The state vectors j, m transform in rotations like D(R) j, m = m j, m j, m D(R) j, m. m m (R) = j, m exp. where. d (j) m m (β) j, m exp ij )

Size: px
Start display at page:

Download "The state vectors j, m transform in rotations like D(R) j, m = m j, m j, m D(R) j, m. m m (R) = j, m exp. where. d (j) m m (β) j, m exp ij )"

Transcription

1 Anguar momentum agebra It is easy to see that the operat J J x J x + J y J y + J z J z commutes with the operats J x, J y and J z, [J, J i ] 0 We choose the component J z and denote the common eigenstate of the operats J and J z by j, m We know QM II that J j, m jj + j, m, j 0,,, 3, J z j, m m j, m, m j, j +,, j, j We define the adder operats J + and J : J ± J x ± ij y They satisfy the commutation reations We see that and [J +, J ] J z [J z, J ± ] ±J ± [ J, J ± ] 0 J z J + j, m J + J z j, m m + J + j, m J J + j, m J + J j, m jj + J + j, m, so we must have J + j, m c + j, m + The fact c + can be deduced from the nmaization condition j, m j, m δ jj δ mm We end up with J ± j, m j mj ± m + j, m ± Matrix eements wi be j, m J j, m jj + δ j jδ m m j, m J z j, m mδ j jδ m m j, m J ± j, m j mj ± m + δ j jδ m,m± We define Wigner s function: Since D j R j, m exp ij ˆnφ j, m [J, DR] [J ij ˆnφ, exp ] 0, we see that DR does not chance the j-quantum number, so it cannot have non zero matrix eements between states with different j vaues The matrix with matrix eements D j R is the j + -dimensiona irreducibe representation of the rotation operat DR The matrices D j R fm a group: The product of matrices beongs to the group: D j m m R R D j m m R D j R, m where R R is the combined rotation of the rotations R and R, the inverse operation beongs to the group: D j R D j mm R The state vects j, m transfm in rotations ike DR j, m m j, m j, m DR j, m m j, m D j R With the hep of the Euer anges D j R where j, m exp ij zα exp ij yβ exp ij zγ j, m e im α+mγ d j β, d j β j, m exp ij yβ j, m Functions d j can be evauated using Wigner s fmua d j β k k m+m j + m!j m!j + m!j m! j + m k!k!j k m!k m + m! cos β j k+m m sin β k m+m Orbita anguar momentum The components of the cassicay anaogous operat L x p satisfy the commutation reations [L i, L j ] iɛ ijkl k Using the spherica codinates to abe the position eigenstates, x r, θ, φ, one can show that x L z α i φ x α x L x α i sin φ cot θ cos φ θ φ x L y α i cos φ cot θ sin φ θ φ x L ± α ie ±iφ ±i θ cot θ φ [ x L α sin θ φ + sin θ θ sin θ ] θ

2 We denote the common eigenstate of the operats L and L z by the ket-vect, m, ie L z, m m, m L, m +, m Since R 3 can be represented as the direct product R 3 R Ω, where Ω is the surface of the unit sphere positiondistance from the igin and direction the position eigenstates can be written crespondingy as x r ˆn Here the state vects ˆn fm a compete basis on the surface of the sphere, ie dωˆn ˆn ˆn We define the spherica harmonic function: Y m θ, φ Y m ˆn ˆn, m The scaar product of the vect ˆn with the equations gives and [ sin θ Y m and D The state L z, m m, m L, m +, m i φ Y m θ, φ my m θ, φ sin θ + θ θ sin θ ˆn θ, φ ] + + Y m 0 φ is obtained from the state ẑ rotating it first by the ange θ around y-axis and then by the ange φ around z-axis: Furtherme so ˆn DR ẑ Dα φ, β θ, γ 0 ẑ,m Dφ, θ, 0, m, m ẑ, m ˆn Y θ, φ m, m ẑ Y m Y m + θ, φ D φ, θ, 0, m ẑ + 0, φ δ m0, D m0 φ, θ, γ 0 D m0 α, β, 0 As a specia case + Y θ, φ β,α D 00 θ, φ, 0 d 00 θ P cos θ Couping of anguar momenta We consider two Hibert spaces H and H If now A i is an operat in the space H i, the notation A A means the operat A A α β A α A β in the product space Here α i H i In particuar, A α β A α β, where i is the identity operat of the space H i Crespondingy A operates ony in the subspace H of the product space Usuay the subspace of the identity operats, even the identity operat itsef, is not shown, f exampe A A A It is easy to verify that operats operating in different subspace commute, ie [A, A ] [A, A ] 0 In particuar we consider two anguar momenta J and J operating in two different Hibert spaces They commute: [J i, J j ] 0 The infinitesima rotation affecting both Hibert spaces is ij ˆnδφ ij ˆnδφ ij + J ˆnδφ The components of the tota anguar momentum J J + J J + J obey the commutation reations [J i, J j ] iɛ ijk J k, ie J is anguar momentum A finite rotation is constructed anaogousy: D R D R exp J ˆnφ exp J ˆnφ Base vects of the whoe system We seek in the product space { j m j m } f the maxima set of commuting operats i J, J, J z and J z

3 Their common eigenstates are simpy direct products j j ; m m j, m j, m If j and j can be deduced from the context we often denote m m j j ; m m The quantum numbers are obtained from the eigenequations J j j ; m m j j + j j ; m m J z j j ; m m m j j ; m m J j j ; m m j j + j j ; m m J z j j ; m m m j j ; m m ii J, J, J and J z Their common eigenstate is denoted as shty j j ; jm jm j j ; jm if the quantum numbers j and j can be deduced from the context The quantum numbers are obtained from the equations J j j ; jm j j + j j ; jm J j j ; jm j j + j j ; jm J j j ; jm jj + j j ; jm J z j j ; jm m j j ; jm [J, J z ] 0, [J, J z ] 0, so we cannot add to the set i the operat J, n to the set ii the operats J z J z Both sets are thus maxima and the cresponding bases compete and thonma, ie j j ; m m j j ; m m j j m m j j ; jm j j ; jm j j jm In the subspace where the quantum numbers j and j are fixed we have the competeness reations j j ; m m j j ; m m m m j j ; jm j j ; jm jm One can go from the basis i to the basis ii via the unitary transfmation j j ; jm m m j j ; m m j j ; m m j j ; jm, so aso the transfmation matrix C jm,mm j j ; m m j j ; jm is unitary The eements j j ; m m j j ; jm of the transfmation matrix are caed Cebsch-Gdan s coefficients Since J z J z + J z, we must have m m + m, so the Cebsch-Gdan coefficients satisfy the condition j j ; m m j j ; jm 0, if m m + m Further, we must have QM II j j j j + j It turns out, that the C-G coefficients can be chosen to be rea, so the transfmation matrix C is in fact thogona: j j ; m m j j ; jm j j ; m m j j ; jm jm δ mm δ m m m m j j ; m m j j ; jm j j ; m m j j ; j m δ jj δ mm As a specia case j j and m m m + m we get the nmaization condition m m j j ; m m j j ; jm Recursion fmuas Operating with the adder operats to the state j j ; jm we get J ± j j ; jm J ± + J ± m m j j ; m m j j ; m m j j ; jm, j mj ± m + j j ; j, m ± m m j m j ± m + j j ; m ±, m + j ± m j ± m + j j ; m, m ± j j ; m m j j ; jm Taking the scaar product on the both sides with the vect j j ; m m we get j mj ± m + j j ; m m j j ; j, m ± j m + j ± m j j ; m, m j j ; jm + j m + j ± m j j ; m, m j j ; jm

4 , - * + The Cebsch-Gdan coefficients are determined uniquey by the recursion fmuas the nmaization condition m m j j ; m m j j ; jm 3 the sign conventions, f exampe j j ; j m J z j j ; jm 0 Note Due to the sign conventions the der of the couping is essentia: Exampe L + S-couping j 0,,, m m, +,,, j s m m s ± { ± j, when > 0, when 0 I j j ; jm ± j j ; jm Graphica representation of recursion fmuas Recursion fmua in m m -pane We fix j, j and j Then m j, m j, m + m j Recursion when j and j s / Using the seection rue m m m, m m s and the shthand notation the J -recursion gives + + m + + m m, +, m + m + m + m +, +, m +, m, +, m + m + + m + 3 m +, +, m + Appying the same recursion repeatedy we have Using recursion fmuas We see that > B H A every C-G coefficient depends on A, the nmaization condition determines the absoute vaue of A, 3 the sign is obtained from the sign conventions m, +, m + m + + m m m + 5 m + 3, +, m + + m + + m m m m m + 7 m + 5, +, m m + +, +, + If j j max j + j and m m max j + j one must have j j ; jm j j ; m j, m j j j ; jm j m j m

5 the nmaization condition j j ; m j, m j j j ; jm and the sign convention give j j ; m j, m j j j ; jm Thus, in the case of the spin-bit couping,, +, +, m, +, m + m + + With the hep of the recursion reations, nmaization condition and sign convention the rest of the C-G coefficients can be evauated, too We get j +, m j, m + m + + m + + m m, m s m m +, m s m m + + Rotation matrices If D j R is a rotation matrix in the base { j m m j,, j } and D j R a rotation matrix in the base { j m m j,, j }, then D j R D j R is a rotation matrix in the j + j + -dimensiona base { j, m j, m } Seecting suitabe superpositions of the vects j, m j, m the matrix takes the fm ike On the other hand we have j j ; m m DR j j ; m m j j ; m m j j ; jm jm j m j j ; jm DR j j ; j m j j ; j m j j ; m m j j ; m m j j ; jm D j mm Rδ jj jm j m j j ; m m j j ; j m We end up with the Cebsch-Gdan series D j m m RD j m m R j m As an appication we have dωy θ, φy m m j j ; m m j j ; jm j j ; m m j j ; jm D j mm R θ, φy m θ, φ ; 00 ; 0 ; m m ; m D j R D j R D j+j 0 D j+j 0 D j j One can thus write D j D j D j+j D j+j D j j As a check we can cacuate the dimensions: j + j + j + j + + j + j j j + The matrix eements of the rotation operat satisfy j j ; m m DR j j ; m m j m DR j m j m DR j m D j m m RD j m m R

Joel Broida UCSD Fall 2009 Phys 130B QM II. Homework Set 2 DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS.

Joel Broida UCSD Fall 2009 Phys 130B QM II. Homework Set 2 DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS. Joe Broida UCSD Fa 009 Phys 30B QM II Homework Set DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS. You may need to use one or more of these: Y 0 0 = 4π Y 0 = 3 4π cos Y

More information

5.74 RWF LECTURE #3 ROTATIONAL TRANSFORMATIONS AND SPHERICAL TENSOR OPERATORS

5.74 RWF LECTURE #3 ROTATIONAL TRANSFORMATIONS AND SPHERICAL TENSOR OPERATORS MIT Department of Chemistry 5.74, Spring 004: Introductory Quantum Mechanics II Instructor: Prof. Robert Fied 3 1 5.74 RWF LECTURE #3 ROTATIONAL TRANSFORMATIONS AND SPHERICAL TENSOR OPERATORS Last time;

More information

Part B: Many-Particle Angular Momentum Operators.

Part B: Many-Particle Angular Momentum Operators. Part B: Man-Partice Anguar Moentu Operators. The coutation reations deterine the properties of the anguar oentu and spin operators. The are copete anaogous: L, L = i L, etc. L = L ± il ± L = L L L L =

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

VIII. Addition of Angular Momenta

VIII. Addition of Angular Momenta VIII Addition of Anguar Momenta a Couped and Uncouped Bae When deaing with two different ource of anguar momentum, Ĵ and Ĵ, there are two obviou bae that one might chooe to work in The firt i caed the

More information

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October, 202 Prof. Aan Guth LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection FFTs in Graphics and Vision Spherica Convoution and Axia Symmetry Detection Outine Math Review Symmetry Genera Convoution Spherica Convoution Axia Symmetry Detection Math Review Symmetry: Given a unitary

More information

CONGRUENCES. 1. History

CONGRUENCES. 1. History CONGRUENCES HAO BILLY LEE Abstract. These are notes I created for a seminar tak, foowing the papers of On the -adic Representations and Congruences for Coefficients of Moduar Forms by Swinnerton-Dyer and

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Tensor Operators and the Wigner Eckart Theorem

Tensor Operators and the Wigner Eckart Theorem November 11, 2009 Tensor Operators and the Wigner Eckart Theorem Vector operator The ket α transforms under rotation to α D(R) α. The expectation value of a vector operator in the rotated system is related

More information

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta Physics 1A Fall 1996 Notes 14 Coupling of Angular Momenta In these notes we will discuss the problem of the coupling or addition of angular momenta. It is assumed that you have all had experience with

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

2M2. Fourier Series Prof Bill Lionheart

2M2. Fourier Series Prof Bill Lionheart M. Fourier Series Prof Bi Lionheart 1. The Fourier series of the periodic function f(x) with period has the form f(x) = a 0 + ( a n cos πnx + b n sin πnx ). Here the rea numbers a n, b n are caed the Fourier

More information

Gaussian Curvature in a p-orbital, Hydrogen-like Atoms

Gaussian Curvature in a p-orbital, Hydrogen-like Atoms Advanced Studies in Theoretica Physics Vo. 9, 015, no. 6, 81-85 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/astp.015.5115 Gaussian Curvature in a p-orbita, Hydrogen-ike Atoms Sandro-Jose Berrio-Guzman

More information

Physics 70007, Fall 2009 Answers to Final Exam

Physics 70007, Fall 2009 Answers to Final Exam Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg,

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

Lecture 8 February 18, 2010

Lecture 8 February 18, 2010 Sources of Eectromagnetic Fieds Lecture 8 February 18, 2010 We now start to discuss radiation in free space. We wi reorder the materia of Chapter 9, bringing sections 6 7 up front. We wi aso cover some

More information

Section 6: Magnetostatics

Section 6: Magnetostatics agnetic fieds in matter Section 6: agnetostatics In the previous sections we assumed that the current density J is a known function of coordinates. In the presence of matter this is not aways true. The

More information

TRANSFORMATION OF REAL SPHERICAL HARMONICS UNDER ROTATIONS

TRANSFORMATION OF REAL SPHERICAL HARMONICS UNDER ROTATIONS Vo. 39 (008) ACTA PHYSICA POLONICA B No 8 TRANSFORMATION OF REAL SPHERICAL HARMONICS UNDER ROTATIONS Zbigniew Romanowski Interdiscipinary Centre for Materias Modeing Pawińskiego 5a, 0-106 Warsaw, Poand

More information

Lecture 19 (Nov. 15, 2017)

Lecture 19 (Nov. 15, 2017) Lecture 19 8.31 Quantum Theory I, Fall 017 8 Lecture 19 Nov. 15, 017) 19.1 Rotations Recall that rotations are transformations of the form x i R ij x j using Einstein summation notation), where R is an

More information

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries c 26 Noninear Phenomena in Compex Systems First-Order Corrections to Gutzwier s Trace Formua for Systems with Discrete Symmetries Hoger Cartarius, Jörg Main, and Günter Wunner Institut für Theoretische

More information

PHYS 508 (2015-1) Final Exam January 27, Wednesday.

PHYS 508 (2015-1) Final Exam January 27, Wednesday. PHYS 508 (2015-1) Final Exam January 27, Wednesday. Q1. Scattering with identical particles The quantum statistics have some interesting consequences for the scattering of identical particles. This is

More information

(Refer Slide Time: 2:34) L C V

(Refer Slide Time: 2:34) L C V Microwave Integrated Circuits Professor Jayanta Mukherjee Department of Eectrica Engineering Indian Intitute of Technoogy Bombay Modue 1 Lecture No 2 Refection Coefficient, SWR, Smith Chart. Heo wecome

More information

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z Bohr s atomic mode Another interesting success of the so-caed od quantum theory is expaining atomic spectra of hydrogen and hydrogen-ike atoms. The eectromagnetic radiation emitted by free atoms is concentrated

More information

Physics 566: Quantum Optics Quantization of the Electromagnetic Field

Physics 566: Quantum Optics Quantization of the Electromagnetic Field Physics 566: Quantum Optics Quantization of the Eectromagnetic Fied Maxwe's Equations and Gauge invariance In ecture we earned how to quantize a one dimensiona scaar fied corresponding to vibrations on

More information

The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012

The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012 The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012 I offer here some background for Chapter 3 of J. J. Sakurai, Modern Quantum Mechanics. 1 The rotation group

More information

Wigner 3-j Symbols. D j 2. m 2,m 2 (ˆn, θ)(j, m j 1,m 1; j 2,m 2). (7)

Wigner 3-j Symbols. D j 2. m 2,m 2 (ˆn, θ)(j, m j 1,m 1; j 2,m 2). (7) Physics G6037 Professor Christ 2/04/2007 Wigner 3-j Symbols Begin by considering states on which two angular momentum operators J and J 2 are defined:,m ;,m 2. As the labels suggest, these states are eigenstates

More information

Radiation Fields. Lecture 12

Radiation Fields. Lecture 12 Radiation Fieds Lecture 12 1 Mutipoe expansion Separate Maxwe s equations into two sets of equations, each set separatey invoving either the eectric or the magnetic fied. After remova of the time dependence

More information

V.B The Cluster Expansion

V.B The Cluster Expansion V.B The Custer Expansion For short range interactions, speciay with a hard core, it is much better to repace the expansion parameter V( q ) by f( q ) = exp ( βv( q )), which is obtained by summing over

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015)

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015) Graduate Quantum Mechanics I: Prelims and Solutions (Fall 015 Problem 1 (0 points Suppose A and B are two two-level systems represented by the Pauli-matrices σx A,B σ x = ( 0 1 ;σ 1 0 y = ( ( 0 i 1 0 ;σ

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

C. Fourier Sine Series Overview

C. Fourier Sine Series Overview 12 PHILIP D. LOEWEN C. Fourier Sine Series Overview Let some constant > be given. The symboic form of the FSS Eigenvaue probem combines an ordinary differentia equation (ODE) on the interva (, ) with a

More information

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects.

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects. Stear Dynamics & Structure of Gaaxies handout # Custer modeing Just as a sef-gravitating coection of objects. Coisions Do we have to worry about coisions? Gobuar custers ook densest, so obtain a rough

More information

1.2 Partial Wave Analysis

1.2 Partial Wave Analysis February, 205 Lecture X.2 Partia Wave Anaysis We have described scattering in terms of an incoming pane wave, a momentum eigenet, and and outgoing spherica wave, aso with definite momentum. We now consider

More information

Physics 506 Winter 2006 Homework Assignment #6 Solutions

Physics 506 Winter 2006 Homework Assignment #6 Solutions Physics 506 Winter 006 Homework Assignment #6 Soutions Textbook probems: Ch. 10: 10., 10.3, 10.7, 10.10 10. Eectromagnetic radiation with eiptic poarization, described (in the notation of Section 7. by

More information

ANGULAR MOMENTUM. We have seen that when the system is rotated through an angle about an axis α the unitary operator producing the change is

ANGULAR MOMENTUM. We have seen that when the system is rotated through an angle about an axis α the unitary operator producing the change is ANGULAR MOMENTUM We have seen that when the system is rotated through an angle about an ais α the unitary operator producing the change is U i J e Where J is a pseudo vector obeying the commutation relations

More information

arxiv:gr-qc/ v1 12 Sep 1996

arxiv:gr-qc/ v1 12 Sep 1996 AN ALGEBRAIC INTERPRETATION OF THE WHEELER-DEWITT EQUATION arxiv:gr-qc/960900v Sep 996 John W. Barrett Louis Crane 6 March 008 Abstract. We make a direct connection between the construction of three dimensiona

More information

Problem set 6 The Perron Frobenius theorem.

Problem set 6 The Perron Frobenius theorem. Probem set 6 The Perron Frobenius theorem. Math 22a4 Oct 2 204, Due Oct.28 In a future probem set I want to discuss some criteria which aow us to concude that that the ground state of a sef-adjoint operator

More information

V.B The Cluster Expansion

V.B The Cluster Expansion V.B The Custer Expansion For short range interactions, speciay with a hard core, it is much better to repace the expansion parameter V( q ) by f(q ) = exp ( βv( q )) 1, which is obtained by summing over

More information

Physics 505 Fall Homework Assignment #4 Solutions

Physics 505 Fall Homework Assignment #4 Solutions Physics 505 Fa 2005 Homework Assignment #4 Soutions Textbook probems: Ch. 3: 3.4, 3.6, 3.9, 3.0 3.4 The surface of a hoow conducting sphere of inner radius a is divided into an even number of equa segments

More information

MARKOV CHAINS AND MARKOV DECISION THEORY. Contents

MARKOV CHAINS AND MARKOV DECISION THEORY. Contents MARKOV CHAINS AND MARKOV DECISION THEORY ARINDRIMA DATTA Abstract. In this paper, we begin with a forma introduction to probabiity and expain the concept of random variabes and stochastic processes. After

More information

A Review on Dirac Jordan Transformation Theory

A Review on Dirac Jordan Transformation Theory Avaiabe onine at www.peagiaresearchibrary.com Avances in Appie Science Research, 01, 3 (4):474-480 A Review on Dirac Joran Transformation Theory F. Ashrafi, S.A. Babaneja, A. Moanoo Juybari, M. Jafari

More information

arxiv:gr-qc/ v2 10 Apr 1997

arxiv:gr-qc/ v2 10 Apr 1997 AN ALGEBRAIC INTERPRETATION OF THE WHEELER-DEWITT EQUATION arxiv:gr-qc/960900v 0 Apr 997 John W. Barrett Louis Crane 9 Apri 997 Abstract. We make a direct connection between the construction of three dimensiona

More information

Course 2BA1, Section 11: Periodic Functions and Fourier Series

Course 2BA1, Section 11: Periodic Functions and Fourier Series Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions...........

More information

Product Cosines of Angles between Subspaces

Product Cosines of Angles between Subspaces Product Cosines of Anges between Subspaces Jianming Miao and Adi Ben-Israe Juy, 993 Dedicated to Professor C.R. Rao on his 75th birthday Let Abstract cos{l,m} : i cos θ i, denote the product of the cosines

More information

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October 7, 202 Prof. Aan Guth LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL

More information

HYDROGEN ATOM SELECTION RULES TRANSITION RATES

HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOING PHYSICS WITH MATLAB QUANTUM PHYSICS Ian Cooper Schoo of Physics, University of Sydney ian.cooper@sydney.edu.au HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

Midterm 2 Review. Drew Rollins

Midterm 2 Review. Drew Rollins Midterm 2 Review Drew Roins 1 Centra Potentias and Spherica Coordinates 1.1 separation of variabes Soving centra force probems in physics (physica systems described by two objects with a force between

More information

Angular Momentum in Quantum Mechanics

Angular Momentum in Quantum Mechanics Anguar Momentum in Quantum Mechanics Modern Physics Honor s Contract pring 007 Boone Drummond Mentor Dr. Cristian Bahrim 1 Contents Wave Characteristic of Eectron in Motion Anguar Momentum Overview Uncertainty

More information

11.1 One-dimensional Helmholtz Equation

11.1 One-dimensional Helmholtz Equation Chapter Green s Functions. One-dimensiona Hemhotz Equation Suppose we have a string driven by an externa force, periodic with frequency ω. The differentia equation here f is some prescribed function) 2

More information

Angular Momentum. Classical. J r p. radius vector from origin. linear momentum. determinant form of cross product iˆ xˆ J J J J J J

Angular Momentum. Classical. J r p. radius vector from origin. linear momentum. determinant form of cross product iˆ xˆ J J J J J J Angular Momentum Classical r p p radius vector from origin linear momentum r iˆ ˆj kˆ x y p p p x y determinant form of cross product iˆ xˆ ˆj yˆ kˆ ˆ y p p x y p x p y x x p y p y x x y Copyright Michael

More information

This shoud be true for any, so the equations are equivaent to the Schrodingerequation (H E) : () Another important property of the (2) functiona is, t

This shoud be true for any, so the equations are equivaent to the Schrodingerequation (H E) : () Another important property of the (2) functiona is, t I. Variationa method Introduction Usefu for the determination of energies and wavefunctions of different atomic states. H the time-independent Hamitonian of the system E n eigenenergies Ψ n - eigenfunctions

More information

3D and 6D Fast Rotational Matching

3D and 6D Fast Rotational Matching 3D and 6D Fast Rotationa Matching Juio Kovacs, Ph.D. Department of Moecuar Bioogy The Scripps Research Institute 10550 N. Torrey Pines Road, Mai TPC6 La Joa, Caifornia, 9037 Situs Modeing Workshop, San

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Parallel-Axis Theorem

Parallel-Axis Theorem Parae-Axis Theorem In the previous exampes, the axis of rotation coincided with the axis of symmetry of the object For an arbitrary axis, the paraeaxis theorem often simpifies cacuations The theorem states

More information

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27 Physics 55 Fa 7 Homework Assignment #5 Soutions Textook proems: Ch. 3: 3.3, 3.7, 3.6, 3.7 3.3 Sove for the potentia in Proem 3., using the appropriate Green function otained in the text, and verify that

More information

Physics 116C Helmholtz s and Laplace s Equations in Spherical Polar Coordinates: Spherical Harmonics and Spherical Bessel Functions

Physics 116C Helmholtz s and Laplace s Equations in Spherical Polar Coordinates: Spherical Harmonics and Spherical Bessel Functions Physics 116C Hemhotz s an Lapace s Equations in Spherica Poar Coorinates: Spherica Harmonics an Spherica Besse Functions Peter Young Date: October 28, 2013) I. HELMHOLTZ S EQUATION As iscusse in cass,

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006 expansions in semicassica theories for systems with smooth potentias and discrete symmetries Hoger Cartarius, Jörg Main, and Günter Wunner arxiv:nin/0510051v [nin.cd] 30 Jan 006 1. Institut für Theoretische

More information

A complete set of ladder operators for the hydrogen atom

A complete set of ladder operators for the hydrogen atom A copete set of adder operators for the hydrogen ato C. E. Burkhardt St. Louis Counity Coege at Forissant Vaey 3400 Persha Road St. Louis, MO 6335-499 J. J. Leventha Departent of Physics University of

More information

APPENDIX B. Some special functions in low-frequency seismology. 2l +1 x j l (B.2) j l = j l 1 l +1 x j l (B.3) j l = l x j l j l+1

APPENDIX B. Some special functions in low-frequency seismology. 2l +1 x j l (B.2) j l = j l 1 l +1 x j l (B.3) j l = l x j l j l+1 APPENDIX B Soe specia functions in ow-frequency seisoogy 1. Spherica Besse functions The functions j and y are usefu in constructing ode soutions in hoogeneous spheres (fig B1). They satisfy d 2 j dr 2

More information

Data Search Algorithms based on Quantum Walk

Data Search Algorithms based on Quantum Walk Data Search Agorithms based on Quantum Wak Masataka Fujisaki, Hiromi Miyajima, oritaka Shigei Abstract For searching any item in an unsorted database with items, a cassica computer takes O() steps but

More information

Dipartimento di Matematica

Dipartimento di Matematica Dipartimento di Matematica V. CASARINO TWO-PARAMETER ESTIMATES FOR JOINT SPECTRAL PROJECTIONS ON S n Rapporto interno N. 3, febbraio 7 Poitecnico di Torino Corso Duca degi Abruzzi, 4-9 Torino-Itaia TWO-PARAMETER

More information

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. Affan Khan LECTURER PHYSICS, AKHSS, K affan_414@ive.com https://promotephysics.wordpress.com [TORQUE, ANGULAR MOMENTUM & EQUILIBRIUM] CHAPTER NO. 5 Okay here we are going to discuss Rotationa

More information

PHYS Quantum Mechanics I - Fall 2011 Problem Set 7 Solutions

PHYS Quantum Mechanics I - Fall 2011 Problem Set 7 Solutions PHYS 657 - Fall PHYS 657 - Quantum Mechanics I - Fall Problem Set 7 Solutions Joe P Chen / joepchen@gmailcom For our reference, here are some useful identities invoked frequentl on this problem set: J

More information

Volume 13, MAIN ARTICLES

Volume 13, MAIN ARTICLES Voume 13, 2009 1 MAIN ARTICLES THE BASIC BVPs OF THE THEORY OF ELASTIC BINARY MIXTURES FOR A HALF-PLANE WITH CURVILINEAR CUTS Bitsadze L. I. Vekua Institute of Appied Mathematics of Iv. Javakhishvii Tbiisi

More information

Agenda Administrative Matters Atomic Physics Molecules

Agenda Administrative Matters Atomic Physics Molecules Fromm Institute for Lifeong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Sma to Large Lecture 3 Agenda Administrative Matters Atomic Physics Moecues Administrative

More information

One particle quantum equation in a de Sitter spacetime

One particle quantum equation in a de Sitter spacetime Eur. Phys. J. C 2014 74:3018 DOI 10.1140/epjc/s10052-014-3018-9 Reguar Artice - Theoretica Physics One partice quantum equation in a de Sitter spacetime R. A. Frick a Institut für Theoretische Physik Universität

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part IX The EM agorithm In the previous set of notes, we taked about the EM agorithm as appied to fitting a mixture of Gaussians. In this set of notes, we give a broader view

More information

Higher dimensional PDEs and multidimensional eigenvalue problems

Higher dimensional PDEs and multidimensional eigenvalue problems Higher dimensiona PEs and mutidimensiona eigenvaue probems 1 Probems with three independent variabes Consider the prototypica equations u t = u (iffusion) u tt = u (W ave) u zz = u (Lapace) where u = u

More information

Rapid and Stable Determination of Rotation Matrices between Spherical Harmonics by Direct Recursion

Rapid and Stable Determination of Rotation Matrices between Spherical Harmonics by Direct Recursion Chemistry Pubications Chemistry 11-1999 Rapid and Stabe Determination of Rotation Matrices between Spherica Harmonics by Direct Recursion Cheo Ho Choi Iowa State University Joseph Ivanic Iowa State University

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

14-6 The Equation of Continuity

14-6 The Equation of Continuity 14-6 The Equation of Continuity 14-6 The Equation of Continuity Motion of rea fuids is compicated and poory understood (e.g., turbuence) We discuss motion of an idea fuid 1. Steady fow: Laminar fow, the

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information

Unconditional security of differential phase shift quantum key distribution

Unconditional security of differential phase shift quantum key distribution Unconditiona security of differentia phase shift quantum key distribution Kai Wen, Yoshihisa Yamamoto Ginzton Lab and Dept of Eectrica Engineering Stanford University Basic idea of DPS-QKD Protoco. Aice

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

MAGNETIC INDUCTION. MISN MAGNETIC INDUCTION by J. S. Kovacs and P. Signell Michigan State University

MAGNETIC INDUCTION. MISN MAGNETIC INDUCTION by J. S. Kovacs and P. Signell Michigan State University MAGNETIC INDUCTION V V in MISN-0-142 MAGNETIC INDUCTION by J. S. Kovacs and P. Signe Michigan State University 1. Introduction a. Overview................................................ 1 b. Magnetic

More information

David Eigen. MA112 Final Paper. May 10, 2002

David Eigen. MA112 Final Paper. May 10, 2002 David Eigen MA112 Fina Paper May 1, 22 The Schrodinger equation describes the position of an eectron as a wave. The wave function Ψ(t, x is interpreted as a probabiity density for the position of the eectron.

More information

Completion. is dense in H. If V is complete, then U(V) = H.

Completion. is dense in H. If V is complete, then U(V) = H. Competion Theorem 1 (Competion) If ( V V ) is any inner product space then there exists a Hibert space ( H H ) and a map U : V H such that (i) U is 1 1 (ii) U is inear (iii) UxUy H xy V for a xy V (iv)

More information

Formulas for Angular-Momentum Barrier Factors Version II

Formulas for Angular-Momentum Barrier Factors Version II BNL PREPRINT BNL-QGS-06-101 brfactor1.tex Formuas for Anguar-Momentum Barrier Factors Version II S. U. Chung Physics Department, Brookhaven Nationa Laboratory, Upton, NY 11973 March 19, 2015 abstract A

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by Lectue The Schödinge equation In quantum mechanics, the fundamenta quantity that descibes both the patice-ike and waveike chaacteistics of patices is wavefunction, Ψ(. The pobabiity of finding a patice

More information

CHM 671. Homework set # 6. 2) Do problems 3.4, 3.7, 3.10, 3.14, 3.15 and 3.16 in the book.

CHM 671. Homework set # 6. 2) Do problems 3.4, 3.7, 3.10, 3.14, 3.15 and 3.16 in the book. CHM 67 Homework set # 6 Due: Thursday, October 9 th ) Read Chapter 3 in the 4 th edition Atkins & Friedman's Molecular Quantum Mechanics book. 2) Do problems 3.4, 3.7, 3., 3.4, 3.5 and 3.6 in the book.

More information

Two Kinds of Parabolic Equation algorithms in the Computational Electromagnetics

Two Kinds of Parabolic Equation algorithms in the Computational Electromagnetics Avaiabe onine at www.sciencedirect.com Procedia Engineering 9 (0) 45 49 0 Internationa Workshop on Information and Eectronics Engineering (IWIEE) Two Kinds of Paraboic Equation agorithms in the Computationa

More information

Quantization of the Spins

Quantization of the Spins Chapter 5 Quantization of the Spins As pointed out already in chapter 3, the external degrees of freedom, position and momentum, of an ensemble of identical atoms is described by the Scödinger field operator.

More information

Appendix: SU(2) spin angular momentum and single spin dynamics

Appendix: SU(2) spin angular momentum and single spin dynamics Phys 7 Topics in Particles & Fields Spring 03 Lecture v0 Appendix: SU spin angular momentum and single spin dynamics Jeffrey Yepez Department of Physics and Astronomy University of Hawai i at Manoa Watanabe

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 7 I. A SIMPLE EXAMPLE OF ANGULAR MOMENTUM ADDITION Given two spin-/ angular momenta, S and S, we define S S S The problem is to find the eigenstates of the

More information

High-order approximations to the Mie series for electromagnetic scattering in three dimensions

High-order approximations to the Mie series for electromagnetic scattering in three dimensions Proceedings of the 9th WSEAS Internationa Conference on Appied Mathematics Istanbu Turkey May 27-29 2006 (pp199-204) High-order approximations to the Mie series for eectromagnetic scattering in three dimensions

More information

Dynamical Model of Binary Asteroid Systems Using Binary Octahedrons

Dynamical Model of Binary Asteroid Systems Using Binary Octahedrons Dynamica Mode of Binary Asteroid Systems Using Binary Octahedrons Yu Jiang 1,, Hexi Baoyin 1, Mo Yang 1 1. Schoo of Aerospace Engineering, singhua University, Beijing 100084, China. State Key Laboratory

More information

RIGID BODIES - MOMENT OF INERTIA

RIGID BODIES - MOMENT OF INERTIA IID DIES - ET F IETI The inabiity of a body to change by itsef its position of rest or uniform motion is caed Inertia. The greater the mass of the body, the greater its inertia as greater force is required

More information

E 2 = p 2 + m 2. [J i, J j ] = iɛ ijk J k

E 2 = p 2 + m 2. [J i, J j ] = iɛ ijk J k 3.1. KLEIN GORDON April 17, 2015 Lecture XXXI Relativsitic Quantum Mechanics 3.1 Klein Gordon Before we get to the Dirac equation, let s consider the most straightforward derivation of a relativistically

More information

Physics 215 Quantum Mechanics I Assignment 8

Physics 215 Quantum Mechanics I Assignment 8 Physics 15 Quantum Mechanics I Assignment 8 Logan A. Morrison March, 016 Problem 1 Let J be an angular momentum operator. Part (a) Using the usual angular momentum commutation relations, prove that J =

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information