A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs

Size: px
Start display at page:

Download "A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs"

Transcription

1 A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs Matteo Ceccarello Joint work with Andrea Pietracaprina, Geppino Pucci, and Eli Upfal Università di Padova Brown University

2 Problem definition Problem definition Undirected, weighted graphs Find the weighted diameter of G(V, E, w) Φ(G) = max {dist(u, v)} u V,v V, dist(u,v)< The diameter is a fundamental topological parameter of a graph with important practical applications Goal Develop a parallel approximation algorithm that requires a number of rounds sublinear in the unweighted diameter linear space

3 Previous work: exact algorithms Computing the diameter exactly Solve All Pairs Shortest Paths Dijkstra s algorithm from every node: O(n (m + n log n)) Floyd-Warshall s dynamic programming algorithm: O(n ) Repeated fast matrix multiplication: O(n ω log n) Ω(n ) space/time is required

4 Previous work: approximation algorithms -stepping [Meyer, Sanders JoA 0] Parallel Single Source Shortest Path algorithm Provides a -approximation to the diameter Linear space Running time lower bounded by unweighted diameter MapReduce approximation algorithm for unweighted graphs [Ceccarello, Pietracaprina, Pucci, Upfal SPAA 5] Linear space Running time sublinear in the unweighted diameter

5 Our Result Our Result MapReduce algorithm for diameter approximation O(log n) approximation factor Linear space Number of rounds sublinear in the unweighted diameter

6 MapReduce: a model of computation for Big Data Characteristics Distributed computation on clusters of commodity machines Practical algorithms can only afford linear space Model [Pietracaprina, Pucci, Riondato, Silvestri, Upfal ACM-ICS ] An algorithm is expressed as a sequence of rounds, each transforming datasets of key-value pairs There are memory limits: ML memory available for local computation: sub-linear in the data size M A sum of local memories

7 A MapReduce round (k, v ) Aggregate space: M A (k, w ) (k, v ) (k, v ) Reduce k + map (space M L) (k, w ) (k, w ) (k, v ) (k, v 5) Reduce k + map (space M L) (k, w ) (k, w 5) (k, v 6) (k, v 7) Reduce k + map (space M L) (k, w 6) (k, v 8) Data shuffle (k 5, w 7)

8 Diameter approximation: high-level strategy Idea Derive from the input graph a smaller auxiliary graph whose diameter can be computed on a single reducer Relate the diameter of the auxiliary graph to the one of the input graph

9 Diameter approximation: high-level strategy G = (V, E): undirected graph, polynomial weights. n = V, m = E, weighted diameter Φ(G).. Compute a decomposition C of G into clusters of small radius centered at random nodes. Estimate diameter Φ(G) from diameter Φ(G C ), with G C a suitable quotient graph derived from C Remarks cluster granularity chosen so that G C fits into local memory small radius low round complexity, better approximation

10 A difficult input Random sampling does not work well High-diameter, skinny regions may be hard to cover large radius

11 Algorithm cluster(τ) Challenges In order to attain small cluster radius we must. Build more clusters in remote regions of the graph. Avoid heavyweight edges in building the clusters

12 Algorithm cluster(τ) Progressive clustering strategy [Ceccarello, Pietracaprina, Pucci, Upfal-SPAA 5]. Select new batch of τ cluster centers from uncovered nodes. Grow both old and new clusters until covering half of the uncovered nodes. Repeat steps - until complete coverage -stepping (inspired by [Meyer,Sanders JoA 0]) guess on minimum cluster radius In each iteration of progressive clustering (Steps -): Use only light edges (weight < ) and stop at radius If desired coverage cannot be obtained then

13 Algorithm cluster(τ) Define R G (τ): optimum radius for a τ-clustering of G l X : max number of edges in a min-weight path of weight X Theorem W.h.p. cluster(τ) computes a decomposition C of G into O(τ log n) clusters max cluster radius: O(R G (τ) log n) round complexity: O(l RG (τ) log n) on MR(n ɛ, m) for any constant ɛ (0, ).

14 Diameter approximation: example Graph G, weighted diameter Φ(G) = 6 B L C D A 5 G E H I F M N S O R P Q

15 Diameter approximation: example τ =, = B L C D A 5 G E H I F M N S O R P Q

16 Diameter approximation: example τ =, = B L C D A 5 G E H I F M N S O R P Q

17 Diameter approximation: example τ =, = B L C D A 5 G E H I F M N S O R P Q

18 Diameter approximation: example τ =, = B L C D A 5 G E H I F M N S O R P Q

19 Diameter approximation: example τ =, = B L C D A 5 G E H I F M N S O R P Q

20 Diameter approximation: example A B F G H C D E L I P Q S N O 5 M R QuotientgraphG C Φ(G C ) = Φ(G) <= ++ = 8 (vs 6) A 5 M R 7 Radius= Radius= Radius=

21 Diameter approximation: main result Theorem For a given weighted graph G, w.h.p. we can compute an upper bound to Φ(G) approximation ratio: O(log n) round complexity: O(l RG (τ) log n log n) on MR(n ɛ, m), for any constant ɛ (0, ). Corollary: Graphs of bounded doubling dimension b Ψ(G) is the unweighted diameter of G. The number of rounds is ( ) Ψ(G) O log n n ε /b Plain -stepping requires Ω(Ψ(G)) rounds.

22 Diameter approximation: experiments Experimental setup In-house cluster with 6 machines 8GB RAM / Intel i7 nehalem -core processor Spark MapReduce platform Datasets Graph n m Φ(G) roads-usa,97,7 9,66,67 55,859,80 roads-cal,890,85,8,87 6,85,58 livejournal,997,96, 68, twitter,65,0,68,65, mesh(s) S S(S ) R-MAT(S) S 6 S roads(s) S. 0 7 S time (s) Scalability R MAT(6) roads() the diameter depends on the size of the graph, controlled by S >. 0 machines

23 Diameter approximation: experiments We compare our algorithm (CLUSTER) with -stepping 0 5 Time CLUSTER stepping Rounds 0 5 CLUSTER stepping time (s) roads USA roads CAL mesh livejournal twitter R MAT() 0 0 roads USA roads CAL mesh livejournal twitter R MAT()

24 Diameter approximation: experiments Work Approximation 0 CLUSTER stepping.5 CLUSTER stepping roads USA roads CAL mesh livejournal twitter R MAT().0 roads USA roads CAL mesh livejournal twitter R MAT()

25 Conclusions Conclusions Approximation factor O(log n): much better in practice Number of rounds sublinear in the unweighted diameter Open source implementation Open problems Reduce the theoretical approximation factor Relate the approximation factor to the available resources Diameter approximation on directed graphs crono.dei.unipd.it/gradias/

arxiv: v3 [cs.dc] 6 Feb 2015

arxiv: v3 [cs.dc] 6 Feb 2015 Space and Time Efficient Parallel Graph Decomposition, Clustering, and Diameter Approximation Matteo Ceccarello Department of Information Engineering University of Padova Padova, Italy ceccarel@dei.unipd.it

More information

Computational Frameworks. MapReduce

Computational Frameworks. MapReduce Computational Frameworks MapReduce 1 Computational complexity: Big data challenges Any processing requiring a superlinear number of operations may easily turn out unfeasible. If input size is really huge,

More information

A Deterministic Almost-Tight Distributed Algorithm for Approximating Single-Source Shortest Paths

A Deterministic Almost-Tight Distributed Algorithm for Approximating Single-Source Shortest Paths A Deterministic Almost-Tight Distributed Algorithm for Approximating Single-Source Shortest Paths Monika Henzinger 1 Sebastian Krinninger 2 Danupon Nanongkai 3 1 University of Vienna 2 Max Planck Institute

More information

Computational Frameworks. MapReduce

Computational Frameworks. MapReduce Computational Frameworks MapReduce 1 Computational challenges in data mining Computation-intensive algorithms: e.g., optimization algorithms, graph algorithms Large inputs: e.g., web, social networks data.

More information

Notes on MapReduce Algorithms

Notes on MapReduce Algorithms Notes on MapReduce Algorithms Barna Saha 1 Finding Minimum Spanning Tree of a Dense Graph in MapReduce We are given a graph G = (V, E) on V = N vertices and E = m N 1+c edges for some constant c > 0. Our

More information

Dynamic Programming: Shortest Paths and DFA to Reg Exps

Dynamic Programming: Shortest Paths and DFA to Reg Exps CS 374: Algorithms & Models of Computation, Fall 205 Dynamic Programming: Shortest Paths and DFA to Reg Exps Lecture 7 October 22, 205 Chandra & Manoj (UIUC) CS374 Fall 205 / 54 Part I Shortest Paths with

More information

Dynamic Programming: Shortest Paths and DFA to Reg Exps

Dynamic Programming: Shortest Paths and DFA to Reg Exps CS 374: Algorithms & Models of Computation, Spring 207 Dynamic Programming: Shortest Paths and DFA to Reg Exps Lecture 8 March 28, 207 Chandra Chekuri (UIUC) CS374 Spring 207 / 56 Part I Shortest Paths

More information

Efficient Primal- Dual Graph Algorithms for Map Reduce

Efficient Primal- Dual Graph Algorithms for Map Reduce Efficient Primal- Dual Graph Algorithms for Map Reduce Joint work with Bahman Bahmani Ashish Goel, Stanford Kamesh Munagala Duke University Modern Data Models Over the past decade, many commodity distributed

More information

CS224W: Methods of Parallelized Kronecker Graph Generation

CS224W: Methods of Parallelized Kronecker Graph Generation CS224W: Methods of Parallelized Kronecker Graph Generation Sean Choi, Group 35 December 10th, 2012 1 Introduction The question of generating realistic graphs has always been a topic of huge interests.

More information

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Jasjeet S. Sekhon UC Berkeley June 21, 2016 Jasjeet S. Sekhon (UC Berkeley) Methods for Massive

More information

Distributed Approximate Single-Source Shortest Paths

Distributed Approximate Single-Source Shortest Paths Distributed Approximate Single-Source Shortest Paths Sebastian Krinninger University of Vienna joint works with Ruben Monika Andreas Christoph Danupon Becker Henzinger Karrenbauer Lenzen Nanongkai 1 /

More information

Basics and Random Graphs con0nued

Basics and Random Graphs con0nued Basics and Random Graphs con0nued Social and Technological Networks Rik Sarkar University of Edinburgh, 2017. Random graphs on jupyter notebook Solu0on to exercises 1 is out If your BSc/MSc/PhD work is

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 fall 2006 Eli Bozorgzadeh Computer Science Department-UCI References and Copyright Textbooks referred [Mic94] G. De Micheli Synthesis and Optimization of Digital Circuits McGraw-Hill, 1994. [CLR90]

More information

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation)

Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation) Tim Roughgarden Sergei Vassilvitskii Joshua R. Wang August 16, 2017 Abstract The goal of this paper is to identify fundamental limitations

More information

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Matroids Shortest Paths Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Marc Uetz University of Twente m.uetz@utwente.nl Lecture 2: sheet 1 / 25 Marc Uetz Discrete Optimization Matroids

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 1: Introduction, Easy Examples Karl Bringmann and Sebastian Krinninger Audience no formal requirements, but: NP-hardness, satisfiability problem, how

More information

arxiv: v1 [cs.ds] 17 Feb 2016

arxiv: v1 [cs.ds] 17 Feb 2016 Scheduling MapReduce Jobs under Multi-Round Precedences D Fotakis 1, I Milis 2, O Papadigenopoulos 1, V Vassalos 2, and G Zois 2 arxiv:160205263v1 [csds] 17 Feb 2016 1 School of Electrical and Computer

More information

Distributed Distance-Bounded Network Design Through Distributed Convex Programming

Distributed Distance-Bounded Network Design Through Distributed Convex Programming Distributed Distance-Bounded Network Design Through Distributed Convex Programming OPODIS 2017 Michael Dinitz, Yasamin Nazari Johns Hopkins University December 18, 2017 Distance Bounded Network Design

More information

R ij = 2. Using all of these facts together, you can solve problem number 9.

R ij = 2. Using all of these facts together, you can solve problem number 9. Help for Homework Problem #9 Let G(V,E) be any undirected graph We want to calculate the travel time across the graph. Think of each edge as one resistor of 1 Ohm. Say we have two nodes: i and j Let the

More information

A Quantitative Measure of Portability with Application to Bandwidth-Latency Models for Parallel Computing?

A Quantitative Measure of Portability with Application to Bandwidth-Latency Models for Parallel Computing? A Quantitative Measure of Portability with Application to Bandwidth-Latency Models for Parallel Computing? (Extended Abstract) Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci Dipartimento di

More information

Tall-and-skinny! QRs and SVDs in MapReduce

Tall-and-skinny! QRs and SVDs in MapReduce A 1 A 2 A 3 Tall-and-skinny! QRs and SVDs in MapReduce Yangyang Hou " Purdue, CS Austin Benson " Stanford University Paul G. Constantine Col. School. Mines " Joe Nichols U. of Minn James Demmel " UC Berkeley

More information

Using R for Iterative and Incremental Processing

Using R for Iterative and Incremental Processing Using R for Iterative and Incremental Processing Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, Robert Schreiber UC Berkeley and HP Labs UC BERKELEY Big Data, Complex Algorithms PageRank (Dominant

More information

Query Processing with Optimal Communication Cost

Query Processing with Optimal Communication Cost Query Processing with Optimal Communication Cost Magdalena Balazinska and Dan Suciu University of Washington AITF 2017 1 Context Past: NSF Big Data grant PhD student Paris Koutris received the ACM SIGMOD

More information

Optimal Tree-decomposition Balancing and Reachability on Low Treewidth Graphs

Optimal Tree-decomposition Balancing and Reachability on Low Treewidth Graphs Optimal Tree-decomposition Balancing and Reachability on Low Treewidth Graphs Krishnendu Chatterjee Rasmus Ibsen-Jensen Andreas Pavlogiannis IST Austria Abstract. We consider graphs with n nodes together

More information

GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] 1. Preliminaries

GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] 1. Preliminaries GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] notes by Petar MAYMOUNKOV Theme The algorithmic problem of finding a sparsest cut is related to the combinatorial problem of building expander graphs

More information

Cache-Oblivious Computations: Algorithms and Experimental Evaluation

Cache-Oblivious Computations: Algorithms and Experimental Evaluation Cache-Oblivious Computations: Algorithms and Experimental Evaluation Vijaya Ramachandran Department of Computer Sciences University of Texas at Austin Dissertation work of former PhD student Dr. Rezaul

More information

Computing Techniques for Parallel and Distributed Systems with an Application to Data Compression. Sergio De Agostino Sapienza University di Rome

Computing Techniques for Parallel and Distributed Systems with an Application to Data Compression. Sergio De Agostino Sapienza University di Rome Computing Techniques for Parallel and Distributed Systems with an Application to Data Compression Sergio De Agostino Sapienza University di Rome Parallel Systems A parallel random access machine (PRAM)

More information

CSE 4502/5717 Big Data Analytics Spring 2018; Homework 1 Solutions

CSE 4502/5717 Big Data Analytics Spring 2018; Homework 1 Solutions CSE 502/5717 Big Data Analytics Spring 2018; Homework 1 Solutions 1. Consider the following algorithm: for i := 1 to α n log e n do Pick a random j [1, n]; If a[j] = a[j + 1] or a[j] = a[j 1] then output:

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

Lecture 26 December 1, 2015

Lecture 26 December 1, 2015 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 26 December 1, 2015 Scribe: Zezhou Liu 1 Overview Final project presentations on Thursday. Jelani has sent out emails about the logistics:

More information

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Author: Jaewon Yang, Jure Leskovec 1 1 Venue: WSDM 2013 Presenter: Yupeng Gu 1 Stanford University 1 Background Community

More information

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2)

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Stat260/CS294: Spectral Graph Methods Lecture 10-02/24/2015 Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still

More information

Behavioral Simulations in MapReduce

Behavioral Simulations in MapReduce Behavioral Simulations in MapReduce Guozhang Wang, Marcos Vaz Salles, Benjamin Sowell, Xun Wang, Tuan Cao, Alan Demers, Johannes Gehrke, Walker White Cornell University 1 What are Behavioral Simulations?

More information

Math 312 Spring08 Day 13

Math 312 Spring08 Day 13 HW 3: Due Monday May 19 th. 11. 1 # 2, 3, 6, 10 11. 2 # 1, 3, 6 Math 312 Spring08 Day 13 11.1 Continuous Functions and Mappings. 1. Definition. Let A be a subset of R n i. A mapping F: A R n is said to

More information

Algorithms for Querying Noisy Distributed/Streaming Datasets

Algorithms for Querying Noisy Distributed/Streaming Datasets Algorithms for Querying Noisy Distributed/Streaming Datasets Qin Zhang Indiana University Bloomington Sublinear Algo Workshop @ JHU Jan 9, 2016 1-1 The big data models The streaming model (Alon, Matias

More information

Graph Analysis Using Map/Reduce

Graph Analysis Using Map/Reduce Seminar: Massive-Scale Graph Analysis Summer Semester 2015 Graph Analysis Using Map/Reduce Laurent Linden s9lalind@stud.uni-saarland.de May 14, 2015 Introduction Peta-Scale Graph + Graph mining + MapReduce

More information

Dominating Set. Chapter 7

Dominating Set. Chapter 7 Chapter 7 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Algorithms. Grad Refresher Course 2011 University of British Columbia. Ron Maharik

Algorithms. Grad Refresher Course 2011 University of British Columbia. Ron Maharik Algorithms Grad Refresher Course 2011 University of British Columbia Ron Maharik maharik@cs.ubc.ca About this talk For those incoming grad students who Do not have a CS background, or Have a CS background

More information

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

Jaccard filtering on two Network Datasets

Jaccard filtering on two Network Datasets Jaccard filtering on two Network Datasets Minghao Tian Final Report for CSE9 May, 16 Minghao Tian (Final Report for CSE9) Jaccard filtering May, 16 1 / 1 Jaccard Index Given an arbitrary graph G, let Nu

More information

In the Stone Age. Stephan Holzer. Yuval Emek - Technion Roger Wattenhofer - ETH Zürich

In the Stone Age. Stephan Holzer. Yuval Emek - Technion Roger Wattenhofer - ETH Zürich The Power of a Leader In the Stone Age - MIT Yuval Emek - Technion Roger Wattenhofer - ETH Zürich 2nd Workshop on Biological Distributed Algorithms, October 11-12, 2014 in Austin, Texas USA The Power of

More information

Provable Efficiency of Contraction Hierarchies with Randomized Preprocessing

Provable Efficiency of Contraction Hierarchies with Randomized Preprocessing Provable Efficiency of Contraction Hierarchies with Randomized Preprocessing Stefan Funke 1 and Sabine Storandt 2 1 FMI, University of Stuttgart (Germany) funke@fmi.uni-stuttgart.de 2 Department of Computer

More information

Breadth First Search, Dijkstra s Algorithm for Shortest Paths

Breadth First Search, Dijkstra s Algorithm for Shortest Paths CS 374: Algorithms & Models of Computation, Spring 2017 Breadth First Search, Dijkstra s Algorithm for Shortest Paths Lecture 17 March 1, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 42 Part I Breadth

More information

Testing that distributions are close

Testing that distributions are close Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, Patrick White May 26, 2010 Anat Ganor Introduction Goal Given two distributions over an n element set, we wish to check whether these distributions

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Analysis of Algorithms Professor Eric Aaron Lecture T Th 9:00am Lecture Meeting Location: OLB 205 Business Grading updates: HW5 back today HW7 due Dec. 10 Reading: Ch. 22.1-22.3, Ch. 25.1-2, Ch.

More information

Yale University Department of Computer Science

Yale University Department of Computer Science Yale University Department of Computer Science P.O. Box 208205 New Haven, CT 06520 8285 Assigning Tasks for Efficiency in Hadoop Michael J. Fischer Yale University Xueyuan Su Yale University Yitong Yin

More information

Mathematics for Decision Making: An Introduction. Lecture 13

Mathematics for Decision Making: An Introduction. Lecture 13 Mathematics for Decision Making: An Introduction Lecture 13 Matthias Köppe UC Davis, Mathematics February 17, 2009 13 1 Reminder: Flows in networks General structure: Flows in networks In general, consider

More information

Large-Scale Behavioral Targeting

Large-Scale Behavioral Targeting Large-Scale Behavioral Targeting Ye Chen, Dmitry Pavlov, John Canny ebay, Yandex, UC Berkeley (This work was conducted at Yahoo! Labs.) June 30, 2009 Chen et al. (KDD 09) Large-Scale Behavioral Targeting

More information

STATISTICAL PERFORMANCE

STATISTICAL PERFORMANCE STATISTICAL PERFORMANCE PROVISIONING AND ENERGY EFFICIENCY IN DISTRIBUTED COMPUTING SYSTEMS Nikzad Babaii Rizvandi 1 Supervisors: Prof.Albert Y.Zomaya Prof. Aruna Seneviratne OUTLINE Introduction Background

More information

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Shang-Hua Teng Computer Science, Viterbi School of Engineering USC Massive Data and Massive Graphs 500 billions web

More information

Highly-scalable branch and bound for maximum monomial agreement

Highly-scalable branch and bound for maximum monomial agreement Highly-scalable branch and bound for maximum monomial agreement Jonathan Eckstein (Rutgers) William Hart Cynthia A. Phillips Sandia National Laboratories Sandia National Laboratories is a multi-program

More information

FEAST eigenvalue algorithm and solver: review and perspectives

FEAST eigenvalue algorithm and solver: review and perspectives FEAST eigenvalue algorithm and solver: review and perspectives Eric Polizzi Department of Electrical and Computer Engineering University of Masachusetts, Amherst, USA Sparse Days, CERFACS, June 25, 2012

More information

Bhaskar DasGupta. March 28, 2016

Bhaskar DasGupta. March 28, 2016 Node Expansions and Cuts in Gromov-hyperbolic Graphs Bhaskar DasGupta Department of Computer Science University of Illinois at Chicago Chicago, IL 60607, USA bdasgup@uic.edu March 28, 2016 Joint work with

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

Subgradient methods for huge-scale optimization problems

Subgradient methods for huge-scale optimization problems Subgradient methods for huge-scale optimization problems Yurii Nesterov, CORE/INMA (UCL) May 24, 2012 (Edinburgh, Scotland) Yu. Nesterov Subgradient methods for huge-scale problems 1/24 Outline 1 Problems

More information

Graph-theoretic Problems

Graph-theoretic Problems Graph-theoretic Problems Parallel algorithms for fundamental graph-theoretic problems: We already used a parallelization of dynamic programming to solve the all-pairs-shortest-path problem. Here we are

More information

Solving fixed-point equations over semirings

Solving fixed-point equations over semirings Solving fixed-point equations over semirings Javier Esparza Technische Universität München Joint work with Michael Luttenberger and Maximilian Schlund Fixed-point equations We study systems of equations

More information

PRAMs. M 1 M 2 M p. globaler Speicher

PRAMs. M 1 M 2 M p. globaler Speicher PRAMs A PRAM (parallel random access machine) consists of p many identical processors M,..., M p (RAMs). Processors can read from/write to a shared (global) memory. Processors work synchronously. M M 2

More information

Multi-join Query Evaluation on Big Data Lecture 2

Multi-join Query Evaluation on Big Data Lecture 2 Multi-join Query Evaluation on Big Data Lecture 2 Dan Suciu March, 2015 Dan Suciu Multi-Joins Lecture 2 March, 2015 1 / 34 Multi-join Query Evaluation Outline Part 1 Optimal Sequential Algorithms. Thursday

More information

Sparse Matrix Computations in Arterial Fluid Mechanics

Sparse Matrix Computations in Arterial Fluid Mechanics Sparse Matrix Computations in Arterial Fluid Mechanics Murat Manguoğlu Middle East Technical University, Turkey Kenji Takizawa Ahmed Sameh Tayfun Tezduyar Waseda University, Japan Purdue University, USA

More information

6.889 Lecture 4: Single-Source Shortest Paths

6.889 Lecture 4: Single-Source Shortest Paths 6.889 Lecture 4: Single-Source Shortest Paths Christian Sommer csom@mit.edu September 19 and 26, 2011 Single-Source Shortest Path SSSP) Problem: given a graph G = V, E) and a source vertex s V, compute

More information

Provably efficient algorithms for numerical tensor algebra

Provably efficient algorithms for numerical tensor algebra Provably efficient algorithms for numerical tensor algebra Edgar Solomonik Department of EECS, Computer Science Division, UC Berkeley Dissertation Defense Adviser: James Demmel Aug 27, 2014 Edgar Solomonik

More information

An Overview on Compact Routing

An Overview on Compact Routing An Overview on Compact Routing Cyril Gavoille 1 1 University of Bordeaux, France 2-6 October 2006 2nd Research Workshop on Flexible Network Design University of Bologna Residential Center Bertinoro (Forlì),

More information

Testing Cluster Structure of Graphs. Artur Czumaj

Testing Cluster Structure of Graphs. Artur Czumaj Testing Cluster Structure of Graphs Artur Czumaj DIMAP and Department of Computer Science University of Warwick Joint work with Pan Peng and Christian Sohler (TU Dortmund) Dealing with BigData in Graphs

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU Algorithm Analysis 1 Purpose Why bother analyzing code; isn t getting it to work enough? Estimate time and memory in the average case and worst case Identify bottlenecks, i.e., where to reduce time Compare

More information

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the topic. They are neither a substitute for attending the lectures nor for reading the assigned material. I may not have

More information

The Budget-Constrained Maximum Flow Problem

The Budget-Constrained Maximum Flow Problem 9 The Budget-Constrained Maximum Flow Problem In this chapter we consider the following problem which is called the constrained maximum flow problem ( Cmfp) [AO95]: We are given a budget B and we seek

More information

On the Complexity of Budgeted Maximum Path Coverage on Trees

On the Complexity of Budgeted Maximum Path Coverage on Trees On the Complexity of Budgeted Maximum Path Coverage on Trees H.-C. Wirth An instance of the budgeted maximum coverage problem is given by a set of weighted ground elements and a cost weighted family of

More information

Single Source Shortest Paths

Single Source Shortest Paths CMPS 00 Fall 017 Single Source Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight

More information

n-level Graph Partitioning

n-level Graph Partitioning Vitaly Osipov, Peter Sanders - Algorithmik II 1 Vitaly Osipov: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische

More information

Graph & Geometry Problems in Data Streams

Graph & Geometry Problems in Data Streams Graph & Geometry Problems in Data Streams 2009 Barbados Workshop on Computational Complexity Andrew McGregor Introduction Models: Graph Streams: Stream of edges E = {e 1, e 2,..., e m } describe a graph

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

Nearest Neighbors Methods for Support Vector Machines

Nearest Neighbors Methods for Support Vector Machines Nearest Neighbors Methods for Support Vector Machines A. J. Quiroz, Dpto. de Matemáticas. Universidad de Los Andes joint work with María González-Lima, Universidad Simón Boĺıvar and Sergio A. Camelo, Universidad

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

New algorithms for Disjoint Paths and Routing Problems

New algorithms for Disjoint Paths and Routing Problems New algorithms for Disjoint Paths and Routing Problems Chandra Chekuri Dept. of Computer Science Univ. of Illinois (UIUC) Menger s Theorem Theorem: The maximum number of s-t edgedisjoint paths in a graph

More information

NP-Completeness. NP-Completeness 1

NP-Completeness. NP-Completeness 1 NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

Densest subgraph computation and applications in finding events on social media

Densest subgraph computation and applications in finding events on social media Densest subgraph computation and applications in finding events on social media Oana Denisa Balalau advised by Mauro Sozio Télécom ParisTech, Institut Mines Télécom December 4, 2015 1 / 28 Table of Contents

More information

Rainfall data analysis and storm prediction system

Rainfall data analysis and storm prediction system Rainfall data analysis and storm prediction system SHABARIRAM, M. E. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/15778/ This document is the author deposited

More information

ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES

ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES JIŘÍ ŠÍMA AND SATU ELISA SCHAEFFER Academy of Sciences of the Czech Republic Helsinki University of Technology, Finland elisa.schaeffer@tkk.fi SOFSEM

More information

Dominating Set. Chapter 26

Dominating Set. Chapter 26 Chapter 26 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET 294 CHAPTER 26. DOMINATING SET 26.1 Sequential Greedy Algorithm Chapter 26 Dominating Set Intuitively, to end up with a small dominating set S, nodes in S need to cover as many neighbors as possible. It

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Determining the Diameter of Small World Networks

Determining the Diameter of Small World Networks Determining the Diameter of Small World Networks Frank W. Takes & Walter A. Kosters Leiden University, The Netherlands CIKM 2011 October 2, 2011 Glasgow, UK NWO COMPASS project (grant #12.0.92) 1 / 30

More information

AN ALTERNATING MINIMIZATION ALGORITHM FOR NON-NEGATIVE MATRIX APPROXIMATION

AN ALTERNATING MINIMIZATION ALGORITHM FOR NON-NEGATIVE MATRIX APPROXIMATION AN ALTERNATING MINIMIZATION ALGORITHM FOR NON-NEGATIVE MATRIX APPROXIMATION JOEL A. TROPP Abstract. Matrix approximation problems with non-negativity constraints arise during the analysis of high-dimensional

More information

Leveraging sparsity and symmetry in parallel tensor contractions

Leveraging sparsity and symmetry in parallel tensor contractions Leveraging sparsity and symmetry in parallel tensor contractions Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign CCQ Tensor Network Workshop Flatiron Institute,

More information

Convergence and Approximation in Potential Games

Convergence and Approximation in Potential Games Convergence and Approximation in Potential Games George Christodoulou 1, Vahab S. Mirrokni 2, and Anastasios Sidiropoulos 2 1 National and Kapodistrian University of Athens Dept. of Informatics and Telecommunications

More information

Approximation Algorithms and Hardness of Integral Concurrent Flow

Approximation Algorithms and Hardness of Integral Concurrent Flow Approximation Algorithms and Hardness of Integral Concurrent Flow Parinya Chalermsook Julia Chuzhoy Alina Ene Shi Li May 16, 2012 Abstract We study an integral counterpart of the classical Maximum Concurrent

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk CMPS 6610 Fall 018 Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight function w

More information

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Recent Advances in Approximation Algorithms Spring 2015 Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Lecturer: Shayan Oveis Gharan June 1st Disclaimer: These notes have not been subjected

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by

More information

Opportunities for ELPA to Accelerate the Solution of the Bethe-Salpeter Eigenvalue Problem

Opportunities for ELPA to Accelerate the Solution of the Bethe-Salpeter Eigenvalue Problem Opportunities for ELPA to Accelerate the Solution of the Bethe-Salpeter Eigenvalue Problem Peter Benner, Andreas Marek, Carolin Penke August 16, 2018 ELSI Workshop 2018 Partners: The Problem The Bethe-Salpeter

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

Social and Technological Network Analysis: Spatial Networks, Mobility and Applications

Social and Technological Network Analysis: Spatial Networks, Mobility and Applications Social and Technological Network Analysis: Spatial Networks, Mobility and Applications Anastasios Noulas Computer Laboratory, University of Cambridge February 2015 Today s Outline 1. Introduction to spatial

More information

Performance of the fusion code GYRO on three four generations of Crays. Mark Fahey University of Tennessee, Knoxville

Performance of the fusion code GYRO on three four generations of Crays. Mark Fahey University of Tennessee, Knoxville Performance of the fusion code GYRO on three four generations of Crays Mark Fahey mfahey@utk.edu University of Tennessee, Knoxville Contents Introduction GYRO Overview Benchmark Problem Test Platforms

More information

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Lecture 10 Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Recap Sublinear time algorithms Deterministic + exact: binary search Deterministic + inexact: estimating diameter in a

More information

MapReduce in Spark. Krzysztof Dembczyński. Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland

MapReduce in Spark. Krzysztof Dembczyński. Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland MapReduce in Spark Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Software Development Technologies Master studies, second semester

More information