Improved model of nonaffine strain measure

Size: px
Start display at page:

Download "Improved model of nonaffine strain measure"

Transcription

1 Improved model of nonaffine strain measure S. T. Milner a) ExxonMobil Research & Engineering, Route 22 East, Annandale, New Jersey (Received 27 December 2000; final revision received 3 April 2001) Synopsis A new calculation of the strain measure for entangled polymers is presented, in which the entanglement network is modeled as a set of entanglement points to which are attached four entanglement strands, randomly oriented in equilibrium. The network deforms nonaffinely to maintain a net zero force on each entanglement point, following a recent suggestion of Marrucci. The resulting strain measure in the case of uniaxial and biaxial extension as well as simple shear is well described by Q C /tr(c ) with 0.7, where C 1 is the Finger tensor. The resulting second normal stress ratio N 2 /N 1 is (1 )/ The original Doi Edwards strain measure is well described except for the second normal stress by this same function with The Society of Rheology. DOI: / Recently, Marrucci et al have proposed that the strain measure Q E of Doi and Edwards 1978a, 1978b, 1986 should be modified, to take into account the concept that the forces on each entanglement point must balance before and after a deformation. These authors argued that because entanglement points are massless, the putative four entanglement strands leading away from a given entanglement must carry forces that sum to zero. Since the magnitude of the force carried by an entanglement strand is equal to the thermal tension 3k B T/a absent chain stretching effects, the zero-force requirement at each entanglement point constrains the unit tangent vectors of the four participating entanglement strands to sum to zero. During a step deformation, all entanglement points would presumably move affinely initially. However, this will not guarantee that the new locations of the entanglement points satisfy the zero-force requirement. That is, the entanglement points must adjust their positions nonaffinely in some way after the initial step strain. Marrucci et al. proposed a rather idealized model of this nonaffine motion, a model in which the entanglement strands are constrained always to be parallel to one of the three principal axes of the extensional deformations they consider. Within this highly idealized model, they demonstrated that the strain measure Q E is not the celebrated Doi Edwards expression Q ij E E u i E u j / E u, 1 E u but becomes instead Q E C 1/2 tr C 1/2, 2 a Electronic mail: stmilne@erenj.com 2001 by The Society of Rheology, Inc. J. Rheol. 45 5, September/October /2001/45 5 /1023/6/$

2 1024 MILNER where C 1 E E T is the Finger tensor in terms of the deformation tensor E. The authors emphasize that their new proposed strain measure gives a much improved prediction of the normal stress ratio in shear, namely N 2 /N 1 1/4 in the limit of small strains as compared to the Doi Edwards value of 1/7. However, given the idealized nature of their model, and the sensitivity of such quantities as the normal stress ratio to details of the deformation process, a calculation more faithful to the physical proposal made by the authors seems warranted. This note presents the results of a more realistic calculation of the strain measure Q E resulting from nonaffine motion of entanglement points after a step strain. The present model is conceptually simple: 1 Repeatedly choose from an isotropic distribution initial unit tangent vectors u of the four strands emanating from an entanglement point. These will not in general sum to zero, of course. 2 While fixing the endpoints of the four vectors, adjust the location of the entanglement point e so that the four forces taken always to have constant magnitude sum to zero. The lengths of the four vectors are rescaled to unity after the adjustment; thus they are u u e u e. 3 The idea is that on the average, the endpoints of the four vectors, which are four other entanglement points, will be adjusting in some uncorrelated way to satisfy their own zero-force requirement. We are hence neglecting correlated motions of nearest-neighbor entanglements. 3 Now affinely deform the four vectors, with the origin taken at the entanglement point. Thus the four vectors become E u. In general, the corresponding forces always with constant magnitude equal to the thermal tension will no longer sum to zero. Again adjust the location of the entanglement point e, such that the sum of the forces vanishes. Now the displacement vectors with respect to the shifted entanglement point are u E u e. 4 4 Compute the corresponding stress tensor by averaging over the choice of the initial four tangent vectors, using the general expression T ij F i R j, 5 where is the number of strands per unit volume, F is the force on the th strand, and R is the end-to-end vector of the th strand. Assuming a constant tube diameter, the average volume per strand after deformation is R, hence 0 / R. The density of entanglement strands decreases after a deformation due to the retraction process. Hence the stress tensor is T ij 0 3k B T/a u i u / u j, 6 u where the averages are carried out over the initial isotropic set of values of u. The expression Eq. 6 is the same as for Doi and Edwards, but the deformation process, being stochastically nonaffine, is different from the usual affine u E u. It is then a simple matter to generate a set of entanglements and subject them to uniaxial, biaxial, and simple shear deformations for a range of strain amplitudes. The

3 NON-AFFINE STRAIN MEASURE 1025 FIG. 1. Normal stress T 11 T 22 vs uniaxial strain ; points are from stochastic average of nonaffine model, line is from Eq. 7 with 0.7. necessary averages over 1000 initial configurations were performed using MATHEMATICA in a few minutes of CPU time on a Macintosh G3. One important technical remark: when large shear deformations are applied, a few percent of the random initial configurations become degenerate, in that the entanglement point becomes coincident with one of the attachment points at some deformation. Rather than invent some continuation of the network and its deformation beyond this point, such conformations were eliminated entirely from the average which implies some small conformational bias in the initial random configurations. Surprisingly, the result of the calculation described above turns out to be simple: for volume-preserving uniaxial, biaxial, and shear strains, the strain measure within the present model turns out to be very well described by the form found in Marrucci et al. 2000, Q E C tr C, 7 but with an exponent of 0.7 rather than 1/2. The numerical results for the three different types of deformations are shown in Figs. 1 5, together with stresses predicted from Eq. 7 with 0.7. Unfortunately, Eq. 7 implies a normal stress ratio in the limit of low shear strains of N 2 /N 1 (1 )/2. For 0.7 this gives 0.15 rather than 1/4, and so spoils the perhaps fortuitous agreement between experiment and the results from the idealized model of Marrucci et al. FIG. 2. Normal stress T 11 T 33 vs biaxial strain ; points are from stochastic average of nonaffine model, line is from Eq. 7 with 0.7.

4 1026 MILNER FIG. 3. Shear stress vs shear strain ; points are from stochastic average of nonaffine model, line is from Eq. 7 with 0.7. One may relax the one key assumption of the present model, that the entanglement points to which the given entanglement point is attached themselves move strictly affinely, as follows: simply extend the model by adding one more more generations to the fourfold tree of entanglement strands. In other words, replace the four affinely moving points by four entanglement points that are themselves connected by entanglement strands to three other points that are assumed to move affinely. Having done this, one can carry out a similar stochastic averaging procedure to that described above, wherein not only the central entanglement point but also the four entanglement points to which it is connected move nonaffinely to satisfy the zero-force condition. Finally, the stress is evaluated only from contributions at the central entanglement point. In this way, the entanglement point can be progressively removed from any direct connection to affinely moving points. Although the numerical procedure is now an overnight job, the results are the same: Eq. 7 with 0.7 describes the results to within the noise. At this point, the main unphysical feature of the model so generalized is that the entanglement network, represented as a regular fourfold tree structure, contains no loops. However, the inclusion of loops in the structure poses conceptual problems within the model. If the topological structure were regular, then the starting state would be, e.g., a diamond lattice. Applying the zero-force condition at equilibrium would require the lattice to be regular, leading to a nonstochastic model much like that of Marrucci et al. Or, one may suppose the starting state to be fourfold connected but of irregular topology. It is hard to imagine how to construct such a state, especially without introducing trapped FIG. 4. First normal stress T 11 T 22 vs shear strain ; points are from stochastic average of nonaffine model, line is from Eq. 7 with 0.7.

5 NON-AFFINE STRAIN MEASURE 1027 FIG. 5. Second normal stress T 22 T 33 vs shear strain ; points are from stochastic average of nonaffine model, line is from Eq. 7 with 0.7. entanglements, which may become stressed when the system is deformed. Confronting these difficulties is left to future work. Of course, one can always take the point of view that the idealized model has suggested a simple family of strain measures, which may be used phenomenologically without reference to the idealized model. In fact, the Doi Edwards strain measure itself can be reasonably approximated by Eq. 7 with 0.8, except that the magnitude of the second normal stress is underpredicted for 0.8 we have 0.1 rather than the Doi Edwards 1/7. However, if one is inclined to take the physical model of nonaffine deformation more seriously, the present results show at least that the strain measure is sensitive to the details of the nonaffine deformation, and that the favorable results for of Marrucci et al. may be fortuitous. As a final remark, it is worth remembering that the most serious shortcoming of the Doi Edwards theory in the nonlinear regime is catastrophic shear thinning, leading to the prediction that uniform simple shear flows are unstable to shear-banding which is not observed. It can be shown that the strain measure Eq. 7 for either 1/2 or 0.7, in an independent alignment approximation IAA calculation of the nonlinear steady shear stress T 0 3kT/a 0 d Q E 8 still shear thins with an asymptotic exponent of 3/2. This result depends only on two properties of Q E): 1 for small shear strains gamma, Q xy (E) is linear in the strain ; and 2 for large shear strains, Q xy (E) falls off as 1/. Then, the large-shear behavior of T xy, is determined by the short-time behavior of the stress relaxation function (t). For the Doi Edwards stress relaxation function neglecting contourlength fluctuations, (t) goes as t 1/2 for short times. Experimentally, the behavior is more like t 3/4 corresponding to a power-law decay of G ( ) above the terminal peak with an exponent of 1/4. But for (t) going as t for any between zero and unity corresponding to a power law in G ( ) above the terminal time of 1, IAA leads to a steady state shear stress going as 1 for large shear rates, and hence catastropic shear thinning for any reasonable power law in (t), regardless of the details of Q E). The resolution of this conundrum lies elsewhere Marrucci 1996, Likhtman et al

6 1028 MILNER References Doi, M. and S. F. Edwards, Dynamics of concentrated polymer systems. Part 2: Molecular motion under flow, J. Chem. Soc., Faraday Trans. 2 74, a. Doi, M. and S. F. Edwards, Dynamics of concentrated polymer systems. Part 3: The constitutive equation, J. Chem. Soc., Faraday Trans. 2 74, b. Doi, M. and S. F. Edwards, The Theory of Polymer Dynamics Clarendon, Oxford, 1986, Chap. 7. Likhtman, A., S. T. Milner, and T. C. B. McLeish, Microscopic theory for the fast flow of polymer melts, Phys. Rev. Lett. 85, Marrucci, G., Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule, J. Non- Newtonian Fluid Mech. 62, Marrucci, G., F. Greco, and G. Ianniruberto, A simple strain measure for entangled polymers, J. Rheol. 44,

Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts

Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts Downloaded from orbit.dtu.dk on: Sep 27, 2018 Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts Wagner, Manfred H.; Kheirandish, Saeid;

More information

Stress Overshoot of Polymer Solutions at High Rates of Shear

Stress Overshoot of Polymer Solutions at High Rates of Shear Stress Overshoot of Polymer Solutions at High Rates of Shear K. OSAKI, T. INOUE, T. ISOMURA Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan Received 3 April 2000; revised

More information

Constitutive equation and damping function for entangled polymers

Constitutive equation and damping function for entangled polymers Korea-Australia Rheology Journal Vol. 11, No. 4, December 1999 pp.287-291 Constitutive equation and damping function for entangled polymers Kunihiro Osaki Institute for Chemical Research, Kyoto University

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers

A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers Macromolecular Research, Vol. 10, No. 5, pp 266-272 (2002) A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers Kwang Soo Cho*, Woo Sik Kim, Dong-ho Lee, Lee Soon Park, Kyung

More information

This is a repository copy of Theoretical molecular rheology of branched polymers in simple and complex flows: the pom-pom model.

This is a repository copy of Theoretical molecular rheology of branched polymers in simple and complex flows: the pom-pom model. This is a repository copy of Theoretical molecular rheology of branched polymers in simple and complex flows: the pom-pom model. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/1503/

More information

Nonlinear Stress Relaxation of H-Shaped Polymer Melt Revisited Using a Stochastic Pom-Pom Model

Nonlinear Stress Relaxation of H-Shaped Polymer Melt Revisited Using a Stochastic Pom-Pom Model Macromolecules 2003, 36, 2141-2148 2141 Nonlinear Stress Relaxation of H-Shaped Polymer Melt Revisited Using a Stochastic Pom-Pom Model Sheng C. Shie, Chang T. Wu, and Chi C. Hua* Chemical Engineering

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

Nonlinear viscoelasticity of entangled DNA molecules

Nonlinear viscoelasticity of entangled DNA molecules EUROPHYSICS LETTERS 15 April 1999 Europhys. Lett., 46 (2), pp. 251-255 (1999) Nonlinear viscoelasticity of entangled DNA molecules D. Jary 1,2, J.-L. Sikorav 2 and D. Lairez 1 1 Laboratoire Léon Brillouin,

More information

Chapter 3: Newtonian Fluid Mechanics. Molecular Forces (contact) this is the tough one. choose a surface through P

Chapter 3: Newtonian Fluid Mechanics. Molecular Forces (contact) this is the tough one. choose a surface through P // Molecular Constitutive Modeling Begin with a picture (model) of the kind of material that interests you Derive how stress is produced by deformation of that picture Write the stress as a function of

More information

A FAILURE CRITERION FOR POLYMERS AND SOFT BIOLOGICAL MATERIALS

A FAILURE CRITERION FOR POLYMERS AND SOFT BIOLOGICAL MATERIALS Material Technology A FALURE CRTERON FOR POLYMERS AND SOFT BOLOGCAL MATERALS Authors: William W. Feng John O. Hallquist Livermore Software Technology Corp. 7374 Las Positas Road Livermore, CA 94550 USA

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review CM465 Lectures -3: Intro, Mathematical //6 Chapter 4: Standard Flows CM465 Polymer Rheology Michigan Tech Newtonian fluids: vs. non-newtonian fluids: How can we investigate non-newtonian behavior? CONSTANT

More information

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project Rheology Simulator PASTA (Polymer rheology Analyzer with Sliplink model of entanglement) Tatsuya Shoji JCII, Doi Project 0 sec -3 msec -6 sec -9 nsec -12 psec -15 fsec GOURMET SUSHI PASTA COGNAC MUFFIN

More information

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS 1 th Fall Rubber Colloquium EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS Jochen Kroll, Stefan Turek, Patrick Westervoß Institute of Applied Mathematics (LS III), TU Dortmund

More information

Madrid, 8-9 julio 2013

Madrid, 8-9 julio 2013 VI CURSO DE INTRODUCCION A LA REOLOGÍA Madrid, 8-9 julio 2013 NON-LINEAR VISCOELASTICITY Prof. Dr. Críspulo Gallegos Dpto. Ingeniería Química. Universidad de Huelva & Institute of Non-Newtonian Fluid Mechanics

More information

Revisit the Stress-Optical Rule for Entangled Flexible Chains: Overshoot of Stress, Segmental Orientation, and Chain Stretch on Start-up of Flow

Revisit the Stress-Optical Rule for Entangled Flexible Chains: Overshoot of Stress, Segmental Orientation, and Chain Stretch on Start-up of Flow Note Nihon Reoroji Gakkaishi Vol. 43, Nos.3-4 (combined issue), 105~112 (Journal of the Society of Rheology, Japan) 2015 The Society of Rheology, Japan Revisit the Stress-Optical Rule for Entangled Flexible

More information

Notes. Prediction of the Linear Viscoelastic Shear Modulus of an Entangled Polybutadiene Melt from Simulation and Theory (1) 3π 2 k B T D(T)N (2)

Notes. Prediction of the Linear Viscoelastic Shear Modulus of an Entangled Polybutadiene Melt from Simulation and Theory (1) 3π 2 k B T D(T)N (2) 134 Macromolecules 2001, 34, 134-139 Notes Prediction of the Linear Viscoelastic Shear Modulus of an Entangled Polybutadiene Melt from Simulation and Theory Oleksiy Byutner and Grant D. Smith* Department

More information

Modeling Strong Extensional Flows of Polymer Solutions and Melts

Modeling Strong Extensional Flows of Polymer Solutions and Melts Modeling Strong Extensional Flows of Polymer Solutions and Melts Antony N. Beris CSCAMM Workshop Multiscale Modeling and Simulation of Complex Fluids April 19, 27 Acknowledgements: Dr. Joydeep Mukherjee,

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

The viscosity-radius relationship from scaling arguments

The viscosity-radius relationship from scaling arguments The viscosity-radius relationship from scaling arguments D. E. Dunstan Department of Chemical and Biomolecular Engineering, University of Melbourne, VIC 3010, Australia. davided@unimelb.edu.au Abstract

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

Lecture 2. Simple shear devices. Simple shear devices 2. Simple shear devices 3. Moving plate. Velocity V. Force F. Area A. height h.

Lecture 2. Simple shear devices. Simple shear devices 2. Simple shear devices 3. Moving plate. Velocity V. Force F. Area A. height h. Lecture 2 Rheometry Simple shear devices Steady shear viscosity Normal stresses Oscillating shear Extensional viscosity Scalings Nondimensional parameter Simple shear devices Conceptual device for simple

More information

Viscoelastic Flows in Abrupt Contraction-Expansions

Viscoelastic Flows in Abrupt Contraction-Expansions Viscoelastic Flows in Abrupt Contraction-Expansions I. Fluid Rheology extension. In this note (I of IV) we summarize the rheological properties of the test fluid in shear and The viscoelastic fluid consists

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS FINITE STRAIN EFFECTS IN SOLIDS Consider an elastic solid in shear: Shear Stress σ(γ) = Gγ If we apply a shear in the opposite direction: Shear Stress σ( γ) = Gγ = σ(γ) This means that the shear stress

More information

Journal of Non-Newtonian Fluid Mechanics

Journal of Non-Newtonian Fluid Mechanics J. Non-Newtonian Fluid Mech. 165 (2010) 1047 1054 Contents lists available at ScienceDirect Journal of Non-Newtonian Fluid Mechanics journal homepage: www.elsevier.com/locate/jnnfm Anisotropy parameter

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks

Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks D. A. Head, 1, A. J. Levine,,3 and F. C. MacKintosh 1, 1 Department of Physics

More information

Lecture 2: Constitutive Relations

Lecture 2: Constitutive Relations Lecture 2: Constitutive Relations E. J. Hinch 1 Introduction This lecture discusses equations of motion for non-newtonian fluids. Any fluid must satisfy conservation of momentum ρ Du = p + σ + ρg (1) Dt

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

Linearized Theory: Sound Waves

Linearized Theory: Sound Waves Linearized Theory: Sound Waves In the linearized limit, Λ iα becomes δ iα, and the distinction between the reference and target spaces effectively vanishes. K ij (q): Rigidity matrix Note c L = c T in

More information

Thermodynamic admissibility of the reptation model

Thermodynamic admissibility of the reptation model Thermodynamic admissibility of the reptation model Scott T. Milner a) ExxonMobil Research and Engineering, Annandale, New Jersey 08801 (Received 19 May 2003; final revision received 15 September 2003)

More information

Universal Scaling Characteristics of Stress Overshoot in Startup Shear of Entangled Polymer Solutions

Universal Scaling Characteristics of Stress Overshoot in Startup Shear of Entangled Polymer Solutions The University of Akron IdeaExchange@UAkron College of Polymer Science and Polymer Engineering 6-2008 Universal Scaling Characteristics of Stress Overshoot in Startup Shear of Entangled Polymer Solutions

More information

Direct Rheological Evidence of Monomer Density Reequilibration for Entangled Polymer Melts

Direct Rheological Evidence of Monomer Density Reequilibration for Entangled Polymer Melts 2946 Macromolecules 2007, 40, 2946-2954 Direct Rheological Evidence of Monomer Density Reequilibration for Entangled Polymer Melts Chen-Yang Liu,*,, Roland Keunings, and Christian Bailly Unité de Chimie

More information

C subjected to large deformation rates exhibit

C subjected to large deformation rates exhibit D. K. DOEKSEN, R. J. J. JONGSCHAAP, and H. KAMPHUIS Rheology Group Department of Applied Physics Twente University of Technology Ensc hed e The Netherlands A kinetic model for the rheological behavior

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

The bulk modulus of covalent random networks

The bulk modulus of covalent random networks J. Phys.: Condens. Matter 9 (1997) 1983 1994. Printed in the UK PII: S0953-8984(97)77754-3 The bulk modulus of covalent random networks B R Djordjević and M F Thorpe Department of Physics and Astronomy

More information

The University of Leeds

The University of Leeds Molecular modelling of entangled polymer fluids under flow Richard Stuart Graham Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Department

More information

Rheological evaluation of melt blown polymer melt

Rheological evaluation of melt blown polymer melt Rheological evaluation of melt blown polymer melt Jiri rabek and Martin Zatloukal Citation: AIP Conf. Proc. 1526, 237 (2013); doi: 10.1063/1.4802618 View online: http://dx.doi.org/10.1063/1.4802618 View

More information

Long-time behavior and different shear regimes in quenched binary mixtures

Long-time behavior and different shear regimes in quenched binary mixtures PHYSICAL REVIEW E 75, 011501 2007 Long-time behavior and different shear regimes in quenched binary mixtures G. Gonnella* Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola

More information

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials. Rheology and Constitutive Equations Rheology = Greek verb to flow Rheology is the study of the flow and deformation of materials. The focus of rheology is primarily on the study of fundamental, or constitutive,

More information

Linear viscoelastic models Part III. Start-up and transient flow effects from the molecular weight distribution

Linear viscoelastic models Part III. Start-up and transient flow effects from the molecular weight distribution Linear viscoelastic models Part III. Start-up and transient flow effects from the molecular weight distribution Tommi Borg 1 TomCoat Oy, Koskisenkuja 11, 625 Evijärvi, Finland Esko J. Pääkkönen Tampere

More information

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Downloaded from orbit.dtu.dk on: Mar 11, 2019 Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Rasmussen, Henrik K.; Nielsen, Jens Kromann; Bach, Anders; Hassager,

More information

Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model

Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model J. Non-Newtonian Fluid Mech. 130 (2005) 63 76 Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model P. Wapperom a,, A. Leygue b, R. Keunings

More information

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Modelling the Rheology of Semi-Concentrated Polymeric Composites THALES Project No 1188 Modelling the Rheology of Semi-Concentrated Polymeric Composites Research Team Evan Mitsoulis (PI), Professor, NTUA, Greece Costas Papoulias (Research Student), NTUA, Greece Souzanna

More information

A phenomenological model for shear-thickening in wormlike micelle solutions

A phenomenological model for shear-thickening in wormlike micelle solutions EUROPHYSICS LETTERS 5 December 999 Europhys. Lett., 8 (6), pp. 76-7 (999) A phenomenological model for shear-thickening in wormlike micelle solutions J. L. Goveas ( ) and D. J. Pine Department of Chemical

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Investigation of Polymer Long Chain Branching on Film Blowing Process Stability by using Variational Principle

Investigation of Polymer Long Chain Branching on Film Blowing Process Stability by using Variational Principle Investigation of Polymer Long Chain Branching on Film Blowing Process Stability by using Variational Principle ROMAN KOLARIK a,b and MARTIN ZATLOUKAL a,b a Centre of Polymer Systems, University Institute

More information

Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model

Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model P. Wapperom Dept. of Mathematics, Virginia Tech, Blacksburg, VA 2461, USA A. Leygue, R.

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

4. The Green Kubo Relations

4. The Green Kubo Relations 4. The Green Kubo Relations 4.1 The Langevin Equation In 1828 the botanist Robert Brown observed the motion of pollen grains suspended in a fluid. Although the system was allowed to come to equilibrium,

More information

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book 2.341J MACROMOLECULAR HYDRODYNAMICS Spring 2012 QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT Please answer each question in a SEPARATE book You may use the course textbook (DPL) and

More information

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Open Book Exam Work on your own for this exam. You may consult your

More information

Parameter-Free Theory for Stress Relaxation in Star Polymer Melts

Parameter-Free Theory for Stress Relaxation in Star Polymer Melts Macromolecules 997, 30, 259-266 259 Parameter-Free Theory for Stress Relaxation in Star Polymer Melts S. T. Milner* Exxon Research and Engineering Company, Route 22 East, Annandale, New Jersey 0880 T.

More information

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity Draft: September 29, 1999 The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity N. G. Fuller 1 and R. L. Rowley 1,2 Abstract The influence of model flexibility upon simulated viscosity

More information

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium:

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium: About Midterm Exam 3 When and where Thurs April 21 th, 5:45-7:00 pm Rooms: Same as Exam I and II, See course webpage. Your TA will give a brief review during the discussion session. Coverage: Chapts 9

More information

Chapter 6: The Rouse Model. The Bead (friction factor) and Spring (Gaussian entropy) Molecular Model:

Chapter 6: The Rouse Model. The Bead (friction factor) and Spring (Gaussian entropy) Molecular Model: G. R. Strobl, Chapter 6 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). R. B. Bird, R. C. Armstrong, O. Hassager, "Dynamics of Polymeric Liquids", Vol. 2, John Wiley and Sons (1977). M. Doi,

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks]

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] Using various chemistry, one can chemically crosslink polymer chains. With sufficient cross-linking, the polymer

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions Why do we have to make the assumption that plane sections plane? How about bars with non-axis symmetric cross section? The formulae derived look very similar to beam and axial

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Fractional Calculus The Murky Bits

Fractional Calculus The Murky Bits Aditya Jaishankar August 13 th 2010 The Many Definitions The Reimann-Liouville definition Differentiation after integration: The Caputo definition - Integration after differentiation: Differences arise

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22836 holds various files of this Leiden University dissertation. Author: Woldhuis, Erik Title: Foam rheology near the jamming transition Issue Date: 2013-12-11

More information

COMPLEX FLOW OF NANOCONFINED POLYMERS

COMPLEX FLOW OF NANOCONFINED POLYMERS COMPLEX FLOW OF NANOCONFINED POLYMERS Connie B. Roth, Chris A. Murray and John R. Dutcher Department of Physics University of Guelph Guelph, Ontario, Canada N1G 2W1 OUTLINE instabilities in freely-standing

More information

On the congruence of some network and pom-pom models

On the congruence of some network and pom-pom models Korea-Australia Rheology Journal Vol 8, No, March 2006 pp 9-4 On the congruence of some network and pom-pom models Roger I Tanner* School of Aerospace, Mechanical and Mechatronic Engineering, University

More information

The Polymers Tug Back

The Polymers Tug Back Tugging at Polymers in Turbulent Flow The Polymers Tug Back Jean-Luc Thiffeault http://plasma.ap.columbia.edu/ jeanluc Department of Applied Physics and Applied Mathematics Columbia University Tugging

More information

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN Introduction This chapter is concerned with finding normal and shear stresses acting on inclined sections cut through a member, because these stresses may

More information

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions

Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions Monte Carlo Simulation of Ferroelectric Domain Structure: Electrostatic and Elastic Strain Energy Contributions B.G. Potter, Jr., B.A. Tuttle, and V. Tikare Sandia National Laboratories Albuquerque, NM

More information

On the Macroscopic Modeling of Dilute Emulsions Under Flow in the Presence of Particle Inertia

On the Macroscopic Modeling of Dilute Emulsions Under Flow in the Presence of Particle Inertia On the Macroscopic Modeling of Dilute Emulsions Under Flow in the Presence of Particle Inertia P. Masafu Mwasame, Norman J. Wagner, Antony N. Beris a) Center for Molecular and Engineering Thermodynamics,

More information

Oldroyd Viscoelastic Model Lecture Notes

Oldroyd Viscoelastic Model Lecture Notes Oldroyd Viscoelastic Model Lecture Notes Drew Wollman Portland State University Maseeh College of Engineering and Computer Science Department of Mechanical and Materials Engineering ME 510: Non-Newtonian

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel

Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel Commun. Theor. Phys. 56 (2011) 756 760 Vol. 56, No. 4, October 15, 2011 Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel QIU Bing ( ), 1, TAN Hui-Li ( Û), 2 and

More information

2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process

2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process 2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process Print (10)» 2010 Best Paper An Engineering Approach to the Correction of Rotational Flow

More information

Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Lectures on. Constitutive Modelling of Arteries. Ray Ogden Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics

More information

Differential constitutive equations for polymer melts : the extended Pom-Pom model Verbeeten, W.M.H.; Peters, G.W.M.; Baaijens, F.P.T.

Differential constitutive equations for polymer melts : the extended Pom-Pom model Verbeeten, W.M.H.; Peters, G.W.M.; Baaijens, F.P.T. Differential constitutive equations for polymer melts : the extended Pom-Pom model Verbeeten, W.M.H.; Peters, G.W.M.; Baaijens, F.P.T. Published in: Journal of Rheology DOI: 10.1122/1.1380426 Published:

More information

The interaction of vorticity and rate-of-strain in homogeneous sheared turbulence

The interaction of vorticity and rate-of-strain in homogeneous sheared turbulence PHYSICS OF FLUIDS VOLUME 12, NUMBER 4 APRIL 2000 The interaction of vorticity and rate-of-strain in homogeneous sheared turbulence K. K. Nomura a) and P. J. Diamessis Department of Mechanical and Aerospace

More information

Chain-configuration and rate dependent rheological properties in transient networks

Chain-configuration and rate dependent rheological properties in transient networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 204 Supplementary Information Chain-configuration and rate dependent rheological properties in transient

More information

Continuum Mechanics Fundamentals

Continuum Mechanics Fundamentals Continuum Mechanics Fundamentals James R. Rice, notes for ES 220, 12 November 2009; corrections 9 December 2009 Conserved Quantities Let a conseved quantity have amount F per unit volume. Examples are

More information

Effective theory of quadratic degeneracies

Effective theory of quadratic degeneracies Effective theory of quadratic degeneracies Y. D. Chong,* Xiao-Gang Wen, and Marin Soljačić Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 28

More information

Finite element analysis of diagonal tension failure in RC beams

Finite element analysis of diagonal tension failure in RC beams Finite element analysis of diagonal tension failure in RC beams T. Hasegawa Institute of Technology, Shimizu Corporation, Tokyo, Japan ABSTRACT: Finite element analysis of diagonal tension failure in a

More information

Topological defects and its role in the phase transition of a dense defect system

Topological defects and its role in the phase transition of a dense defect system Topological defects and its role in the phase transition of a dense defect system Suman Sinha * and Soumen Kumar Roy Depatrment of Physics, Jadavpur University Kolkata- 70003, India Abstract Monte Carlo

More information

On Relationship between PVT and Rheological Measurements of Polymer Melts

On Relationship between PVT and Rheological Measurements of Polymer Melts ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 3, 2005 On Relationship between PVT and Rheological Measurements of Polymer Melts Tomas Sedlacek, Peter Filip 2, Peter Saha Polymer Centre, Faculty

More information

From Elastic Deformation to Terminal Flow of a Monodisperse Entangled Melt in Uniaxial Extension

From Elastic Deformation to Terminal Flow of a Monodisperse Entangled Melt in Uniaxial Extension The University of Akron IdeaExchange@UAkron College of Polymer Science and Polymer Engineering 12-2008 From Elastic Deformation to Terminal Flow of a Monodisperse Entangled Melt in Uniaxial Extension Yangyang

More information

TWO-DIMENSIONAL MAGMA FLOW *

TWO-DIMENSIONAL MAGMA FLOW * Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A2 Printed in the Islamic Republic of Iran, 2010 Shiraz University TWO-DIMENSIONAL MAGMA FLOW * A. MEHMOOD 1** AND A. ALI 2 1 Department

More information

Modified models of polymer phase separation

Modified models of polymer phase separation Modified models of polymer phase separation Douglas Zhou, Pingwen Zhang,, * and Weinan E,2, LMAM, Peking University, Beijing 0087, People s Republic of China and School of Mathematical Science, Peking

More information

Surface stress and relaxation in metals

Surface stress and relaxation in metals J. Phys.: Condens. Matter 12 (2000) 5541 5550. Printed in the UK PII: S0953-8984(00)11386-4 Surface stress and relaxation in metals P M Marcus, Xianghong Qian and Wolfgang Hübner IBM Research Center, Yorktown

More information

Supplementary Figure 1: Approach to the steady state. Energy vs. cycle for different

Supplementary Figure 1: Approach to the steady state. Energy vs. cycle for different ( = ) -6.9-6.94 (a) N = 8 < y.2 (T = 1).4 (T = 1).6 (T = 1).7 (T = 1) ( = ) -6.94 (b).8 (T = 1).9 (T = 1).12 (T = 1).14 (T = 1).8 (T =.466).9 (T =.466).12 (T =.466).14 (T =.466) > y n * 12 8 (c) N = 8

More information

1. Background. is usually significantly lower than it is in uniaxial tension

1. Background. is usually significantly lower than it is in uniaxial tension NOTES ON QUANTIFYING MODES OF A SECOND- ORDER TENSOR. The mechanical behavior of rocks and rock-like materials (concrete, ceramics, etc.) strongly depends on the loading mode, defined by the values and

More information

5 The Oldroyd-B fluid

5 The Oldroyd-B fluid 5 The Oldroyd-B fluid Last time we started from a microscopic dumbbell with a linear entropic spring, and derived the Oldroyd-B equations: A u = u ρ + u u = σ 2 pi + η u + u 3 + u A A u u A = τ Note that

More information

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is Appendix C - Persistence length 183 APPENDIX C - PERSISTENCE LENGTH Consider an ideal chain with N segments each of length a, such that the contour length L c is L c = Na. (C.1) If the orientation of each

More information

Simple constitutive models for linear and branched polymers

Simple constitutive models for linear and branched polymers J. Non-Newtonian Fluid Mech. 116 (2003) 1 17 Simple constitutive models for linear and branched polymers Roger I. Tanner, Simin Nasseri School of Aerospace, Mechanical and Mechatronic Engineering, University

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Composite materials: mechanical properties

Composite materials: mechanical properties Composite materials: mechanical properties A computational lattice model describing scale effects @ nano-scale Luciano Colombo In collaboration with: Pier Luca Palla and Stefano Giordano Department of

More information

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without

More information

Analysis of Melt Spinning Master-Curves of Low Density Polyethylene

Analysis of Melt Spinning Master-Curves of Low Density Polyethylene Analysis of Melt Spinning Master-Curves of Low Density Polyethylene Ji-Zhao Liang, 1 Lei Zhong, 1 Kejian Wang 2 1 Research Division of Green Function Materials and Equipment, School of Mechanical and Automotive

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information