL FLOW For the special case of linear viscoelastic behaviour, the tensile stress growth coefficient reduces to just a function of time, and becomes equal to 3 times the shear stress growth coefficient: ) ( 3 ) ( ), ( lim 0 t t t E E

34 5. EXTENSIONAL FLOW Extensional viscosity growth as a function of time t for a low-density polyethylene melt. 423 K

35 5. EXTENSIONAL FLOW The shear (dotted line) and extensional (solid line) viscosities of a dilute fibre suspension, at comparable deformation rates.

36 5. EXTENSIONAL FLOW The shear (dotted line) and extensional (solid line) viscosities of a dilute solution of linear polymer.

37 5. EXTENSIONAL FLOW Viscometric data for aqueous solutions of polyacrylamide (1175 grade)

38 5. EXTENSIONAL FLOW

39 5. EXTENSIONAL FLOW Extensional viscosity and shear viscosity as functions of stress for the low-density polyethylene designated IUPAC A. 423 K

40 5. EXTENSIONAL FLOW The effect of branching on the extensional viscosity of polymer melts. The shear and extensional viscosities of two polymer melts and their 50/50 blend.

41 5. EXTENSIONAL FLOW The effect of temperature and molecular weight on the shear (dotted lines) and extensional (solid lines) viscosity of a polymer melt. The effect of branching and molecular weight distribution on extensional viscosity of polymer melts.

42 5. EXTENSIONAL FLOW

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS FINITE STRAIN EFFECTS IN SOLIDS Consider an elastic solid in shear: Shear Stress σ(γ) = Gγ If we apply a shear in the opposite direction: Shear Stress σ( γ) = Gγ = σ(γ) This means that the shear stress

More information

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials. Rheology and Constitutive Equations Rheology = Greek verb to flow Rheology is the study of the flow and deformation of materials. The focus of rheology is primarily on the study of fundamental, or constitutive,

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Modelling the Rheology of Semi-Concentrated Polymeric Composites THALES Project No 1188 Modelling the Rheology of Semi-Concentrated Polymeric Composites Research Team Evan Mitsoulis (PI), Professor, NTUA, Greece Costas Papoulias (Research Student), NTUA, Greece Souzanna

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Lecture 2. Simple shear devices. Simple shear devices 2. Simple shear devices 3. Moving plate. Velocity V. Force F. Area A. height h.

Lecture 2. Simple shear devices. Simple shear devices 2. Simple shear devices 3. Moving plate. Velocity V. Force F. Area A. height h. Lecture 2 Rheometry Simple shear devices Steady shear viscosity Normal stresses Oscillating shear Extensional viscosity Scalings Nondimensional parameter Simple shear devices Conceptual device for simple

More information

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review CM465 Lectures -3: Intro, Mathematical //6 Chapter 4: Standard Flows CM465 Polymer Rheology Michigan Tech Newtonian fluids: vs. non-newtonian fluids: How can we investigate non-newtonian behavior? CONSTANT

More information

Stress Overshoot of Polymer Solutions at High Rates of Shear

Stress Overshoot of Polymer Solutions at High Rates of Shear Stress Overshoot of Polymer Solutions at High Rates of Shear K. OSAKI, T. INOUE, T. ISOMURA Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan Received 3 April 2000; revised

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India Polymer Rheology P Sunthar Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai 400076, India P.Sunthar@iitb.ac.in 05 Jan 2010 Introduction Phenomenology Modelling Outline of

More information

SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS. where most of body fluids like blood and mucus are non-newtonian ones.

SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS. where most of body fluids like blood and mucus are non-newtonian ones. SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS Non-Newtonian fluids abound in many aspects of life. They appear in nature, where most of body fluids like blood and mucus are non-newtonian ones.

More information

Viscoelastic Flows in Abrupt Contraction-Expansions

Viscoelastic Flows in Abrupt Contraction-Expansions Viscoelastic Flows in Abrupt Contraction-Expansions I. Fluid Rheology extension. In this note (I of IV) we summarize the rheological properties of the test fluid in shear and The viscoelastic fluid consists

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

More information

Seminar Basics on Rheology Extensional Characterization of Fluids

Seminar Basics on Rheology Extensional Characterization of Fluids The world leader in serving science Seminar Basics on Rheology Extensional Characterization of Fluids Why is there a need for Extensional Rheology? Extensional flow fields are relevant in many technical

More information

Shear rheology of polymer melts

Shear rheology of polymer melts Shear rheology of polymer melts Dino Ferri dino.ferri@versalis.eni.com Politecnico Alessandria di Milano, 14/06/2002 22 nd October 2014 Outline - Review of some basic rheological concepts (simple shear,

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

More information

Oldroyd Viscoelastic Model Lecture Notes

Oldroyd Viscoelastic Model Lecture Notes Oldroyd Viscoelastic Model Lecture Notes Drew Wollman Portland State University Maseeh College of Engineering and Computer Science Department of Mechanical and Materials Engineering ME 510: Non-Newtonian

More information

The Effect of Rheology in Polymer Processing: A Simulation Point of View

The Effect of Rheology in Polymer Processing: A Simulation Point of View ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 10, 2002 The Effect of Rheology in Polymer Processing: A Simulation Point of View Evan Mitsoulis School of Mining Engineering and Metallurgy, National

More information

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS 1 th Fall Rubber Colloquium EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS Jochen Kroll, Stefan Turek, Patrick Westervoß Institute of Applied Mathematics (LS III), TU Dortmund

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

5 The Oldroyd-B fluid

5 The Oldroyd-B fluid 5 The Oldroyd-B fluid Last time we started from a microscopic dumbbell with a linear entropic spring, and derived the Oldroyd-B equations: A u = u ρ + u u = σ 2 pi + η u + u 3 + u A A u u A = τ Note that

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Pharmaceutics I صيدالنيات 1. Unit 6

Pharmaceutics I صيدالنيات 1. Unit 6 Pharmaceutics I صيدالنيات 1 Unit 6 1 Rheology of suspensions Rheology, the study of flow, addresses the viscosity characteristics of powders, fluids, and semisolids. Materials are divided into two general

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

On the congruence of some network and pom-pom models

On the congruence of some network and pom-pom models Korea-Australia Rheology Journal Vol 8, No, March 2006 pp 9-4 On the congruence of some network and pom-pom models Roger I Tanner* School of Aerospace, Mechanical and Mechatronic Engineering, University

More information

NONLINEAR COMPLEX MODULUS IN BITUMENS

NONLINEAR COMPLEX MODULUS IN BITUMENS NONLINEAR COMPLEX MODULUS IN BITUMENS J. Stastna, K. Jorshari and L. Zanzotto Bituminous Materials Chair University of Calgary 2500 University Drive NW Calgary, Alberta T2N 1N4 Canada Large Amplitude Oscillations

More information

Constitutive equation and damping function for entangled polymers

Constitutive equation and damping function for entangled polymers Korea-Australia Rheology Journal Vol. 11, No. 4, December 1999 pp.287-291 Constitutive equation and damping function for entangled polymers Kunihiro Osaki Institute for Chemical Research, Kyoto University

More information

Rheology. A Tool for Characterization of Materials and Optimization of Polymer Processing

Rheology. A Tool for Characterization of Materials and Optimization of Polymer Processing Rheology A Tool for Characterization of Materials and Optimization of Polymer Processing Rheology of Polymer Materials LINEAR AND NONLINEAR FLOW PROPERTIES Polymer Engineering stands for scientific and

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

Contraction flow measurements of extensional properties

Contraction flow measurements of extensional properties Contraction flow measurements of extensional properties Mats Stading ) and Leif Bohlin ) Chalmers University of Technology and SIK, The Swedish Institute for Food and Biotechnology, PO Box 54, S-4 9 Göteborg,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology Viscoelasticity, Creep and Oscillation Experiment Basic Seminar Applied Rheology Overview Repetition of some basic terms Viscoelastic behavior Experimental approach to viscoelasticity Creep- and recovery

More information

CPGAN # 006. The Basics of Filament Stretching Rheometry

CPGAN # 006. The Basics of Filament Stretching Rheometry Introduction Measurement of the elongational behavior of fluids is important both for basic research purposes and in industrial applications, since many complex flows contain strong extensional components,

More information

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project Rheology Simulator PASTA (Polymer rheology Analyzer with Sliplink model of entanglement) Tatsuya Shoji JCII, Doi Project 0 sec -3 msec -6 sec -9 nsec -12 psec -15 fsec GOURMET SUSHI PASTA COGNAC MUFFIN

More information

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate CM4655 Polymer heology Lab Torsional Shear Flow: Parallel-plate and Cone-and-plate (Steady and SAOS) Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University r (-plane

More information

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book 2.341J MACROMOLECULAR HYDRODYNAMICS Spring 2012 QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT Please answer each question in a SEPARATE book You may use the course textbook (DPL) and

More information

A Technique for Characterizing Complex Polymer Solutions in Extensional Flows. Gavin Braithwaite Stephen Spiegelberg

A Technique for Characterizing Complex Polymer Solutions in Extensional Flows. Gavin Braithwaite Stephen Spiegelberg A Technique for Characterizing Complex Polymer Solutions in Extensional Flows Gavin Braithwaite Stephen Spiegelberg Cambridge Polymer Group Inc. Ward Street, Somerville. MA 0243 http://www.campoly.com

More information

On the performance of enhanced constitutive models for polymer melts in a cross-slot flow

On the performance of enhanced constitutive models for polymer melts in a cross-slot flow J. Non-Newtonian Fluid Mech. 82 (1999) 387±427 On the performance of enhanced constitutive models for polymer melts in a cross-slot flow Gerrit W.M. Peters *, Jeroen F.M. Schoonen, Frank P.T. Baaijens,

More information

Linear viscoelastic behavior

Linear viscoelastic behavior Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Linear viscoelastic behavior 1. The constitutive equation depends on load history. 2. Diagnostic

More information

Guideline for Rheological Measurements

Guideline for Rheological Measurements Guideline for Rheological Measurements Typical Measurements, Diagrams and Analyses in Rheology www.anton-paar.com General Information: = Measurement = Diagram = Analysis Important Rheological Variables:

More information

Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE

Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE Bull. Mater. Sci., Vol. 27, No. 5, October 2004, pp. 409 415. Indian Academy of Sciences. Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced

More information

Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts

Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts Downloaded from orbit.dtu.dk on: Sep 27, 2018 Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts Wagner, Manfred H.; Kheirandish, Saeid;

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [HEAL-Link Consortium] On: 19 November 2008 Access details: Access Details: [subscription number 772725613] Publisher Taylor & Francis Informa Ltd Registered in England

More information

On the effects of Non-Newtonian fluids above the ribbing instability

On the effects of Non-Newtonian fluids above the ribbing instability On the effects of Non-Newtonian fluids above the ribbing instability L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405

More information

(2.1) Is often expressed using a dimensionless drag coefficient:

(2.1) Is often expressed using a dimensionless drag coefficient: 1. Introduction Multiphase materials occur in many fields of natural and engineering science, industry, and daily life. Biological materials such as blood or cell suspensions, pharmaceutical or food products,

More information

Rheology/Viscometry. Viscometry

Rheology/Viscometry. Viscometry Viscometry Capillary viscometry is considered as the most accurate method for the determination of the viscosity of Newtonian liquids. By this technique the time is measured a certain volume needs to flow

More information

Pharmaceutics I. Unit 6 Rheology of suspensions

Pharmaceutics I. Unit 6 Rheology of suspensions Pharmaceutics I اينالديصيدلينيات 1 Unit 6 Rheology of suspensions 1 Rheology, the science of the flow or deformation of matter (liquid or soft solid) under the effect of an applied force. It addresses

More information

VISCOELASTIC SIMULATIONS WITH INTEGRAL MODELS AT EXTREMELY HIGH SHEAR RATES

VISCOELASTIC SIMULATIONS WITH INTEGRAL MODELS AT EXTREMELY HIGH SHEAR RATES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 VISCOELASTIC SIMULATIONS WITH INTEGRAL MODELS AT EXTREMELY HIGH SHEAR RATES Evan Mitsoulis School of Mining Engineering

More information

Lecture 2: Constitutive Relations

Lecture 2: Constitutive Relations Lecture 2: Constitutive Relations E. J. Hinch 1 Introduction This lecture discusses equations of motion for non-newtonian fluids. Any fluid must satisfy conservation of momentum ρ Du = p + σ + ρg (1) Dt

More information

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Downloaded from orbit.dtu.dk on: Mar 11, 2019 Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Rasmussen, Henrik K.; Nielsen, Jens Kromann; Bach, Anders; Hassager,

More information

UNIVERSITY OF WALES INSTITUTE OF NON-NEWTONIAN FLUID MECHANICS CONFERENCE ON INDUSTRIAL RHEOLOGY. Hoole Hall Hotel, Chester 5-7 April 2004 PROGRAMME

UNIVERSITY OF WALES INSTITUTE OF NON-NEWTONIAN FLUID MECHANICS CONFERENCE ON INDUSTRIAL RHEOLOGY. Hoole Hall Hotel, Chester 5-7 April 2004 PROGRAMME UNIVERSITY OF WALES INSTITUTE OF NON-NEWTONIAN FLUID MECHANICS CONFERENCE ON INDUSTRIAL RHEOLOGY Hoole Hall Hotel, Chester 5-7 April 24 PROGRAMME 27. Mar. 24 PROGRAMME Monday 5 April - Afternoon 2:3 Lunch

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

Multi-mode revisited

Multi-mode revisited Multi-mode revisited Testing the application of shift factors S.J.M Hellenbrand 515217 MT 7.29 Coaches: Ir. L.C.A. van Breemen Dr. Ir. L.E. Govaert 2-7- 7 Contents Contents 1 Introduction 2 I Polymers

More information

Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

More information

H. W. Müllner (Sp), J. Eberhardsteiner, Technische Universität Wien (A); W. Fidi, Semperit Technische Produkte Ges.m.b.H. & Co. KG, Wimpassing (A)

H. W. Müllner (Sp), J. Eberhardsteiner, Technische Universität Wien (A); W. Fidi, Semperit Technische Produkte Ges.m.b.H. & Co. KG, Wimpassing (A) Dienstag, 4. Juli 2006 Tuesday, July 4, 2006, 9.30 10.00 h Section A Rheologische Charakterisierung der Strangaufweitung von Kautschukmischungen mittels numerischer Simulationen Rheological Characterisation

More information

Chapter 3: Newtonian Fluid Mechanics. Molecular Forces (contact) this is the tough one. choose a surface through P

Chapter 3: Newtonian Fluid Mechanics. Molecular Forces (contact) this is the tough one. choose a surface through P // Molecular Constitutive Modeling Begin with a picture (model) of the kind of material that interests you Derive how stress is produced by deformation of that picture Write the stress as a function of

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

Measurement and Prediction of Fluid Viscosities at High Shear Rates

Measurement and Prediction of Fluid Viscosities at High Shear Rates Chapter 5 Measurement and Prediction of Fluid Viscosities at High Shear Rates Jeshwanth K. Rameshwaram and Tien T. Dao Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54282

More information

Tubeless Siphon and Die Swell Demonstration

Tubeless Siphon and Die Swell Demonstration Tubeless Siphon and Die Swell Demonstration Christopher W. MacMinn & Gareth H. McKinley September 26, 2004 Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering Massachusetts Institute

More information

Kostas D. Housiadas. Teaching experience: University of Patras: Simulations of transport phenomena, Spring 2005.

Kostas D. Housiadas. Teaching experience: University of Patras: Simulations of transport phenomena, Spring 2005. Kostas D. Housiadas Personal: Born: in Athens, Greece. Present position: Professor, Department of Mathematics, University of the Aegean, Karlovassi, Samos, Greece. Phone number: +30-22730-82152, E-mail:

More information

Final Polymer Processing

Final Polymer Processing 030319 Final Polymer Processing I) Blow molding is used to produce plastic bottles and a blow molding machine was seen during the Equistar tour. In blow molding a tubular parison is produced by extrusion

More information

Analytical models for the inflation of a polymeric tube

Analytical models for the inflation of a polymeric tube Eur. J. Mech. A/Solids 19 2) 89 14 2 Éditions scientifiques et médicales Elsevier SAS. All rights reserved Analytical models for the inflation of a polymeric tube F.M. Schmi a, *, A. odriguez-villa b,

More information

Simple constitutive models for linear and branched polymers

Simple constitutive models for linear and branched polymers J. Non-Newtonian Fluid Mech. 116 (2003) 1 17 Simple constitutive models for linear and branched polymers Roger I. Tanner, Simin Nasseri School of Aerospace, Mechanical and Mechatronic Engineering, University

More information

Rheometry. II.1 Introduction

Rheometry. II.1 Introduction II Rheometry II.1 Introduction Structured materials are generally composed of microstructures dispersed in a homogeneous phase [30]. These materials usually have a yield stress, i.e. a threshold stress

More information

Interfacial hoop stress and viscoelastic free surface flow instability. Michael D. Graham University of Wisconsin-Madison

Interfacial hoop stress and viscoelastic free surface flow instability. Michael D. Graham University of Wisconsin-Madison Interfacial hoop stress and viscoelastic free surface flow instability Michael D. Graham University of Wisconsin-Madison Free surface instabilities of viscoelastic flows Eccentric cylinders (Varela-Lopez

More information

Measurement of the Transverse and Longitudinal Viscosities of Continuous Fibre Reinforced Composites

Measurement of the Transverse and Longitudinal Viscosities of Continuous Fibre Reinforced Composites Measurement of the ransverse and Longitudinal Viscosities of Continuous Fibre Reinforced Composites P. Harrison,. Haylock and A.C. Long University of Nottingham - School of Mechanical, Materials & Manufacturing

More information

An introduction to implicit constitutive theory to describe the response of bodies

An introduction to implicit constitutive theory to describe the response of bodies An introduction to implicit constitutive theory to describe the response of bodies Vít Průša prusv@karlin.mff.cuni.cz Mathematical Institute, Charles University in Prague 3 July 2012 Balance laws, Navier

More information

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX 66 6th RILEM Symposium PTEBM'03, Zurich, 2003 DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX L. Zanzotto, O.J. Vacin and J. Stastna University of Calgary, Canada Abstract: A commercially

More information

Effect of Molecular Weight on Viscosity of Polypropylene Melt by Capillary Rheometry

Effect of Molecular Weight on Viscosity of Polypropylene Melt by Capillary Rheometry RESEARCH ARTICLE Effect of Molecular Weight on Viscosity of Polypropylene Melt by Capillary Rheometry Daniel N. Njoroge Department of Mechanical and Manufacturing Engineering Aalborg University Fibigerstraede

More information

CM4650 Polymer Rheology

CM4650 Polymer Rheology CM4650 Polymer Rheology CM4650 Polymer Rheology Michigan Tech Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University Text: Faith A. Morrison, Understanding Rheology

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS

SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS 1 INTRODUCTION TA Instruments Rheology Advantage spectral analysis and interconversion software was developed in collaboration

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

This is a repository copy of Theoretical molecular rheology of branched polymers in simple and complex flows: the pom-pom model.

This is a repository copy of Theoretical molecular rheology of branched polymers in simple and complex flows: the pom-pom model. This is a repository copy of Theoretical molecular rheology of branched polymers in simple and complex flows: the pom-pom model. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/1503/

More information

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES Kazuya Yokomizo 1, Makoto Iwamura 2 and Hideki Tomiyama 1 1 The Japan Steel Works, LTD., Hiroshima Research Laboratory,

More information

Classroom In this section of Resonance

Classroom In this section of Resonance Classroom In this section of Resonance, we invite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both.

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

ExperimentalObservations 2014 CM4650

ExperimentalObservations 2014 CM4650 Done with Material Functions. What now? 1. Intro 2. Vectors/tensors 3. Newtonian 4. Standard Flows 5. Material Functions 6. Experimental Behavior 7. Inelastic effects 8. Memory effects 9. Advanced 1. Rheometry

More information

G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers"

G. R. Strobl, Chapter 5 The Physics of Polymers, 2'nd Ed. Springer, NY, (1997). J. Ferry, Viscoelastic Behavior of Polymers G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers" Chapter 3: Specific Relaxations There are many types of relaxation processes

More information

Improved model of nonaffine strain measure

Improved model of nonaffine strain measure Improved model of nonaffine strain measure S. T. Milner a) ExxonMobil Research & Engineering, Route 22 East, Annandale, New Jersey 08801 (Received 27 December 2000; final revision received 3 April 2001)

More information

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit.

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit. CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called

More information

Measurement of Extensional Viscosity by the Stretching of Viscoelastic Liquid Columns. &-Q-pcq&~A

Measurement of Extensional Viscosity by the Stretching of Viscoelastic Liquid Columns. &-Q-pcq&~A Measurement of Extensional Viscosity by the Stretching of Viscoelastic Liquid Columns =F6 -I &-Q-pcq&~A $David Calvo and Norman Chigier Department of Mechanical Engineering Camegie Mellon University Pittsburgh,

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

2.1 Strain energy functions for incompressible materials

2.1 Strain energy functions for incompressible materials Chapter 2 Strain energy functions The aims of constitutive theories are to develop mathematical models for representing the real behavior of matter, to determine the material response and in general, to

More information

Measuring the rheology of thermoplastic polymer melts

Measuring the rheology of thermoplastic polymer melts Measuring the rheology of thermoplastic polymer melts Using rotational and capillary rheometry to characterize polymer melts RHEOLOGY AND VISCOSITY Introduction Rheology is the science of studying the

More information

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL 19, 211 Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields Hye-Jin Ahn and Ki-Won

More information

Development of a new opposed-nozzle fixture for measuring the extensional properties of low viscosity liquids

Development of a new opposed-nozzle fixture for measuring the extensional properties of low viscosity liquids Development of a new opposed-nozzle fixture for measuring the extensional properties of low viscosity liquids May-August, 2009 MIT, Harvard University and University of Minnesota F. Le Goupil, J. Soulages,

More information

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS Paulo J. Oliveira Departamento de Engenharia Electromecânica, Universidade da Beira Interior Rua Marquês D'Ávila e Bolama, 600

More information

On Relationship between PVT and Rheological Measurements of Polymer Melts

On Relationship between PVT and Rheological Measurements of Polymer Melts ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 3, 2005 On Relationship between PVT and Rheological Measurements of Polymer Melts Tomas Sedlacek, Peter Filip 2, Peter Saha Polymer Centre, Faculty

More information

THE SUBORDINATION OF THE THREE- DIMENSIONAL FLOW INSTALLATION IN THE CONVERGING CHANNEL ON RHEOLOGICAL CHARACTERISTICS OF POLYMER STREAM

THE SUBORDINATION OF THE THREE- DIMENSIONAL FLOW INSTALLATION IN THE CONVERGING CHANNEL ON RHEOLOGICAL CHARACTERISTICS OF POLYMER STREAM International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 13, December 2018, pp. 949-956, Article ID: IJCIET_09_13_095 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=13

More information

Linear viscoelastic models Part III. Start-up and transient flow effects from the molecular weight distribution

Linear viscoelastic models Part III. Start-up and transient flow effects from the molecular weight distribution Linear viscoelastic models Part III. Start-up and transient flow effects from the molecular weight distribution Tommi Borg 1 TomCoat Oy, Koskisenkuja 11, 625 Evijärvi, Finland Esko J. Pääkkönen Tampere

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

The Polymers Tug Back

The Polymers Tug Back Tugging at Polymers in Turbulent Flow The Polymers Tug Back Jean-Luc Thiffeault http://plasma.ap.columbia.edu/ jeanluc Department of Applied Physics and Applied Mathematics Columbia University Tugging

More information