PHYS 705: Classical Mechanics. Calculus of Variations I

Size: px
Start display at page:

Download "PHYS 705: Classical Mechanics. Calculus of Variations I"

Transcription

1 1 PHYS 705: Classical Mechanics Calculus of Variations I

2 Calculus of Variations: The Problem Determine the function y() such that the following integral is min(ma)imized. Comments: I F y( ), y'( ); d 1. Notation: is the independent variable ( =t in our mech prob) y() is a function of and y () = dy/d F{ } is a functional on y(). Intuition: Let say y() denote a route in the -y plane and I is the amount of gas needed for the trip. The problem is to find the route which uses the least gas.

3 3 Calculus of Variations: The Problem Comments (cont): 3. To keep it simple, we will fi the end points ( and ). We assume that they are known. Method can be etended to situation where ( and ) can be varied as well The method does not eplicitly give y(). Instead, we will get a diff eq for y(). F is assumed to be at least twice differentiable, i.e., C in all its arguments. is assumed to be unidirectional between and. If not, break it into different pieces.

4 4 Calculus of Variations Consider a family of functions parameterized by. y(, ) y y desired path y(, ) y(0, ) ( ) y(0,) y ( ) is a parameter ( ) is a C -smooth variation at ( ) ( ) 0 Note: y(, ) y y(, ) y for all, i.e., all sampled paths has the same end points, and y(0, ) is the desired path

5 5 Calculus of Variations necessary, but not sufficient, condition for the min(ma)imization of I is: di d 0 0 Taking the derivative of I wrt, we have, di d Fy( ), y'( ); d d d d F y ( ), y '( ); d d F y F y' d y y' (the end points and are fied) ( is the independent variable and does not vary with )

6 6 Calculus of Variations Recall, we have y(, ) y(0, ) ( ) So, nd, y ( ) y'(, ) y'(0, ) '( ) So, y' d d This gives, di F F d y y' d d d Now, to continue, we will integrate the second term by parts.

7 7 Calculus of Variations di d F Fd d y y ' d To integrate by parts, udv uv vdu Let, F d F u du d y' dy' d dv d v d (with the fied limits and ) So, Fd F df d ( ) ( ) d y' d y' d y' 0 no end points udv uv vdu

8 8 Calculus of Variations So, we have, Fd df d ( ) d y' d d y' di Putting this back into our epression for, d di F d F ( ) ( ) d 0 d y d y' F d F ( d ) 0 y d y' Since this has to be zero for any arbitrary C variation, ( ) F d F y dy' 0 Euler-Lagrange Equation (1744) (fundamental lamma of Calc. of Var.)

9 9 Calculus of Variations (Euler-Lagrange Equation) F d F y dy' 0 Euler-Lagrange Equation Comments: 1. This is the diff eq whose solution y() is the function we seek to min(ma)imize with respect to F.. We only used a necessary condition for an etremum di 0 d I might end up to be an inflection point. We can always check afterward. In Hamilton s principle (later), the condition is only for a stationary value It is important to keep track of which variable is the independent variable. Here, it is.

10 10 Euler-Lagrange Equation (Special Case) We will now derive a particular useful form of the EL equation for the case when F does not eplicitly depend on, i.e., Observe this: F( y, y ') d ' F ' d F y F y y'' F df d y ' d y ' y ' d (obviously, F depends on implicitlythru y) F y F y' F y y' d d F y' F y ' d F F F y' y'' d y ' y ' y y' F y ' y''

11 11 Euler-Lagrange Equation (Special Case) Cancelling and grouping like-color terms, d ' F ' d y F y F F y'' F d y ' d y ' y y ' F y '' y ' Now, if y() satisfies the Euler-Lagrange Equation, the remaining term on the RHS will be zero as well. Thus, we have, d d F y' F 0 y ' or F y ' F const y ' This is a much easier equation to solve since it is 1 st order only. We basically have done one integration already.

12 1 Few Classic Problems (#1: a Straight Line) 1. What plane curve connecting two given points has the shortest length? rc length is given by: y I ds where, dy ds d dy or ds 1 d d So, we need to find y() that minimizes: I 1 y ' d Note: ds is written in Euclidian space. If it is not (e.g. sphere), the result (geodesic) will be different NOT a straight line.

13 13 Few Classic Problems (#1: a Straight Line) To solve this problem, we apply the Euler-Lagrange equation, F d F y dy' 0 with F y 1 ' EL equation gives: F 1 1/ ' 0 F 1 y' y' y y y' 1 y ' d d F y ' 0 F y' y ' 1 y ' const

14 14 Few Classic Problems (#1: a Straight Line) Solving for y gives y being equals to another constant, y' const y mb (it is a line and m and b to be determined by the endpoints) lternatively, since F does not depend on eplicitly, we can use the second form for the EL equation, d d F y' F 0 y ' F y' F const y ' y ' y ' 1 y ' const 1 y '

15 15 Few Classic Problems (#1: a Straight Line) y 1 ' Multiplying to the whole equation, we have, y' 1 y' c 1 y' (c being a constant) 1c 1 y' y' const and the same result, y mb

16 16 Few Classic Problems (#: Catenoid). Minimum Surface of Revolution Problem (Soap Film bet Wire Loops) Two points in an y-plane are given. curve in the plane connecting the two points is revolved about an ais. Find the curve that results in the minimum surface area of revolution. ds y element of surf area da 1 y (note: is our indep var and it is unidirectional) (Goldstein is not correct on this) ds d dy da y ds y 1 y ' d rea to be minimize is: 1 I da y 1 y' d 1

17 17 Few Classic Problems (#: Catenoid) For the given integrant, the EL equation is: F d F y dy' 0 with F( yy, '; ) y 1 y' With F not eplicitly depends on (the independent variable), we can use the alternative form for the EL equation instead: F y' F c y ' where c is an integration constant F 1 1/ yy' y 1 y' y' y ' 1 y '

18 18 Few Classic Problems (#: Catenoid) Putting it into the alternative form of the EL equation: yy ' y' y 1 y' c 1 y ' yy ' y 1 y' y 1 y ' 1 y ' c c y c 1 y' y or y' 1 c

19 19 Few Classic Problems (#: Catenoid) So the diff eq that we need to solve is now: dy d 1 c y c dy y c 1 dc ccosh b y c (both c and b are integration constants which will depend on the end points 1 and ) y ccosh b c 1 y This curve is called a Catenary and the surf. of revolution is called a Catenoid.

20 0 Few Classic Problems (#: Catenoid) y rendering of the catenoid using Mathematica Soap film between two loops

21 1 Few Classic Problems (#: Catenoid) There are more interesting subtleties to this problem: 1. When one considers a family of catenaries that go through one fied point (let say the left one : pt 1) 1 fied y - ll the caternaries will tangent on an envelope curve (blue) which is a parabola with its focus at pt #1 - Interesting observations: If we choose pt at this location (other similar intersection pts), there will be solns. There will be no soln here.

22 Few Classic Problems (#: Catenoid). What we have considered so far involve only twice-differentiable solutions. There is also a nondifferentiable solution that has physical relevance! Smooth Caternary Solution y 1 y 1 Goldschmidt Solution Soap film bet two rings Keeps moving the two loops apart until the red surf area > blue surf area

23 3 Few Classic Problems (#3: rachistochrone problem) +y 1 v g Find the path that goes between pt 1 and pt with the least time under gravity. minimize t 1 ds v With T (Goldstein, p.43), the solution is a cycloid given by: 0 0 +y a a sin, 1 cos a y a 0 mv0 (HW is to derive the cycloid with.) T 1

24 4 Few Classic Problems (#3: rachistochrone problem) nimation for the cycloid: Movie on YouTube:

Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics Lecture Notes for PHY 45 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics October 11, 25 Chapter

More information

VARIATIONAL PRINCIPLES

VARIATIONAL PRINCIPLES CHAPTER - II VARIATIONAL PRINCIPLES Unit : Euler-Lagranges s Differential Equations: Introduction: We have seen that co-ordinates are the tools in the hands of a mathematician. With the help of these co-ordinates

More information

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 6)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 6) Chapter 3. Calculus of Variations Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 6 In preparation for our study of Lagrangian and Hamiltonian dynamics in later

More information

PHYS 705: Classical Mechanics. Hamiltonian Formulation & Canonical Transformation

PHYS 705: Classical Mechanics. Hamiltonian Formulation & Canonical Transformation 1 PHYS 705: Classical Mechanics Hamiltonian Formulation & Canonical Transformation Legendre Transform Let consider the simple case with ust a real value function: F x F x expresses a relationship between

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

Calculus of Variations Summer Term 2014

Calculus of Variations Summer Term 2014 Calculus of Variations Summer Term 2014 Lecture 2 25. April 2014 c Daria Apushkinskaya 2014 () Calculus of variations lecture 2 25. April 2014 1 / 20 Purpose of Lesson Purpose of Lesson: To discuss the

More information

Properties of Derivatives

Properties of Derivatives 6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve

More information

US01CMTH02 UNIT-3. exists, then it is called the partial derivative of f with respect to y at (a, b) and is denoted by f. f(a, b + b) f(a, b) lim

US01CMTH02 UNIT-3. exists, then it is called the partial derivative of f with respect to y at (a, b) and is denoted by f. f(a, b + b) f(a, b) lim Study material of BSc(Semester - I US01CMTH02 (Partial Derivatives Prepared by Nilesh Y Patel Head,Mathematics Department,VPand RPTPScience College 1 Partial derivatives US01CMTH02 UNIT-3 The concept of

More information

(d by dx notation aka Leibniz notation)

(d by dx notation aka Leibniz notation) n Prerequisites: Differentiating, sin and cos ; sum/difference and chain rules; finding ma./min.; finding tangents to curves; finding stationary points and their nature; optimising a function. Maths Applications:

More information

First Variation of a Functional

First Variation of a Functional First Variation of a Functional The derivative of a function being zero is a necessary condition for the etremum of that function in ordinary calculus. Let us now consider the equivalent of a derivative

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

THE CALCULUS OF VARIATIONS

THE CALCULUS OF VARIATIONS THE CALCULUS OF VARIATIONS LAGRANGIAN MECHANICS AND OPTIMAL CONTROL AARON NELSON Abstract. The calculus of variations addresses the need to optimize certain quantities over sets of functions. We begin

More information

Calculus of Variation An Introduction To Isoperimetric Problems

Calculus of Variation An Introduction To Isoperimetric Problems Calculus of Variation An Introduction To Isoperimetric Problems Kevin Wang The University of Sydney SSP Working Seminars, MATH2916 May 4, 2013 Contents I Lagrange Multipliers 2 1 Single Constraint Lagrange

More information

Calculus of Variations Summer Term 2014

Calculus of Variations Summer Term 2014 Calculus of Variations Summer Term 2014 Lecture 5 7. Mai 2014 c Daria Apushkinskaya 2014 () Calculus of variations lecture 5 7. Mai 2014 1 / 25 Purpose of Lesson Purpose of Lesson: To discuss catenary

More information

HW 9, Math 319, Fall 2016

HW 9, Math 319, Fall 2016 HW 9, Math 39, Fall Nasser M. Abbasi Discussion section 447, Th 4:3PM-: PM December, Contents HW 9. Section. problem................................... Part a....................................... Part

More information

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b.

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b. Uses of differentials to estimate errors. Recall the derivative notation df d is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input at = b. Eamples.

More information

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1)

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1) Math 5B Integral Calculus March 7, 7 Midterm Eam # Name: Answer Key David Arnold Instructions. points) This eam is open notes, open book. This includes any supplementary tets or online documents. You are

More information

Section: I. u 4 du. (9x + 1) + C, 3

Section: I. u 4 du. (9x + 1) + C, 3 EXAM 3 MAT 168 Calculus II Fall 18 Name: Section: I All answers must include either supporting work or an eplanation of your reasoning. MPORTANT: These elements are considered main part of the answer and

More information

The linear equations can be classificed into the following cases, from easier to more difficult: 1. Linear: u y. u x

The linear equations can be classificed into the following cases, from easier to more difficult: 1. Linear: u y. u x Week 02 : Method of C haracteristics From now on we will stu one by one classical techniques of obtaining solution formulas for PDEs. The first one is the method of characteristics, which is particularly

More information

Math 112 Section 10 Lecture notes, 1/7/04

Math 112 Section 10 Lecture notes, 1/7/04 Math 11 Section 10 Lecture notes, 1/7/04 Section 7. Integration by parts To integrate the product of two functions, integration by parts is used when simpler methods such as substitution or simplifying

More information

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x Algebra Notes Quadratic Systems Name: Block: Date: Last class we discussed linear systems. The only possibilities we had we 1 solution, no solution or infinite solutions. With quadratic systems we have

More information

Minimal Surfaces: Nonparametric Theory. Andrejs Treibergs. January, 2016

Minimal Surfaces: Nonparametric Theory. Andrejs Treibergs. January, 2016 USAC Colloquium Minimal Surfaces: Nonparametric Theory Andrejs Treibergs University of Utah January, 2016 2. USAC Lecture: Minimal Surfaces The URL for these Beamer Slides: Minimal Surfaces: Nonparametric

More information

Solution to Problems for the 1-D Wave Equation

Solution to Problems for the 1-D Wave Equation Solution to Problems for the -D Wave Equation 8. Linear Partial Differential Equations Matthew J. Hancock Fall 5 Problem (i) Suppose that an infinite string has an initial displacement +, u (, ) = f ()

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

n and C and D be positive constants so that nn 1

n and C and D be positive constants so that nn 1 Math Activity 0 (Due by end of class August 6). The graph of the equation y is called an astroid. a) Find the length of this curve. {Hint: One-fourth of the curve is given by the graph of y for 0.} b)

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

AP Calculus (BC) Summer Assignment (169 points)

AP Calculus (BC) Summer Assignment (169 points) AP Calculus (BC) Summer Assignment (69 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Geometric Modelling Summer 2016

Geometric Modelling Summer 2016 Geometric Modelling Summer 2016 Exercises Benjamin Karer M.Sc. http://gfx.uni-kl.de/~gm Benjamin Karer M.Sc. Geometric Modelling Summer 2016 1 Dierential Geometry Benjamin Karer M.Sc. Geometric Modelling

More information

Introduction to Algebraic and Geometric Topology Week 14

Introduction to Algebraic and Geometric Topology Week 14 Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart

More information

Review: A Cross Section of the Midterm. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review: A Cross Section of the Midterm. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review: A Cross Section of the Midterm Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the limit, if it eists. 4 + ) lim - - ) A) - B) -

More information

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8 Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

Integrated Calculus II Exam 2 Solutions 3/28/3

Integrated Calculus II Exam 2 Solutions 3/28/3 Integrated Calculus II Exam 2 Solutions /28/ Question 1 Solve the following differential equation, with the initial condition y() = 2: dy = (y 1)2 t 2. Plot the solution and discuss its behavior as a function

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

AP Calculus BC Chapter 4 (A) 12 (B) 40 (C) 46 (D) 55 (E) 66

AP Calculus BC Chapter 4 (A) 12 (B) 40 (C) 46 (D) 55 (E) 66 AP Calculus BC Chapter 4 REVIEW 4.1 4.4 Name Date Period NO CALCULATOR IS ALLOWED FOR THIS PORTION OF THE REVIEW. 1. 4 d dt (3t 2 + 2t 1) dt = 2 (A) 12 (B) 4 (C) 46 (D) 55 (E) 66 2. The velocity of a particle

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag.

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag. San Francisco State University Math Review Notes Michael Bar Sets A set is any collection of elements Eamples: a A {,,4,6,8,} - the set of even numbers between zero and b B { red, white, bule} - the set

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

Department of Mathematical x 1 x 2 1

Department of Mathematical x 1 x 2 1 Contents Limits. Basic Factoring Eample....................................... One-Sided Limit........................................... 3.3 Squeeze Theorem.......................................... 4.4

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

M151B Practice Problems for Final Exam

M151B Practice Problems for Final Exam M5B Practice Problems for Final Eam Calculators will not be allowed on the eam. Unjustified answers will not receive credit. On the eam you will be given the following identities: n k = n(n + ) ; n k =

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Solutions to the Exercises of Chapter 8

Solutions to the Exercises of Chapter 8 8A Domains of Functions Solutions to the Eercises of Chapter 8 1 For 7 to make sense, we need 7 0or7 So the domain of f() is{ 7} For + 5 to make sense, +5 0 So the domain of g() is{ 5} For h() to make

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maimum and minimum values The critical points method for finding etrema 43 How derivatives affect the shape of a graph The first

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002 171, Calculus 1 Summer 1, 018 CRN 5048, Section 001 Time: MTWR, 6:0 p.m. 8:0 p.m. Room: BR-4 CRN 5048, Section 00 Time: MTWR, 11:0 a.m. 1:0 p.m. Room: BR-4 CONTENTS Syllabus Reviews for tests 1 Review

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points)

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points) BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: United and Continuous! ( points) For #- below, find the its, if they eist.(#- are pt each) ) 7 ) 9 9 ) 5 ) 8 For #5-7, eplain why

More information

MTH 3311 Test #1. order 3, linear. The highest order of derivative of y is 2. Furthermore, y and its derivatives are all raised to the

MTH 3311 Test #1. order 3, linear. The highest order of derivative of y is 2. Furthermore, y and its derivatives are all raised to the MTH 3311 Test #1 F 018 Pat Rossi Name Show CLEARLY how you arrive at your answers. 1. Classify the following according to order and linearity. If an equation is not linear, eplain why. (a) y + y y = 4

More information

Variational Methods and Optimal Control

Variational Methods and Optimal Control Variational Methods and Optimal Control A/Prof. Matthew Roughan July 26, 2010 lecture01 Introduction What is the point of this course? Revision Example 1: The money pit. Example 2: Catenary: shape of a

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

Module 4: One-Dimensional Kinematics

Module 4: One-Dimensional Kinematics 4.1 Introduction Module 4: One-Dimensional Kinematics Kinematics is the mathematical description of motion. The term is derived from the Greek word kinema, meaning movement. In order to quantify motion,

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Fall 2011 FINAL EXAM REVIEW The final exam will be held on Wednesday 14 December from 10:30am 12:30pm in our regular classroom. You will be allowed both sides of an 8.5 11

More information

Answers for NSSH exam paper 2 type of questions, based on the syllabus part 2 (includes 16)

Answers for NSSH exam paper 2 type of questions, based on the syllabus part 2 (includes 16) Answers for NSSH eam paper type of questions, based on the syllabus part (includes 6) Section Integration dy 6 6. (a) Integrate with respect to : d y c ( )d or d The curve passes through P(,) so = 6/ +

More information

Section 5-7 : Green's Theorem

Section 5-7 : Green's Theorem Section 5-7 : Green's Theorem In this section we are going to investigate the relationship between certain kinds of line integrals (on closed paths) and double integrals. Let s start off with a simple

More information

Chapter 2 Notes, Kohler & Johnson 2e

Chapter 2 Notes, Kohler & Johnson 2e Contents 2 First Order Differential Equations 2 2.1 First Order Equations - Existence and Uniqueness Theorems......... 2 2.2 Linear First Order Differential Equations.................... 5 2.2.1 First

More information

Contents PART II. Foreword

Contents PART II. Foreword Contents PART II Foreword v Preface vii 7. Integrals 87 7. Introduction 88 7. Integration as an Inverse Process of Differentiation 88 7. Methods of Integration 00 7.4 Integrals of some Particular Functions

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Applications of Differentiation of Polynomials

Applications of Differentiation of Polynomials C H A P T E R 20 Applications of Differentiation of Polynomials Objectives To be able to find the equation of the tangent and the normal at a given point of a polynomial curve. To use the derivative of

More information

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3 Math (Calculus II) Final Eam Form A Fall 22 RED KEY Part I: Multiple Choice Mark the correct answer on the bubble sheet provided.. Which of the following series converge absolutely? ) ( ) n 2) n 2 n (

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

More information

AP Calculus BC Chapter 6 - AP Exam Problems solutions

AP Calculus BC Chapter 6 - AP Exam Problems solutions P Calculus BC Chapter 6 - P Eam Problems solutions. E Epand the integrand. ( + ) d = ( + ) 5 4 5 + d = + + + C.. f ( ) = sin+ C, f( ) = +cos+c+k. Option is the only one with this form. sec d = d ( tan

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

28. Rolling Sphere. Introduction. Holonomic Constraints and non-holonomic Constraints. x origin, and its radius a. We see immediately that its

28. Rolling Sphere. Introduction. Holonomic Constraints and non-holonomic Constraints. x origin, and its radius a. We see immediately that its 8 Rolling Sphere Michael Fowler Introduction We ll now consider an interesting dynamics problem not covered in most introductory texts, a rolling ball on a rotating, possibly tilted, surface As we ll see,

More information

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A.

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A. Équations canoniques. Application a la recherche de l équilibre des fils flexibles et des courbes brachystochrones, Mem. Acad. Sci de Toulouse (8) 7 (885), 545-570. CANONICAL EQUATIONS Application to the

More information

d F = (df E 3 ) E 3. (4.1)

d F = (df E 3 ) E 3. (4.1) 4. The Second Fundamental Form In the last section we developed the theory of intrinsic geometry of surfaces by considering the covariant differential d F, that is, the tangential component of df for a

More information

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston Review sheet Final Eam Math Calculus I Fall 5 UMass Boston The eam is closed tetbook NO CALCULATORS OR ELECTRONIC DEVICES ARE ALLOWED DURING THE EXAM The final eam will contain problems of types similar

More information

VANDERBILT UNIVERSITY. MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions

VANDERBILT UNIVERSITY. MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions VANDERBILT UNIVERSITY MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions Directions. This practice test should be used as a study guide, illustrating the concepts that will be emphasized in the

More information

Answers for Ch. 6 Review: Applications of the Integral

Answers for Ch. 6 Review: Applications of the Integral Answers for Ch. 6 Review: Applications of the Integral. The formula for the average value of a function, which you must have stored in your magical mathematical brain, is b b a f d. a d / / 8 6 6 ( 8 )

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations 236861 Numerical Geometry of Images Tutorial 1 Introduction to the Calculus of Variations Alex Bronstein c 2005 1 Calculus Calculus of variations 1. Function Functional f : R n R Example: f(x, y) =x 2

More information

3 x x+1. (4) One might be tempted to do what is done with fractions, i.e., combine them by means of a common denominator.

3 x x+1. (4) One might be tempted to do what is done with fractions, i.e., combine them by means of a common denominator. Lecture 6 Techniques of integration (cont d) Integration of rational functions by partial fractions Relevant section from Stewart, Eighth Edition: 7.4 In this section, we consider the integration of rational

More information

(a) During what time intervals on [0, 4] is the particle traveling to the left?

(a) During what time intervals on [0, 4] is the particle traveling to the left? Chapter 5. (AB/BC, calculator) A particle travels along the -ais for times 0 t 4. The velocity of the particle is given by 5 () sin. At time t = 0, the particle is units to the right of the origin. t /

More information

Chapter 3 Derivatives

Chapter 3 Derivatives Chapter Derivatives Section 1 Derivative of a Function What you ll learn about The meaning of differentiable Different ways of denoting the derivative of a function Graphing y = f (x) given the graph of

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus In thermodynamics, we will frequently deal with functions of more than one variable e.g., P PT, V, n, U UT, V, n, U UT, P, n U = energy n = # moles etensive variable: depends on

More information

Section - 9 GRAPHS. (a) y f x (b) y f x. (c) y f x (d) y f x. (e) y f x (f) y f x k. (g) y f x k (h) y kf x. (i) y f kx. [a] y f x to y f x

Section - 9 GRAPHS. (a) y f x (b) y f x. (c) y f x (d) y f x. (e) y f x (f) y f x k. (g) y f x k (h) y kf x. (i) y f kx. [a] y f x to y f x 44 Section - 9 GRAPHS In this section, we will discuss graphs and graph-plotting in more detail. Detailed graph plotting also requires a knowledge of derivatives. Here, we will be discussing some general

More information

AP Calculus AB/BC ilearnmath.net

AP Calculus AB/BC ilearnmath.net CALCULUS AB AP CHAPTER 1 TEST Don t write on the test materials. Put all answers on a separate sheet of paper. Numbers 1-8: Calculator, 5 minutes. Choose the letter that best completes the statement or

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

Midterm Exam 2. Wednesday, May 7 Temple, Winter 2018

Midterm Exam 2. Wednesday, May 7 Temple, Winter 2018 Name: Student ID#: Section: Midterm Exam 2 Wednesday, May 7 Temple, Winter 2018 Show your work on every problem. orrect answers with no supporting work will not receive full credit. Be organized and use

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information