Applications of Diagonalization

Size: px
Start display at page:

Download "Applications of Diagonalization"

Transcription

1 Applications of Diagonalization Hsiu-Hau Lin Apr 2, 200 The notes cover applications of matrix diagonalization Boas 3.2. Quadratic curves Consider the quadratic curve, 5x 2 4xy + 2y 2 = 30. It can be casted into the matrix form and then brought into diagonal form, x, y x y = 30 x, y x y = The similarity transformation brings the quadratic curve into the canonical form x 2 + 6y 2 = 30. This is clearly an ellipse with principle axes coincide with the eigenvectors. Harmonic oscillators with equal mass Consider three identical springs attached to two equal masses in series. The elastic potential energy is V x, y = 2 kx2 + 2 kx y2 + 2 ky2. 3 The corresponding equations of motions are mẍ = V/ x = 2kx + ky, 4 mÿ = V/ y = kx 2ky. 5 Assume the solutions are x = x 0 e iωt and y = y 0 e iωt, the equations can be written in matrix form, λ x y = 2 2 x y, 6

2 HedgeHog s notes April, where λ = mω 2 /k. The potential matrix is symmetric arisen from Newton s third law. Following the standard recipe for matrix diagonalization, the eigenvalues are λ =, 3 corresponding to the characteristic frequencies ω = k 3k m, ω 2 = m. 7 The eigenvectors for the coupled harmonic oscillators are r =,, r 2 =,. 8 The in-phase oscillation mode has a smaller frequency ω while the out-ofphase mode has a larger frequency ω 2 = 3ω. Harmonic oscillators with different masses Consider the same setup but the spring constants and the masses are not equal: 2k, 2m, 6k, 3m, 3k. The potential energy is and the kinetic energy is V x, y = 2 2kx kx y ky2 = 2 k8x2 2xy + 9y 2, 9 T = 2 2mẋ mẏ2 = 2 m2ẋ2 + 3ẏ 2. 0 There are two different ways to solve the problem. Let s try the easier one first. The equations of motion are 2mω 2 x = k8x 6y, 3mω 2 y = k 6x + 9y. 2 Divide each equation by its mass and write the equations in matrix form, x 4 3 x λ =, 3 y 2 3 y with λ = mω 2 /k. The eigenvalues and the eigenvectors are λ =, r =, ; 4 λ = 6, r = 3, 2. 5

3 HedgeHog s notes April, The main problem with this approach is that the eigenvectors are not orthogonal anymore. Sometimes, this is not a problem and I would recommend this approach. However, there are times that the orthogonality is important and we need another more advanced approach. Let s write both the potential and the kinetic energy in matrix form, 8 6 V = k 2 rt V r where V =, 6 T = 2 k rt T r where T = The equation of motion can be written in matrix form,. 7 λt r = V r. 8 Since the matrix T is positive definite, we can define its square-root matrix T = Perform a simple scaling transformation to new coordinates, R = X Y 2 0 = x = T 2 r y The equation of motion can be rewritten in the standard form, λr = T 2 V T 2 R. 2 The matrix T 2 V T 2 is now symmetric and all nice properties are recovered. Quasi-species equations In addition to the basic examples in the textbook, I would like to share with more advanced applications for evolutionary dynamics. To describe the evolution of frequencies for different species in the fitness landscape, quasispecies equations capture the essential ingredient, dx i dt = j x j f j q ji φx i, 22 where x i and f j are the frequency and the fitness for the j-th sequence and φ = i x i f i is the average fitness for all sequences. The mutation probability

4 HedgeHog s notes April, from the j-th sequence to the i-th sequence is denoted by q ji, satisfying the sum rule i q ji =. Assuming point mutation is the dominant process, the mutation matrix takes the simple form q ji = u d ji u L d ji, 23 where u is the probability for point mutation and d ji is the distance between two sequences minimal number of point mutations to bring one sequence into another. Since d ji = d ij, the mutation matrix is also symmetric q ji = q ij. Effective Hamiltonian The quasi-species equations can be described by an effective Hamiltonian after a gauge transformation, Ψ i t = f i x i te W t, 24 with Ẇ t = φt. Making use of the normalization condition i x i =, it is straightforward to show that e W t = i Thus, the inverse gauge transformation is x i t = Ψ i te W t = fi fi Ψ i t. 25 j Ψ j / f j fi Ψ i t. 26 After some algebra, one can derive the dynamical equations for Ψ i t, dψ i dt = j H ij Ψ j, H ij = f i f j q ji. 27 This form is the same as the usual Schrödinger equation if one replaces t it and sets h =. The general solution for the imaginary-time Schrödinger equation is Ψ i t = n c n Φ n i e Ent, 28 where E n and Φ n i are the eigenvalues and eigenvectors of the effective Hamiltonian H ij. In the infinite-time limit, only the ground state will survive lim t Ψ it c 0 Φ 0 i e E 0t. 29

5 HedgeHog s notes April, Figure : For the single-peak fitness landscape, there exists a mutation threshold u c. For u < u c, frequency profile is localized near the fitness peak. On the other hand, for u > u c, an extended state not necessarily uniform emerges and the notion of quasi-species no longer exists. The frequency in the infinite-time limit thus only depends on the groundstate wave function Φ 0 i, x i = lim x i t = t j Φ 0 j/ Φ 0 i. 30 f fi j Therefore, to compute the survival frequencies, we only need to find the ground state of the effective Hamiltonian. Consider the simplest fitness landscape as shown in Fig.. There exists a sharp peak with maximum fitness f 0 = f M and the background fitness f i = f < f M for all sequences i 0. Note that the effective Hamiltonian is real and symmetric, H ij = f i f j u d ji u L d ji. 3 Even though the single-peak fitness landscape is simple, the size of the sequence space is huge N s = 2 L. Following Chun-Chung s suggestion, the ground state must be in the s-wave sector with a much small size L only, Ψ 0s i =, 0, 0,..., 0, Ψ s Ψ 2s i = i = 0,,,..,, 0, 0,..0, L 2 0, 0, 0,.., 0,,,...,, 0, 0,..., 0, LL where the non-zero components in Ψ s i are with the distance d = from the peak and similar properties hold for all other Ψ ns i. One can construct the L L Hamiltonian in the s-wave sector H nm = ij Ψ ns i H ij Ψ ms j, 33

6 HedgeHog s notes April, and numerically diagonalize the Hamiltonian to obtain the ground state. The s-wave symmetry helps tremendously and reduces the size of the relevant sequence space from N s = 2 L to just L! Variational method Here I am going to use a variational approach to estimate the mutation threshold. Choose two variational wave functions Ψ 0 i =, 0,..., 0, Ψ i = 0,,,...,. 34 Ns Construct the variational wave function for the ground state Ψ i = c 0 Ψ 0 i + c Ψ i, 35 with the normalization constraint c c 2 =. The variational energy takes the form Ec, c 2, λ = Ψ i H ij Ψ j + λc c 2, ij = c n Hnmc v m + λc c 2, 36 n,m=0, where the variational Hamiltonian is H v nm = ij Ψ n i H ij Ψ m j. 37 The matrix elements of the variational Hamiltonian can be computed, H00 v = f M u L, 38 H0 v = H0 v fm f [ = ] u L, 39 N s H v = f u d ij u L d ij N s i,j 0 = f u d ij u L d ij N s i 0,j i 0,j=0 = f + f [ ] u L. 40 N s

7 HedgeHog s notes April, Minimizing the variational energy Ec, c 2, λ is equivalent to diagonalizing the 2 2 variational Hamiltonian H v nm which can be rewritten as ɛ Hnm v = C + f, 4 ɛ where the constant term does not affect the frequencies x i t after the inverse gauge transformation, C = 2 [ f M q 00 + f f ] N s q with q 00 = u L and will be dropped in the following calculations. The dimensionless parameters ɛ and in the variational Hamiltonian are ɛu, r, L = [ r u L ] [ + ] u L, N s r [ u, r, L = ] u L, 44 N s where r = f M /f is the relative fitness of the dominant sequence and N s = 2 L is the size of the sequence space. The eigenvalues of the variational Hamiltonian are E ± = ± ɛ Therefore, the ground-state energy within the variational approximation corresponds to the negative eigenvalue E = E with the eigenvector c 0 c = ɛ2 + 2 ɛ = ɛ ɛ. 46 Survival frequency and back mutations With the coefficients c 0 and c at hand, the ground state within the variational approximation is Φ v0 i = c 0, c Ns, c Ns,..., c. 47 Ns

8 HedgeHog s notes April, u ln r Figure 2: The frequency x 0 of the dominant sequence plotted versus the point mutation u and the rescaled mutation g = ul/ ln r. The fitness landscape consists of a single sharp peak with relative fitness r = f M /f = 2 and a uniform background for all other sequences. The genome length starts from L = 0 red to L = 22 purple. From the left panel, it is clear that the crossover from localized-like to extensive-like becomes sharper as the genome length increases. For the given relative fitness r = 2, all curves for x 0u, r, L can be collapsed onto the universal scaling function by changing the variable to g = ul/ ln r. It is clear that the mutation threshold is g c =. The survival frequency of the dominant sequence can be computed from the variational ground state, x 0u, r, L = = j Φ v0 j / Φ v0 c 0 0 = f f0 j c 0 + rn s c ɛ ɛ ɛ ɛ + r2 L. 48 It is convenient to introduce the rescaled variable g for mutations, g = ul ln r. 49 The numerical plot for x 0u, r, L is shown in Fig. 2 and it scales rather nicely when plotting versus the rescaled variable g = ul/ ln r as long as L is sufficiently large with a sharp transition at g c =. How good is the no-back-mutation assumption? A good indicator is the ratio of the back-mutating rate and the rate to stay on the dominant sequence, χu, r, L = j 0 x jf j q j0 x 0f M q

9 HedgeHog s notes April, u ln r Figure 3: The back-mutation ratio χu, r, L plotted versus the mutation u left panel and the rescaled mutation g = ul/ ln r right panel. The parameters are the same as those in Fig. 2. For large enough genome length, the back-mutation rate is indeed negligibly small when compared with the rate to stay in the dominant sequence. However, beyond the mutation threshold, the ratio χ grows exponentially, hinting the enhanced back mutations destroy the localized state and prefer the extended state. Within the variational approximation, all x j = x for j 0 and the summation in the numerator can be carried out without difficulty, χu, r, L = x f q 00 f q 00 c =. 5 x 0f 0 q 00 f M q 00 N s c 0 For finite genome length, the back mutations exist as shown in Fig. 3. However, the no-back-mutation assumption is reasonably good. Notice that, plotted with the rescaled mutation g = ul/ ln r, the data for different lengths collapse nicely into a universal curve. Above the mutation threshold g > g c =, the back mutations grow exponentially and destroy the localized quasi-species state in the sequence space. Infinite genome-length limit Inspired by the nice collapse onto universal curve, it is interesting to take the infinite genome-length limit and derive the scaling functions for the survival frequency for the dominant species and the back-mutation ratio. Taking L limit but keeping the rescaled mutation g and the relative fitness r finite, the exponential factor becomes lim L ul = lim L e L ln u = lim L e ul = e g ln r = r g.

10 HedgeHog s notes April, x 0 g,r x 0 g,l g g Figure 4: The universal scaling function x 0g, r in the infinite-length limit left panel and x 0g, L in the continuous limit right panel. Taking the genome length to infinity, survival frequencies for the dominant sequence with different mutation u and length L collapse onto the universal scaling function x 0g, r. The transition is sharp and the universal scaling functions vary with different relative fitness from r = + red to r = 3 purple. On the other hand, in the continuous limit u 0 and r +, the scaling function x 0g, L is not necessarily sharp anymore since the genome length is finite, varying from L = 4 red to L = 6 purple. Note that the scaling function in both infinite-length and continuous limit is just the linear function x 0g = g below the error threshold g c =. In addition, the off-diagonal term is negligibly small and the survival frequency for the dominant sequence is greatly simplified, x 0g, r = lim L x 0u, r, L = 2 [ r g + r g ] 2 [ r g + r g ] + r r g. 52 Since the relative fitness r is greater than unity, the numerator is zero for g >. It is straightforward to show the universal scaling function is x 0g, r = Θ g r g r. 53 Magically, this form is exactly the same as that derived under the assumption of no back mutation. We can also compute the back-mutation ratio in the infinite genomelength limit. Taking L but keeping g and r finite, the stay-on probability is q 00 = u L r g. The only tricky term in χg, r is lim L c r N g = Θg s c 0 r r g. 54

11 HedgeHog s notes April, 200 Therefore, the back-mutation ratio in the infinite genome-length limit is χg, r = Θg r g. 55 The universal ratio χg, r is zero in the localized quasi-species state, i.e. back-mutation rate can be safely ignored. Continuous limit Following Chun-Chung s idea, the continuous limit for Eigen s model can be obtained by taking r and u 0 but holding g and L finite. In the continuous limit, ɛ c g, L lim r c g, L lim r ɛ r = [ g + g ], 2 2 L 56 r = g. 2L 57 After some algebra, the survival frequency of the dominant sequence x 0g, L in the continuous limit is ɛ 2 x c + 2 c + ɛ c 0g, L = ɛ 2 c + 2 c + ɛ c + g. 58 If we take both continuous and the infinite-length limits together, the scaling function becomes r g lim r x 0g, r = Θ g lim r r = Θ g g. 59 It is interesting that the back mutation disappear in this limit completely, lim χg, r = Θg lim r r rg = 0. 60

Introduction to Linear Algebra

Introduction to Linear Algebra Introduction to Linear Algebra Hsiu-Hau Lin hsiuhau@phys.nthu.edu.tw (Mar 11, 2010) The notes deliver a brief introduction to linear algebra (Boas 3.1). Without loosing too much generality, linear algebra

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

- HH Photons. Compton effect. Hsiu-Hau Lin (May 8, 2014)

- HH Photons. Compton effect. Hsiu-Hau Lin (May 8, 2014) - HH0130 - Photons Hsiu-Hau Lin hsiuhau@phys.nthu.edu.tw (May 8, 014) In 1905, inspired by Planck s pioneering work on blackbody radiation, Einstein proposed that light exists as discrete quanta, now referred

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Section 9 Variational Method. Page 492

Section 9 Variational Method. Page 492 Section 9 Variational Method Page 492 Page 493 Lecture 27: The Variational Method Date Given: 2008/12/03 Date Revised: 2008/12/03 Derivation Section 9.1 Variational Method: Derivation Page 494 Motivation

More information

Math 1302, Week 8: Oscillations

Math 1302, Week 8: Oscillations Math 302, Week 8: Oscillations T y eq Y y = y eq + Y mg Figure : Simple harmonic motion. At equilibrium the string is of total length y eq. During the motion we let Y be the extension beyond equilibrium,

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2011 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Lecture 6 Positive Definite Matrices

Lecture 6 Positive Definite Matrices Linear Algebra Lecture 6 Positive Definite Matrices Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/6/8 Lecture 6: Positive Definite Matrices

More information

General Exam Part II, Fall 1998 Quantum Mechanics Solutions

General Exam Part II, Fall 1998 Quantum Mechanics Solutions General Exam Part II, Fall 1998 Quantum Mechanics Solutions Leo C. Stein Problem 1 Consider a particle of charge q and mass m confined to the x-y plane and subject to a harmonic oscillator potential V

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Introductory Physics. Week 2015/05/29

Introductory Physics. Week 2015/05/29 2015/05/29 Part I Summary of week 6 Summary of week 6 We studied the motion of a projectile under uniform gravity, and constrained rectilinear motion, introducing the concept of constraint force. Then

More information

Two-Body Problem. Central Potential. 1D Motion

Two-Body Problem. Central Potential. 1D Motion Two-Body Problem. Central Potential. D Motion The simplest non-trivial dynamical problem is the problem of two particles. The equations of motion read. m r = F 2, () We already know that the center of

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5 QUANTUM MECHANICS I PHYS 56 Solutions to Problem Set # 5. Crossed E and B fields: A hydrogen atom in the N 2 level is subject to crossed electric and magnetic fields. Choose your coordinate axes to make

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Spring 2017 Second Order Linear Homogeneous Differential Equation DE: A(x) d 2 y dx 2 + B(x)dy dx + C(x)y = 0 This equation is called second order because it includes the second derivative of y; it is

More information

Quantum Mechanics: Vibration and Rotation of Molecules

Quantum Mechanics: Vibration and Rotation of Molecules Quantum Mechanics: Vibration and Rotation of Molecules 8th April 2008 I. 1-Dimensional Classical Harmonic Oscillator The classical picture for motion under a harmonic potential (mass attached to spring

More information

+ V = 0, j = 1,..., 3N (7.1) i =1, 3 m = 1, N, X mi, V X mi. i = 0 in the equilibrium. X mi X nj

+ V = 0, j = 1,..., 3N (7.1) i =1, 3 m = 1, N, X mi, V X mi. i = 0 in the equilibrium. X mi X nj 7. Lattice dynamics 7.1 Basic consideratons In this section we ll follow a number of well-known textbooks, and only try to keep the notations consistent. Suppose we have a system of N atoms, m=1,...,n,

More information

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt =

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = d (mv) /dt where p =mv is linear momentum of particle

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

Chapter 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: H = αδ(x a/2) (1)

Chapter 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: H = αδ(x a/2) (1) Tor Kjellsson Stockholm University Chapter 6 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: where α is a constant. H = αδ(x a/ ( a Find the first-order correction

More information

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions Physics 37A Quantum Mechanics Fall 0 Midterm II - Solutions These are the solutions to the exam given to Lecture Problem [5 points] Consider a particle with mass m charge q in a simple harmonic oscillator

More information

Small oscillations and normal modes

Small oscillations and normal modes Chapter 4 Small oscillations and normal modes 4.1 Linear oscillations Discuss a generalization of the harmonic oscillator problem: oscillations of a system of several degrees of freedom near the position

More information

Mechanics IV: Oscillations

Mechanics IV: Oscillations Mechanics IV: Oscillations Chapter 4 of Morin covers oscillations, including damped and driven oscillators in detail. Also see chapter 10 of Kleppner and Kolenkow. For more on normal modes, see any book

More information

P3317 HW from Lecture 7+8 and Recitation 4

P3317 HW from Lecture 7+8 and Recitation 4 P3317 HW from Lecture 7+8 and Recitation 4 Due Friday Tuesday September 25 Problem 1. In class we argued that an ammonia atom in an electric field can be modeled by a two-level system, described by a Schrodinger

More information

QM1 - Tutorial 2 Schrodinger Equation, Hamiltonian and Free Particle

QM1 - Tutorial 2 Schrodinger Equation, Hamiltonian and Free Particle QM - Tutorial Schrodinger Equation, Hamiltonian and Free Particle Yaakov Yuin November 07 Contents Hamiltonian. Denition...................................................... Example: Hamiltonian of a

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

Dimensional analysis

Dimensional analysis Dimensional analysis Calvin W. Johnson September 9, 04 Dimensional analysis Dimensional analysis is a powerful and important tool in calculations. In fact, you should make it a habit to automatically use

More information

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory Physics 202 Laboratory 5 Linear Algebra Laboratory 5 Physics 202 Laboratory We close our whirlwind tour of numerical methods by advertising some elements of (numerical) linear algebra. There are three

More information

Quantum Mechanics C (130C) Winter 2014 Assignment 7

Quantum Mechanics C (130C) Winter 2014 Assignment 7 University of California at San Diego Department of Physics Prof. John McGreevy Quantum Mechanics C (130C) Winter 014 Assignment 7 Posted March 3, 014 Due 11am Thursday March 13, 014 This is the last problem

More information

Simple Harmonic Oscillator

Simple Harmonic Oscillator Classical harmonic oscillator Linear force acting on a particle (Hooke s law): F =!kx From Newton s law: F = ma = m d x dt =!kx " d x dt + # x = 0, # = k / m Position and momentum solutions oscillate in

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

An Exactly Solvable 3 Body Problem

An Exactly Solvable 3 Body Problem An Exactly Solvable 3 Body Problem The most famous n-body problem is one where particles interact by an inverse square-law force. However, there is a class of exactly solvable n-body problems in which

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006 Chem 350/450 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 006 Christopher J. Cramer ecture 7, February 1, 006 Solved Homework We are given that A is a Hermitian operator such that

More information

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory Physics 2 Lecture 4 Integration Lecture 4 Physics 2 Laboratory Monday, February 21st, 211 Integration is the flip-side of differentiation in fact, it is often possible to write a differential equation

More information

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2 Physics 443 Prelim # with solutions March 7, 8 Each problem is worth 34 points.. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator H p m + mω x (a Use dimensional analysis to

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Quantum Mechanics in One Dimension. Solutions of Selected Problems

Quantum Mechanics in One Dimension. Solutions of Selected Problems Chapter 6 Quantum Mechanics in One Dimension. Solutions of Selected Problems 6.1 Problem 6.13 (In the text book) A proton is confined to moving in a one-dimensional box of width.2 nm. (a) Find the lowest

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

1 Review of simple harmonic oscillator

1 Review of simple harmonic oscillator MATHEMATICS 7302 (Analytical Dynamics YEAR 2017 2018, TERM 2 HANDOUT #8: COUPLED OSCILLATIONS AND NORMAL MODES 1 Review of simple harmonic oscillator In MATH 1301/1302 you studied the simple harmonic oscillator:

More information

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner:

Table of contents. d 2 y dx 2, As the equation is linear, these quantities can only be involved in the following manner: M ath 0 1 E S 1 W inter 0 1 0 Last Updated: January, 01 0 Solving Second Order Linear ODEs Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections 4. 4. 7 and

More information

Quantum Theory of Matter

Quantum Theory of Matter Imperial College London Department of Physics Professor Ortwin Hess o.hess@imperial.ac.uk Quantum Theory of Matter Spring 014 1 Periodic Structures 1.1 Direct and Reciprocal Lattice (a) Show that the reciprocal

More information

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, Complex Numbers Complex Algebra The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, and (ii) complex multiplication, (x 1, y 1 )

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

5 Irreducible representations

5 Irreducible representations Physics 29b Lecture 9 Caltech, 2/5/9 5 Irreducible representations 5.9 Irreps of the circle group and charge We have been talking mostly about finite groups. Continuous groups are different, but their

More information

2.3 Damping, phases and all that

2.3 Damping, phases and all that 2.3. DAMPING, PHASES AND ALL THAT 107 2.3 Damping, phases and all that If we imagine taking our idealized mass on a spring and dunking it in water or, more dramatically, in molasses), then there will be

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis: 5 Representations 5.3 Given a three-dimensional Hilbert space, consider the two observables ξ and η that, with respect to the basis 1, 2, 3, arerepresentedby the matrices: ξ ξ 1 0 0 0 ξ 1 0 0 0 ξ 3, ξ

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas) Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3 in Boas) As suggested in Lecture 8 the formalism of eigenvalues/eigenvectors has many applications in physics, especially in

More information

21 Linear State-Space Representations

21 Linear State-Space Representations ME 132, Spring 25, UC Berkeley, A Packard 187 21 Linear State-Space Representations First, let s describe the most general type of dynamic system that we will consider/encounter in this class Systems may

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04 Page 71 Lecture 4: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 009/0/04 Date Given: 009/0/04 Plan of Attack Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack

More information

One-dimensional Schrödinger equation

One-dimensional Schrödinger equation Chapter 1 One-dimensional Schrödinger equation In this chapter we will start from the harmonic oscillator to introduce a general numerical methodology to solve the one-dimensional, time-independent Schrödinger

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

1. Introductory Examples

1. Introductory Examples 1. Introductory Examples We introduce the concept of the deterministic and stochastic simulation methods. Two problems are provided to explain the methods: the percolation problem, providing an example

More information

I. Perturbation Theory and the Problem of Degeneracy[?,?,?]

I. Perturbation Theory and the Problem of Degeneracy[?,?,?] MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 19 THE VAN VLECK TRANSFORMATION IN PERTURBATION THEORY 1 Although frequently it is desirable to carry a perturbation treatment to second or third

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

Linear algebra and differential equations (Math 54): Lecture 19

Linear algebra and differential equations (Math 54): Lecture 19 Linear algebra and differential equations (Math 54): Lecture 19 Vivek Shende April 5, 2016 Hello and welcome to class! Previously We have discussed linear algebra. This time We start studying differential

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Linear Differential Equations. Problems

Linear Differential Equations. Problems Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

REVIEW: The Matching Method Algorithm

REVIEW: The Matching Method Algorithm Lecture 26: Numerov Algorithm for Solving the Time-Independent Schrödinger Equation 1 REVIEW: The Matching Method Algorithm Need for a more general method The shooting method for solving the time-independent

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 2: Basic tools and concepts Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures: 1.

More information

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

More information

Differential Equations Grinshpan Two-Dimensional Homogeneous Linear Systems with Constant Coefficients. Purely Imaginary Eigenvalues. Recall the equation mẍ+k = of a simple harmonic oscillator with frequency

More information

2 Quantization of the Electromagnetic Field

2 Quantization of the Electromagnetic Field 2 Quantization of the Electromagnetic Field 2.1 Basics Starting point of the quantization of the electromagnetic field are Maxwell s equations in the vacuum (source free): where B = µ 0 H, D = ε 0 E, µ

More information

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration

More information

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013

Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013 Practice Final Exam Solutions for Calculus II, Math 5, December 5, 3 Name: Section: Name of TA: This test is to be taken without calculators and notes of any sorts. The allowed time is hours and 5 minutes.

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Review of Classical Mechanics

Review of Classical Mechanics Review of Classical Mechanics VBS/MRC Review of Classical Mechanics 0 Some Questions Why does a tennis racket wobble when flipped along a certain axis? What do hear when you pluck a Veena string? How do

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems. Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

Linearization of Differential Equation Models

Linearization of Differential Equation Models Linearization of Differential Equation Models 1 Motivation We cannot solve most nonlinear models, so we often instead try to get an overall feel for the way the model behaves: we sometimes talk about looking

More information

Exercises * on Linear Algebra

Exercises * on Linear Algebra Exercises * on Linear Algebra Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 7 Contents Vector spaces 4. Definition...............................................

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: H ˆ! = "!2 d 2! + 1 2µ dx 2 2 kx 2! = E! T ˆ = "! 2 2µ d 2 dx 2 V ˆ = 1 2 kx 2 H ˆ = ˆ T + ˆ V (1) where µ is

More information

Hamiltonian. March 30, 2013

Hamiltonian. March 30, 2013 Hamiltonian March 3, 213 Contents 1 Variational problem as a constrained problem 1 1.1 Differential constaint......................... 1 1.2 Canonic form............................. 2 1.3 Hamiltonian..............................

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Math 304 Answers to Selected Problems

Math 304 Answers to Selected Problems Math Answers to Selected Problems Section 6.. Find the general solution to each of the following systems. a y y + y y y + y e y y y y y + y f y y + y y y + 6y y y + y Answer: a This is a system of the

More information

A new integrable system: The interacting soliton of the BO

A new integrable system: The interacting soliton of the BO Phys. Lett., A 204, p.336-342, 1995 A new integrable system: The interacting soliton of the BO Benno Fuchssteiner and Thorsten Schulze Automath Institute University of Paderborn Paderborn & Germany Abstract

More information

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Chemistry 432 Problem Set 4 Spring 2018 Solutions Chemistry 4 Problem Set 4 Spring 18 Solutions 1. V I II III a b c A one-dimensional particle of mass m is confined to move under the influence of the potential x a V V (x) = a < x b b x c elsewhere and

More information

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1 ANSWERS Final Exam Math 50b, Section (Professor J. M. Cushing), 5 May 008 PART. (0 points) A bacterial population x grows exponentially according to the equation x 0 = rx, where r>0is the per unit rate

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part IB Thursday 7 June 2007 9 to 12 PAPER 3 Before you begin read these instructions carefully. Each question in Section II carries twice the number of marks of each question in Section

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6, 11.1 11.3 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator.

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. PHYS208 spring 2008 Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. 07.02.2008 Adapted from the text Light - Atom Interaction PHYS261 autumn 2007 Go to list of topics

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

Application of Resurgence Theory to Approximate Inverse Square Potential in Quantum Mechanics

Application of Resurgence Theory to Approximate Inverse Square Potential in Quantum Mechanics Macalester Journal of Physics and Astronomy Volume 3 Issue 1 Spring 015 Article 10 May 015 Application of Resurgence Theory to Approximate Inverse Square Potential in Quantum Mechanics Jian Zhang Ms. Macalester

More information