Tall-and-skinny! QRs and SVDs in MapReduce

Size: px
Start display at page:

Download "Tall-and-skinny! QRs and SVDs in MapReduce"

Transcription

1 A 1 A 2 A 3 Tall-and-skinny! QRs and SVDs in MapReduce Yangyang Hou " Purdue, CS Austin Benson " Stanford University Paul G. Constantine Col. School. Mines " Joe Nichols U. of Minn James Demmel " UC Berkeley Joe Ruthruff " Jeremy Templeton" Sandia CA Mainly funded by Sandia National Labs CSAR project, recently by NSF CAREER," and Purdue Research Foundation. David F. Gleich! Computer Science! Purdue University! 1

2 Big " simulation data 2

3 Nonlinear heat transfer model in random media Each run takes 5 hours on 8 processors, outputs 4M (node) by 9 (time-step) simulation Look at temperature Apply heat We did 8192 runs (128 samples of bubble locations, 64 bubble radii) 4.5 TB of data in Exodus II (NetCDF) publicdata/heat-transfer/ 3

4 Non-insulator regime 1 Proportion of temp. > 475 K True ROM RS 0.1 Insulator regime Bubble radius 4

5 S V T Extract 128 x 128 face to laptop A SVD U U F S V T Each simulation is a column 5B-by-64 matrix 2.2TB 5

6 Non-insulator regime Proportion of temp. > 475 K True ROM RS 0.1 Insulator regime Bubble radius 6

7 20 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON s τ error s R(s, ) E(s, ) e e e e-04 std e e (c) Error, s =1.95 cm (d) Std, 1.01 s =1.95 cm e e Fig. 4.5: Error in the reduce order model compared to the prediction standard deviation23for one realization of the bubble locations at the final time for two values of e e-03 the bubble 19 radius, s =0.39 and s =1.95 cm. (Colors are visible in the electronic e-03 version.) e e e-02 std the varying conductivity fields took approximately 20 twenty minutes 2.26 to construct e-02 using Cubit Fig. after 4.4: substantial The log of optimizations. the relative10error in Working with the simulation data0 the mean prediction of the ROM as involved a func-tion of s and (d) Std, the s threshold =1.95 cm. (Colors are Constantine, Gleich,! few pre- and post-processing steps: interpret 4TB of Exodus II files from Aria, globally transpose the data, compute the TSSVD, and compute predictions and errors. The preprocessing steps took approximately 8-15 hours. We collected precise timing information, but we do not report visible in the electronic version.) values of Hou s. & Templeton arxiv it as these times are from a multi-tenant, unoptimized David Gleich Hadoop Purdue cluster Simons where other PDAIO Table 4.1: The split and the correspond ing ROM error for =0.55 and di eren 7

8 Dynamic Mode Decomposition One simulation, ~10TB of data, compute the SVD of a space-by-time matrix. DMD video 8

9 Is this BIG Data? A BIG Data has two properties - too big for one hard drive - skewed distribution BIG Data = Big Internet Giant Data BIG Data = Big In Gineering Data Engineering 9

10 A matrix A : m n, m n! is tall and skinny when O(n 2 )! work and storage is cheap compared to m. -- Austin Benson 10

11 Quick review of QR Let A : m n, m n, real A = QR Q is m n orthogonal (Q T Q = I ) R is n n upper triangular A = Q 0 R 11

12 Tall-and-skinny SVD and RSVD R SVD V Let A : m n, m n, real A TSQR Q A = UΣV T U is m n orthogonal Σ is m n nonneg, diag. V is n n orthogonal 12

13 There are good MPI implementations. What s left to do? 13

14 Moving data to an MPI cluster may be infeasible or costly 14

15 How to store tall-and-skinny matrices in Hadoop A : m x n, m n Key is an arbitrary row-id Value is the 1 x n array " for a row (or b x n block) Each submatrix A i is an " the input to a map task. A 1 A 2 A 3 15

16 Still, isn t this easy to do? Current MapReduce algs use the normal equations A = QR A T A Cholesky! R T R Q = AR 1 A 1 A 2 A 3 Map! A ii to A it A i Reduce! R T R = Sum(A it A i ) Map 2! A ii to A i R -1 Two problems! R inaccurate if A illconditioned Q not numerically orthogonal (House-" holder assures this) 16

17 Numerical stability was a problem for prior approaches 10 0 Prior work Previous methods couldn t ensure that the matrix Q was orthogonal norm ( Q T Q I ) AR Condition number 17

18 Four things that are better 1. A simple algorithm to compute R accurately. (but doesn t help get Q orthogonal). 2. Fast algorithm to get Q numerically orthogonal in most cases. 3. Multi-pass algorithm to get Q numerically orthogonal in virtually all cases. 4. A direct algorithm for a numerically orthogonal Q in all cases. Constantine & Gleich MapReduce 2011 Benson, Gleich & Demmel IEEE BigData

19 Numerical stability was a problem for prior approaches Previous methods couldn t ensure that the matrix Q was orthogonal norm ( Q T Q I ) Prior work AR Constantine & Gleich, MapReduce 2011 AR -1 + " iterative refinement Benson, Gleich, Demmel, BigData 13 Condition number 2. Benson, Gleich, Demmel, BigData Direct TSQR Benson, Gleich, " Demmel, BigData 13 19

20 MapReduce is great for TSQR! You don t need A T A Data A tall and skinny (TS) matrix by rows Input 500,000,000-by-50 matrix" Each record 1-by-50 row" HDFS Size GB Time to compute read A 253 sec. write A 848 sec.! Time to compute R in qr(a) 526 sec. w/ Q=AR sec. " Time to compute Q in qr(a) 3090 sec. (numerically stable)! 20

21 Communication avoiding QR (Demmel et al. 2008) First, do QR factorizations of each local matrix Second, compute a QR factorization of the new R 21

22 Serial QR factorizations! (Demmel et al. 2008) Compute QR of, read, update QR, 22

23 Communication avoiding QR (Demmel et al. 2008)! on MapReduce (Constantine and Gleich, 2011) Algorithm Data Rows of a matrix Mapper 1 Serial TSQR A 1 A 2 A 3 A 1 A 2 qr Q 2 R 2 A 3 qr Map QR factorization of rows Reduce QR factorization of rows Q 3 R 3 qr Q 4 R 4 emit Mapper 2 Serial TSQR A 5 A 6 A 7 A 5 A 6 qr Q 6 R 6 A 7 qr Q 7 R 7 A 8 A 8 qr Q 8 R 8 emit Reducer 1 Serial TSQR R 4 R 8 R 4 R 8 qr Q R emit 23

24 Too many maps cause too much data to one reducer! map R 1 emit reduce R 2,1 emit reduce R emit A A 1 A 2 Mapper 1-1 Serial TSQR map R 2 Mapper 1-2 Serial TSQR map R 3 emit emit shuffle S (1) S 1 AS 2 Reducer 1-1 Serial TSQR reduce R 2,2 Reducer 1-2 Serial TSQR reduce R 2,3 emit emit identity map shuffle S A (2) 2 Reducer 2-1 Serial TSQR A 3 Mapper 1-3 Serial TSQR AS 23 Reducer 1-3 Serial TSQR map R 4 emit A 34 Mapper 1-4 Serial TSQR Iteration 1 Iteration 2 24

25 Getting Q 25

26 Numerical stability was a problem for prior approaches Previous methods couldn t ensure that the matrix Q was orthogonal norm ( Q T Q I ) Prior work AR Constantine & Gleich, MapReduce 2011! AR -1 AR -1 + " iterative refinement Benson, Gleich, Demmel, BigData 13 Condition number 2. Benson, Gleich, Demmel, BigData Direct TSQR Benson, Gleich, " Demmel, BigData 13 26

27 Iterative refinement helps Mapper 1 R -1 A 1 Q 1 Mapper 2 T -1 Q 1 Q 1 TSQR R A 2 A 3 R -1 R -1 Q 2 Q 3 TDistribute T TSQR Q 2 Q 3 T -1 T -1 Q 2 Q 3 Distribute R R -1 Q 4 Q 4 T -1 Q 4 Iterative refinement is like using Newton s method to solve Ax = b. It s folklore that two iterations of iterative refinement are enough 27

28 What if iterative refinement is too slow? Mapper 1 R -1 A 1 Q 1 Mapper 2 R -1 T -1 A 1 Q 1 Sample S Compute QR, " distribute R A 2 A 3 R -1 R -1 Q 2 Q 3 TDistribute TR TSQR A 2 A 3 R -1 R -1 T -1 T -1 Q 2 Q 3 R -1 Q 4 R -1 T -1 Q 4 Estimate the norm by S Based on recent work by random matrix community on approximating QR with a random subset of rows. Also assumes that you can get a subset of rows cheaply possible, but nontrivial in Hadoop. 28

29 Numerical stability was a problem for prior approaches Previous methods couldn t ensure that the matrix Q was orthogonal norm ( Q T Q I ) Prior work AR Constantine & Gleich, MapReduce 2011 AR -1 AR -1 + " iterative refinement Benson, Gleich, Demmel, BigData 13! Condition number 2. Benson, Gleich, Demmel, BigData 13! 4. Direct TSQR Benson, Gleich, " Demmel, BigData 13 29

30 Recreate Q by storing the history of the factorization 3. Distribute the pieces of Q *1 and form the true Q Mapper 1 A 1 A 2 Q 1 Q 2 R 1 R 2 R output R 1 R 2 R 3 R 4 Task 2 Q 11 R Q 21 Q 31 Q 41 Q output Mapper 3 Q 11 Q 1 Q 21 Q 2 Q 1 Q 2 A 3 Q 3 Q 4 R 3 R 4 2. Collect R on one node, compute Qs for each piece Q 3 Q 4 Q 31 Q 41 Q 3 Q 4 1. Output local Q and R in separate files 30

31 Theoretical lower bound on runtime for a few cases on our small cluster Model Actual Rows Cols Old R-only + no IR R-only + PIR R-only + IR Direct TSQR 4.0B B B B Rows Cols Old R-only + no IR R-only + PIR R-only + IR Direct TSQR 4.0B B B B All values in seconds Only two params needed read and write bandwidth for the cluster in order to derive a performance model of the algorithm. This simple model is almost within a factor of two of the true runtime. " (10-node cluster, 60 disks) 31

32 " Papers Constantine & Gleich, MapReduce 2011 Benson, Gleich & Demmel, BigData 13 Constantine & Gleich, ICASSP 2012 Constantine, Gleich, Hou & Templeton, " arxiv 2013 Code Questions? BIG Bloody Imposing Graphs Building Impressions of Groundtruth Blockwise Independent Guesses Best Implemented at Google 32

Experiences with Model Reduction and Interpolation

Experiences with Model Reduction and Interpolation Experiences with Model Reduction and Interpolation Paul Constantine Stanford University, Sandia National Laboratories Qiqi Wang (MIT) David Gleich (Purdue) Emory University March 7, 2012 Joe Ruthruff (SNL)

More information

QR Decomposition in a Multicore Environment

QR Decomposition in a Multicore Environment QR Decomposition in a Multicore Environment Omar Ahsan University of Maryland-College Park Advised by Professor Howard Elman College Park, MD oha@cs.umd.edu ABSTRACT In this study we examine performance

More information

Exploiting Low-Rank Structure in Computing Matrix Powers with Applications to Preconditioning

Exploiting Low-Rank Structure in Computing Matrix Powers with Applications to Preconditioning Exploiting Low-Rank Structure in Computing Matrix Powers with Applications to Preconditioning Erin C. Carson, Nicholas Knight, James Demmel, Ming Gu U.C. Berkeley SIAM PP 12, Savannah, Georgia, USA, February

More information

Enhancing Performance of Tall-Skinny QR Factorization using FPGAs

Enhancing Performance of Tall-Skinny QR Factorization using FPGAs Enhancing Performance of Tall-Skinny QR Factorization using FPGAs Abid Rafique Imperial College London August 31, 212 Enhancing Performance of Tall-Skinny QR Factorization using FPGAs 1/18 Our Claim Common

More information

Communication avoiding parallel algorithms for dense matrix factorizations

Communication avoiding parallel algorithms for dense matrix factorizations Communication avoiding parallel dense matrix factorizations 1/ 44 Communication avoiding parallel algorithms for dense matrix factorizations Edgar Solomonik Department of EECS, UC Berkeley October 2013

More information

Graph Analysis Using Map/Reduce

Graph Analysis Using Map/Reduce Seminar: Massive-Scale Graph Analysis Summer Semester 2015 Graph Analysis Using Map/Reduce Laurent Linden s9lalind@stud.uni-saarland.de May 14, 2015 Introduction Peta-Scale Graph + Graph mining + MapReduce

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Communication-avoiding LU and QR factorizations for multicore architectures

Communication-avoiding LU and QR factorizations for multicore architectures Communication-avoiding LU and QR factorizations for multicore architectures DONFACK Simplice INRIA Saclay Joint work with Laura Grigori INRIA Saclay Alok Kumar Gupta BCCS,Norway-5075 16th April 2010 Communication-avoiding

More information

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Vahid Dehdari and Clayton V. Deutsch Geostatistical modeling involves many variables and many locations.

More information

Avoiding Communication in Distributed-Memory Tridiagonalization

Avoiding Communication in Distributed-Memory Tridiagonalization Avoiding Communication in Distributed-Memory Tridiagonalization SIAM CSE 15 Nicholas Knight University of California, Berkeley March 14, 2015 Joint work with: Grey Ballard (SNL) James Demmel (UCB) Laura

More information

Numerical linear algebra

Numerical linear algebra Numerical linear algebra Purdue University CS 51500 Fall 2017 David Gleich David F. Gleich Call me Prof Gleich Dr. Gleich Please not Hey matrix guy! Huda Nassar Call me Huda Ms. Huda Please not Matrix

More information

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions CS246: Mining Massive Data Sets Winter 2017 Problem Set 2 Due 11:59pm February 9, 2017 Only one late period is allowed for this homework (11:59pm 2/14). General Instructions Submission instructions: These

More information

Scientific Matrix Factorizations in Spark at Scale

Scientific Matrix Factorizations in Spark at Scale Scientific Matrix Factorizations in Spark at Scale Cross-platform performance, scaling, and comparisons with C+MPI Alex Gittens, Aditya Devarakonda, Evan Racah, Michael Ringenburg, Lisa Gerhardt, Jey Kottaalam,

More information

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM Proceedings of ALGORITMY 25 pp. 22 211 PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM GABRIEL OKŠA AND MARIÁN VAJTERŠIC Abstract. One way, how to speed up the computation of the singular value

More information

Preconditioned Parallel Block Jacobi SVD Algorithm

Preconditioned Parallel Block Jacobi SVD Algorithm Parallel Numerics 5, 15-24 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.) Chapter 2: Matrix Algebra ISBN 961-633-67-8 Preconditioned Parallel Block Jacobi SVD Algorithm Gabriel Okša 1, Marián Vajteršic

More information

Fast Hessenberg QR Iteration for Companion Matrices

Fast Hessenberg QR Iteration for Companion Matrices Fast Hessenberg QR Iteration for Companion Matrices David Bindel Ming Gu David Garmire James Demmel Shivkumar Chandrasekaran Fast Hessenberg QR Iteration for Companion Matrices p.1/20 Motivation: Polynomial

More information

An Optimized Interestingness Hotspot Discovery Framework for Large Gridded Spatio-temporal Datasets

An Optimized Interestingness Hotspot Discovery Framework for Large Gridded Spatio-temporal Datasets IEEE Big Data 2015 Big Data in Geosciences Workshop An Optimized Interestingness Hotspot Discovery Framework for Large Gridded Spatio-temporal Datasets Fatih Akdag and Christoph F. Eick Department of Computer

More information

BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix-Vector-Product Analysis of Matrix-Matrix Product

BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix-Vector-Product Analysis of Matrix-Matrix Product Level-1 BLAS: SAXPY BLAS-Notation: S single precision (D for double, C for complex) A α scalar X vector P plus operation Y vector SAXPY: y = αx + y Vectorization of SAXPY (αx + y) by pipelining: page 8

More information

Communication-avoiding parallel and sequential QR factorizations

Communication-avoiding parallel and sequential QR factorizations Communication-avoiding parallel and sequential QR factorizations James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou May 30, 2008 Abstract We present parallel and sequential dense QR factorization

More information

Matrix Assembly in FEA

Matrix Assembly in FEA Matrix Assembly in FEA 1 In Chapter 2, we spoke about how the global matrix equations are assembled in the finite element method. We now want to revisit that discussion and add some details. For example,

More information

QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment

QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment Emmanuel AGULLO (INRIA / LaBRI) Camille COTI (Iowa State University) Jack DONGARRA (University of Tennessee) Thomas HÉRAULT

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

CS425: Algorithms for Web Scale Data

CS425: Algorithms for Web Scale Data CS425: Algorithms for Web Scale Data Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org Challenges

More information

Rainfall data analysis and storm prediction system

Rainfall data analysis and storm prediction system Rainfall data analysis and storm prediction system SHABARIRAM, M. E. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/15778/ This document is the author deposited

More information

The QR Decomposition

The QR Decomposition The QR Decomposition We have seen one major decomposition of a matrix which is A = LU (and its variants) or more generally PA = LU for a permutation matrix P. This was valid for a square matrix and aided

More information

BlockMatrixComputations and the Singular Value Decomposition. ATaleofTwoIdeas

BlockMatrixComputations and the Singular Value Decomposition. ATaleofTwoIdeas BlockMatrixComputations and the Singular Value Decomposition ATaleofTwoIdeas Charles F. Van Loan Department of Computer Science Cornell University Supported in part by the NSF contract CCR-9901988. Block

More information

Solution to Laplace Equation using Preconditioned Conjugate Gradient Method with Compressed Row Storage using MPI

Solution to Laplace Equation using Preconditioned Conjugate Gradient Method with Compressed Row Storage using MPI Solution to Laplace Equation using Preconditioned Conjugate Gradient Method with Compressed Row Storage using MPI Sagar Bhatt Person Number: 50170651 Department of Mechanical and Aerospace Engineering,

More information

Parallel Singular Value Decomposition. Jiaxing Tan

Parallel Singular Value Decomposition. Jiaxing Tan Parallel Singular Value Decomposition Jiaxing Tan Outline What is SVD? How to calculate SVD? How to parallelize SVD? Future Work What is SVD? Matrix Decomposition Eigen Decomposition A (non-zero) vector

More information

Using R for Iterative and Incremental Processing

Using R for Iterative and Incremental Processing Using R for Iterative and Incremental Processing Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, Robert Schreiber UC Berkeley and HP Labs UC BERKELEY Big Data, Complex Algorithms PageRank (Dominant

More information

Communication-avoiding parallel and sequential QR factorizations

Communication-avoiding parallel and sequential QR factorizations Communication-avoiding parallel and sequential QR factorizations James Demmel Laura Grigori Mark Frederick Hoemmen Julien Langou Electrical Engineering and Computer Sciences University of California at

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 The Singular Value Decomposition (SVD) continued Linear Algebra Methods for Data Mining, Spring 2007, University

More information

Facebook Friends! and Matrix Functions

Facebook Friends! and Matrix Functions Facebook Friends! and Matrix Functions! Graduate Research Day Joint with David F. Gleich, (Purdue), supported by" NSF CAREER 1149756-CCF Kyle Kloster! Purdue University! Network Analysis Use linear algebra

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

CS246 Final Exam. March 16, :30AM - 11:30AM

CS246 Final Exam. March 16, :30AM - 11:30AM CS246 Final Exam March 16, 2016 8:30AM - 11:30AM Name : SUID : I acknowledge and accept the Stanford Honor Code. I have neither given nor received unpermitted help on this examination. (signed) Directions

More information

Large-Scale Behavioral Targeting

Large-Scale Behavioral Targeting Large-Scale Behavioral Targeting Ye Chen, Dmitry Pavlov, John Canny ebay, Yandex, UC Berkeley (This work was conducted at Yahoo! Labs.) June 30, 2009 Chen et al. (KDD 09) Large-Scale Behavioral Targeting

More information

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform Edgar Solomonik University of Illinois at Urbana-Champaign September 21, 2016 Fast

More information

Rank revealing factorizations, and low rank approximations

Rank revealing factorizations, and low rank approximations Rank revealing factorizations, and low rank approximations L. Grigori Inria Paris, UPMC January 2018 Plan Low rank matrix approximation Rank revealing QR factorization LU CRTP: Truncated LU factorization

More information

Matrices, Vector Spaces, and Information Retrieval

Matrices, Vector Spaces, and Information Retrieval Matrices, Vector Spaces, and Information Authors: M. W. Berry and Z. Drmac and E. R. Jessup SIAM 1999: Society for Industrial and Applied Mathematics Speaker: Mattia Parigiani 1 Introduction Large volumes

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 05 Semi-Discrete Decomposition Rainer Gemulla, Pauli Miettinen May 16, 2013 Outline 1 Hunting the Bump 2 Semi-Discrete Decomposition 3 The Algorithm 4 Applications SDD alone SVD

More information

Least squares: the big idea

Least squares: the big idea Notes for 2016-02-22 Least squares: the big idea Least squares problems are a special sort of minimization problem. Suppose A R m n where m > n. In general, we cannot solve the overdetermined system Ax

More information

CS246 Final Exam, Winter 2011

CS246 Final Exam, Winter 2011 CS246 Final Exam, Winter 2011 1. Your name and student ID. Name:... Student ID:... 2. I agree to comply with Stanford Honor Code. Signature:... 3. There should be 17 numbered pages in this exam (including

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 Felix Kwok February 27, 2004 Written Problems 1. (Heath E3.10) Let B be an n n matrix, and assume that B is both

More information

Learning goals: students learn to use the SVD to find good approximations to matrices and to compute the pseudoinverse.

Learning goals: students learn to use the SVD to find good approximations to matrices and to compute the pseudoinverse. Application of the SVD: Compression and Pseudoinverse Learning goals: students learn to use the SVD to find good approximations to matrices and to compute the pseudoinverse. Low rank approximation One

More information

Sparse BLAS-3 Reduction

Sparse BLAS-3 Reduction Sparse BLAS-3 Reduction to Banded Upper Triangular (Spar3Bnd) Gary Howell, HPC/OIT NC State University gary howell@ncsu.edu Sparse BLAS-3 Reduction p.1/27 Acknowledgements James Demmel, Gene Golub, Franc

More information

Least Squares Approximation

Least Squares Approximation Chapter 6 Least Squares Approximation As we saw in Chapter 5 we can interpret radial basis function interpolation as a constrained optimization problem. We now take this point of view again, but start

More information

Numerical Linear Algebra

Numerical Linear Algebra Chapter 3 Numerical Linear Algebra We review some techniques used to solve Ax = b where A is an n n matrix, and x and b are n 1 vectors (column vectors). We then review eigenvalues and eigenvectors and

More information

CONTEMPORARY ANALYTICAL ECOSYSTEM PATRICK HALL, SAS INSTITUTE

CONTEMPORARY ANALYTICAL ECOSYSTEM PATRICK HALL, SAS INSTITUTE CONTEMPORARY ANALYTICAL ECOSYSTEM PATRICK HALL, SAS INSTITUTE Copyright 2013, SAS Institute Inc. All rights reserved. Agenda (Optional) History Lesson 2015 Buzzwords Machine Learning for X Citizen Data

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Jasjeet S. Sekhon UC Berkeley June 21, 2016 Jasjeet S. Sekhon (UC Berkeley) Methods for Massive

More information

arxiv: v1 [math.na] 29 Dec 2014

arxiv: v1 [math.na] 29 Dec 2014 A CUR Factorization Algorithm based on the Interpolative Decomposition Sergey Voronin and Per-Gunnar Martinsson arxiv:1412.8447v1 [math.na] 29 Dec 214 December 3, 214 Abstract An algorithm for the efficient

More information

A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs

A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs Matteo Ceccarello Joint work with Andrea Pietracaprina, Geppino Pucci, and Eli Upfal Università di Padova Brown University

More information

Applied Numerical Linear Algebra. Lecture 8

Applied Numerical Linear Algebra. Lecture 8 Applied Numerical Linear Algebra. Lecture 8 1/ 45 Perturbation Theory for the Least Squares Problem When A is not square, we define its condition number with respect to the 2-norm to be k 2 (A) σ max (A)/σ

More information

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg Linear Algebra, part 3 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2010 Going back to least squares (Sections 1.7 and 2.3 from Strang). We know from before: The vector

More information

A communication-avoiding thick-restart Lanczos method on a distributed-memory system

A communication-avoiding thick-restart Lanczos method on a distributed-memory system A communication-avoiding thick-restart Lanczos method on a distributed-memory system Ichitaro Yamazaki and Kesheng Wu Lawrence Berkeley National Laboratory, Berkeley, CA, USA Abstract. The Thick-Restart

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Direct Methods Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) Linear Systems: Direct Solution Methods Fall 2017 1 / 14 Introduction The solution of linear systems is one

More information

Reproducible Tall-Skinny QR

Reproducible Tall-Skinny QR Reproducible Tall-Skinny QR James Demmel and Hong Diep Nguyen University of California, Berkeley, Berkeley, USA demmel@cs.berkeley.edu, hdnguyen@eecs.berkeley.edu Abstract Reproducibility is the ability

More information

MAA507, Power method, QR-method and sparse matrix representation.

MAA507, Power method, QR-method and sparse matrix representation. ,, and representation. February 11, 2014 Lecture 7: Overview, Today we will look at:.. If time: A look at representation and fill in. Why do we need numerical s? I think everyone have seen how time consuming

More information

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12,

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 74 6 Summary Here we summarize the most important information about theoretical and numerical linear algebra. MORALS OF THE STORY: I. Theoretically

More information

From Matrix to Tensor. Charles F. Van Loan

From Matrix to Tensor. Charles F. Van Loan From Matrix to Tensor Charles F. Van Loan Department of Computer Science January 28, 2016 From Matrix to Tensor From Tensor To Matrix 1 / 68 What is a Tensor? Instead of just A(i, j) it s A(i, j, k) or

More information

Generalized interval arithmetic on compact matrix Lie groups

Generalized interval arithmetic on compact matrix Lie groups myjournal manuscript No. (will be inserted by the editor) Generalized interval arithmetic on compact matrix Lie groups Hermann Schichl, Mihály Csaba Markót, Arnold Neumaier Faculty of Mathematics, University

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 1. qr and complete orthogonal factorization poor man s svd can solve many problems on the svd list using either of these factorizations but they

More information

THE STATE OF CONTEMPORARY COMPUTING SUBSTRATES FOR OPTIMIZATION METHODS. Benjamin Recht UC Berkeley

THE STATE OF CONTEMPORARY COMPUTING SUBSTRATES FOR OPTIMIZATION METHODS. Benjamin Recht UC Berkeley THE STATE OF CONTEMPORARY COMPUTING SUBSTRATES FOR OPTIMIZATION METHODS Benjamin Recht UC Berkeley MY QUIXOTIC QUEST FOR SUPERLINEAR ALGORITHMS Benjamin Recht UC Berkeley Collaborators Slides extracted

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 A cautionary tale Notes for 2016-10-05 You have been dropped on a desert island with a laptop with a magic battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.

More information

arxiv: v2 [cs.ds] 1 May 2013

arxiv: v2 [cs.ds] 1 May 2013 Dimension Independent Matrix Square using MapReduce arxiv:1304.1467v2 [cs.ds] 1 May 2013 Reza Bosagh Zadeh Institute for Computational and Mathematical Engineering rezab@stanford.edu Gunnar Carlsson Mathematics

More information

A hybrid reordered Arnoldi method to accelerate PageRank computations

A hybrid reordered Arnoldi method to accelerate PageRank computations A hybrid reordered Arnoldi method to accelerate PageRank computations Danielle Parker Final Presentation Background Modeling the Web The Web The Graph (A) Ranks of Web pages v = v 1... Dominant Eigenvector

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Cyclops Tensor Framework

Cyclops Tensor Framework Cyclops Tensor Framework Edgar Solomonik Department of EECS, Computer Science Division, UC Berkeley March 17, 2014 1 / 29 Edgar Solomonik Cyclops Tensor Framework 1/ 29 Definition of a tensor A rank r

More information

Clustering. SVD and NMF

Clustering. SVD and NMF Clustering with the SVD and NMF Amy Langville Mathematics Department College of Charleston Dagstuhl 2/14/2007 Outline Fielder Method Extended Fielder Method and SVD Clustering with SVD vs. NMF Demos with

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Map-Reduce Denis Helic KTI, TU Graz Oct 24, 2013 Denis Helic (KTI, TU Graz) KDDM1 Oct 24, 2013 1 / 82 Big picture: KDDM Probability Theory Linear Algebra

More information

Intel Math Kernel Library (Intel MKL) LAPACK

Intel Math Kernel Library (Intel MKL) LAPACK Intel Math Kernel Library (Intel MKL) LAPACK Linear equations Victor Kostin Intel MKL Dense Solvers team manager LAPACK http://www.netlib.org/lapack Systems of Linear Equations Linear Least Squares Eigenvalue

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 6 Matrix Models Section 6.2 Low Rank Approximation Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Edgar

More information

Direct and Incomplete Cholesky Factorizations with Static Supernodes

Direct and Incomplete Cholesky Factorizations with Static Supernodes Direct and Incomplete Cholesky Factorizations with Static Supernodes AMSC 661 Term Project Report Yuancheng Luo 2010-05-14 Introduction Incomplete factorizations of sparse symmetric positive definite (SSPD)

More information

High Performance Parallel Tucker Decomposition of Sparse Tensors

High Performance Parallel Tucker Decomposition of Sparse Tensors High Performance Parallel Tucker Decomposition of Sparse Tensors Oguz Kaya INRIA and LIP, ENS Lyon, France SIAM PP 16, April 14, 2016, Paris, France Joint work with: Bora Uçar, CNRS and LIP, ENS Lyon,

More information

3.2 Iterative Solution Methods for Solving Linear

3.2 Iterative Solution Methods for Solving Linear 22 CHAPTER 3. NUMERICAL LINEAR ALGEBRA 3.2 Iterative Solution Methods for Solving Linear Systems 3.2.1 Introduction We continue looking how to solve linear systems of the form Ax = b where A = (a ij is

More information

Computation of the mtx-vec product based on storage scheme on vector CPUs

Computation of the mtx-vec product based on storage scheme on vector CPUs BLAS: Basic Linear Algebra Subroutines BLAS: Basic Linear Algebra Subroutines BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix Computation of the mtx-vec product based on storage scheme on

More information

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 Star Joins A common structure for data mining of commercial data is the star join. For example, a chain store like Walmart keeps a fact table whose tuples each

More information

LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version

LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version Amal Khabou James Demmel Laura Grigori Ming Gu Electrical Engineering and Computer Sciences University of California

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra The two principal problems in linear algebra are: Linear system Given an n n matrix A and an n-vector b, determine x IR n such that A x = b Eigenvalue problem Given an n n matrix

More information

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu Minisymposia 9 and 34: Avoiding Communication in Linear Algebra Jim Demmel UC Berkeley bebop.cs.berkeley.edu Motivation (1) Increasing parallelism to exploit From Top500 to multicores in your laptop Exponentially

More information

CALU: A Communication Optimal LU Factorization Algorithm

CALU: A Communication Optimal LU Factorization Algorithm CALU: A Communication Optimal LU Factorization Algorithm James Demmel Laura Grigori Hua Xiang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-010-9

More information

Gershgorin s Circle Theorem for Estimating the Eigenvalues of a Matrix with Known Error Bounds

Gershgorin s Circle Theorem for Estimating the Eigenvalues of a Matrix with Known Error Bounds Gershgorin s Circle Theorem for Estimating the Eigenvalues of a Matrix with Known Error Bounds Author: David Marquis Advisors: Professor Hans De Moor Dr. Kathryn Porter Reader: Dr. Michael Nathanson May

More information

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Jiho Yoo and Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 31 Hyoja-dong,

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Regularized Least Squares

Regularized Least Squares Regularized Least Squares Ryan M. Rifkin Google, Inc. 2008 Basics: Data Data points S = {(X 1, Y 1 ),...,(X n, Y n )}. We let X simultaneously refer to the set {X 1,...,X n } and to the n by d matrix whose

More information

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 1 / 23 Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 Maison de la Simulation Lille 1 University CNRS March 18, 2013

More information

Preface to Second Edition... vii. Preface to First Edition...

Preface to Second Edition... vii. Preface to First Edition... Contents Preface to Second Edition..................................... vii Preface to First Edition....................................... ix Part I Linear Algebra 1 Basic Vector/Matrix Structure and

More information

2.5D algorithms for distributed-memory computing

2.5D algorithms for distributed-memory computing ntroduction for distributed-memory computing C Berkeley July, 2012 1/ 62 ntroduction Outline ntroduction Strong scaling 2.5D factorization 2/ 62 ntroduction Strong scaling Solving science problems faster

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

6 The SVD Applied to Signal and Image Deblurring

6 The SVD Applied to Signal and Image Deblurring 6 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

Problems. Looks for literal term matches. Problems:

Problems. Looks for literal term matches. Problems: Problems Looks for literal term matches erms in queries (esp short ones) don t always capture user s information need well Problems: Synonymy: other words with the same meaning Car and automobile 电脑 vs.

More information

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition ECS231: Spectral Partitioning Based on Berkeley s CS267 lecture on graph partition 1 Definition of graph partitioning Given a graph G = (N, E, W N, W E ) N = nodes (or vertices), E = edges W N = node weights

More information

Linear Algebra, part 3 QR and SVD

Linear Algebra, part 3 QR and SVD Linear Algebra, part 3 QR and SVD Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2012 Going back to least squares (Section 1.4 from Strang, now also see section 5.2). We

More information

Efficient Primal- Dual Graph Algorithms for Map Reduce

Efficient Primal- Dual Graph Algorithms for Map Reduce Efficient Primal- Dual Graph Algorithms for Map Reduce Joint work with Bahman Bahmani Ashish Goel, Stanford Kamesh Munagala Duke University Modern Data Models Over the past decade, many commodity distributed

More information

Iterative Methods. Splitting Methods

Iterative Methods. Splitting Methods Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition

More information