Parity Nonconservation in Cesium: Is the Standard Model in Trouble?

Size: px
Start display at page:

Download "Parity Nonconservation in Cesium: Is the Standard Model in Trouble?"

Transcription

1 Parity Nonconservation in Cesium: Is the Standard Model in Trouble? Walter Johnson Department of Physics Notre Dame University johnson May 10, 2001 Abstract This is a brief review of the current status of PNC in cesium including a discussion of the reported 2.3 σ disagreement between experiment and the Standard Model N D Atomic Physics TU Dresden Seminar

2 Overview review e q e q e fl q e Z q H (1) eff = G 2 2 Q W γ 5 ρ(r) where the conserved weak charge is Q W = N + Z ( 1 4sin 2 θ W ) For states v and w that have the same parity w ez v = Q W Structure factor Measure: E PNC = w ez v Calculate: Structure factor Ratio gives Q W N D Atomic Physics TU Dresden Seminar 1

3 Some Properties of Cesium review Configuration: [Xe] 6s 55 electrons A=133 (100%) N=78 Z=55 I=7/2 g 7/2 valence proton µ = µ N Q = b Levels of Interest 7s 1/2 H H 6s 1/2 (5395Å) H H ν 43 (6s) =9, 192, 631, 770 Hz defines the second! N D Atomic Physics TU Dresden Seminar 2

4 Z-e Coupling from Standard Model review H (1) = G ( ) [ ( ) ψe γ µ γ 5 ψ e c1p ψpi γ µ ψ pi 2 ( )] + c 1n ψni γ µ ψ ni H (2) = G ( ) [ ( ψe γ µ ψ e c2p ψpi γ µ ) γ 5 ψ pi 2 i i + c 2n ( ψni γ µ γ 5 ψ ni )] where the standard-model coupling constants are c 1p = ( sin 2 ) θ W 0.038, c 1n = 1 2, 1 c 2p = 2 g ( A 1 4sin 2 ) θ W 0.047, c 2n = 1 2 g ( A 1 4sin 2 ) θ W In the above, g A 1.25 is a scale factor for the partially conserved axial current A N. N D Atomic Physics TU Dresden Seminar 3

5 Nonrelativistic Nucleons details H (1) : ( ψp γ µ ψ p ) φ p φ p δ µ0 ( ψn γ µ ψ n ) φ n φ n δ µ0 where φ p and φ n are nonrelativistic field operators. From this we extract an effective Hamiltonian to be used in the electron sector; namely, H (1) eff = G 2 2 γ 5 [2Zc 1p ρ p (r)+2nc 1n ρ n (r)]. Here, ρ p (r) and ρ n (r) proton and neutron density functions normalized to 1. Assuming ρ p (r) =ρ n (r) = ρ(r), we may rewrite the effective Hamiltonian as H (1) eff = G 2 2 γ 5 Q W ρ(r) where Q W =[2Zc 1p +2Nc 1n ]= N +Z ( 1 4sin 2 θ W ) N D Atomic Physics TU Dresden Seminar 4

6 Axial Nuclear Current details H (2) : ( ψp γ µ γ 5 ψ p ) φ p σ i φ p δ µi ( ψn γ µ γ 5 ψ n ) φ n σ i φ n δ µi The corresponding effective Hamiltonian in the electron sector is obtained from H (2) eff = G 2 α [c 2p φ p σφ p + c2n φ n σφ n ] Only unpaired valence nucleons (with polarization corrections) contribute, so the size of H (2) is smaller than that from H (1) by a factor of 1/A. For a single valence proton, this reduces to: H (2) eff = G 2 c 2p κ 1/2 I(I +1) α I ρ p(r) where κ = (I +1/2) for I = L ± 1/2. N D Atomic Physics TU Dresden Seminar 5

7 Anapole Moment PNC in nucleus nuclear anapole: details The anapole is a toroidal electromagnetic current localized to the nucleus. H (a) eff = G 2 K a κ I(I +1) α I ρ p(r) Combining the two spin-dependent interactions: H (a) eff + H(2) eff = G 2 K κ I(I +1) α I ρ p(r) with K = K a κ 1/2 κ c 2p N D Atomic Physics TU Dresden Seminar 6

8 Another Spin-Dependent Term [ ] The action of H hyperfine H (1) eff nuclear spin-dependent correction details gives yet another H (Q W ) eff = G 2 K QW κ I(I +1) α I ρ p(r) with 1 K QW (133 Cs) C. Bouchiat and C. A. Piketty, Z. Phys. C 49, 91 (1991); Phys. Lett. B 269, 195 (1991). N D Atomic Physics TU Dresden Seminar 7

9 Atomic Structure details For the 6s 7s transition in atomic cesium: 7s ez 6s = n { 7s ez np1/2 np 1/2 H (1) 6s E np E 6s + 7s H(1) np 1/2 np 1/2 ez 6s E np E 7s } 1. 9 n=6 with SD wave functions & energies (90%) 2. n=10 weak RPA level (10%) 3. Breit interaction at weak HF level (0.2%) 4. Nucleon structure correction ρ N (r) (<0.1%) 5. H (2 ) contribution at weak RPA level N D Atomic Physics TU Dresden Seminar 8

10 Singles-Doubles Equations digression Ψ v =Ψ DHF + δψ { δψ = ρ ma a ma a am abmn ρ mnab a ma na b a a + ρ mv a ma v + ρ mnvb a ma na b a v Ψ DHF m v bmn E C = E DHF C E v = E DHF v + δe C + δe v (we also include limited triples) N D Atomic Physics TU Dresden Seminar 9

11 Core Excitation Equations digression (ɛ a ɛ m )ρ ma = bn ṽ mban ρ nb + bnr v mbnr ρ nrab bcn v bcan ρ mnbc (ɛ a + ɛ b ɛ m ɛ n )ρ mnab = v mnab + cd v cdab ρ mncd + rs v mnrs ρ rsab [ + v mnrb ρ ra r c + [ a b m n ] δe C = 1 2 abmn v abmn ρ mnab v cnab ρ mc + rc ṽ cnrb ρ mrac ] 15,000,000 ρ mnab coefficients for Cs (l =6). N D Atomic Physics TU Dresden Seminar 10

12 digression m a = m a m b n + a a r b n + m c b n + exchange terms m a n b m a n b = a + m r n s b m + a c b d n m a n b + c + a m r n b + m a c n r b + exchange terms Brueckner-Goldstone Diagrams for the core SD equations. N D Atomic Physics TU Dresden Seminar 11

13 Valence Equations digression (ɛ v ɛ m + δe v )ρ mv = bn ṽ mbvn ρ nb + bnr v mbnr ρ nrvb bcn v bcvn ρ mnbc (ɛ v + ɛ b ɛ m ɛ n + δe v )ρ mnvb = v mnvb + cd v cdvb ρ mncd + rs v mnrs ρ rsvb [ + v mnrb ρ rv r c + [ v b m n ] v cnvb ρ mc + rc ṽ cnrb ρ mrvc ] δe v = ma ṽ vavm ρ ma + mab v abvm ρ mvab + mna v vbmn ρ mnvb 1,000,000 ρ mnvb coefficients for each state (Cs) N D Atomic Physics TU Dresden Seminar 12

14 SD Correlation Energy digression Correlation energy (cm -1 ) Na K Rb Expt. E (2) E (2) +E (3) δe υ Nuclear charge Z Cs Fr Ground-state correlation energies for alkali-metal atoms N D Atomic Physics TU Dresden Seminar 13

15 Calculations of cesium 6s 7s PNC Amplitude PNC Group E PNC Breit Novosibirsk ± Notre Dame ± HF-level units: iea Q W N N D Atomic Physics TU Dresden Seminar 14

16 Status of PNC Experiments PNC (a) Optical rotation: n + n φ = E PNC /M 1 6p 1/2 6p 3/2 transition Element Group 10 8 φ Thallium Oxford -15.7(5) Thallium Seattle -14.7(2) Lead Oxford -9.8(1) Lead Seattle -9.9(1) Bismuth Oxford -10.1(20) (b) Stark interference: Add E(t) =A cos ωt and detect the hetrodyne signal R = E PNC /β 6s 1/2 7s 1/2 (mv/cm) Element Group R 4 3 R 3 4 Cesium Paris (1984) -1.5(2) -1.5(2) Cesium Boulder (1988) -1.64(5) -1.51(5) Cesium Boulder (1997) (8) (8) N D Atomic Physics TU Dresden Seminar 15

17 Bennett & Wieman 2 PNC Measured β = (43) expt (67) theor a 3 0 Updated theory error estimates! Diff 10 3 Expt Tests Novo ND σ expt Stark(6s-7s) 7p ez ns τ 6p1/2 6s ez 6p τ 6p3/2 6s ez 6p α vs ez np β vs ez np A 6s Ψ 6s (0) A 7s Ψ 7s (0) A 6p1/2 1/r 3 6p A 7p1/2 1/r 3 7p S. C. Bennett & C. E. Wieman, Phys. Rev. Letts. 82, 2484 (1999). N D Atomic Physics TU Dresden Seminar 16

18 Cesium: Theory vs. Experiment PNC β = (43) exp (67) th a 3 0 (1999) (eliminating axial vector + anapole contribution) I(E PNC )= (37) exp (21) th e a 0 (dividing by theoretical matrix element) Q W = (29) exp (34) th Marciano & Rosner (with radiative corrections) Q SM W = (03) rad. corr. Expt. - Theory = 2.3 σ This difference has been cited as evidence for new physics beyond the Standard Model! N D Atomic Physics TU Dresden Seminar 17

19 Result for Anapole Moment digression Difference R 3 4 R 4 3 leads to: K = (63) (κ 1/2)/κ K (2) = K (Q W ) = K (a) = (63) Theoretical estimates 3 K (a) = W. C. Haxton and C. E. Wieman, arxiv:nucl-th/ N D Atomic Physics TU Dresden Seminar 18

20 10. Electroweak model and constraints on new physics 19 Table 10.4: (continued) Quantity Value Standard Model Pull m t [GeV] ± ± M W [GeV] ± ± ± M Z [GeV] ± ± Γ Z [GeV] ± ± Γ(had) [GeV] ± ± Γ(inv) [MeV] ± ± 0.15 Γ(l + l )[MeV] ± ± 0.03 σ had [nb] ± ± R e ± ± R µ ± ± R τ ± ± R b ± ± R c ± ± A (0,e) FB ± ± A (0,µ) FB ± A (0,τ) FB ± A (0,b) FB ± ± A (0,c) FB ± ± A (0,s) FB ± ± ) ± ± s 2 l (A(0,q) FB June 14, :38

21 Electroweak model and constraints on new physics Table 10.4: (continued) Quantity Value Standard Model Pull A e ± ± ± ± A µ ± A τ ± ± A b ± ± A c ± ± A s 0.85 ± ± R ± ± ± κ ν ± ± ± R ν ± ± ± ± ± gv νe ± ± ± ga νe ± ± ± Q W (Cs) ± 0.28 ± ± Q W (Tl) ± 1.2 ± ± Γ(b sγ) Γ(b ceν) June 14, :38

22 Possible Explanation of 2.3 σ PNC ' The previous result suggested the possible existence of a Z particle to several authors: 1. R. Casalbuoni, S. De Curtis, D. Dominici, and R. Gatto, Phys. Lett. B460, 135 (1999). 2. J. L. Rosner, Phys. Rev. D61, (2000). $ 3. J. Erler and P. Langacker, Phys. Rev. Lett. 84, 212 (2000). & % N D Atomic Physics TU Dresden Seminar 19

23 Breit Revisited PNC Weak HF level: ( h0 + V HF ɛ HF v ) ψhf v = h PNC ψ HF v E PNC = ψ7s HF HF HF ez ψ 6s + ψ 7s ez ψ6s HF Type 7s ez 6s 7s ez 6s E PNC Coul Breit % -0.29% -0.30% -0.30% This correction was included in ND calculation E PNC = = but not in Novosibirsk calculation. N D Atomic Physics TU Dresden Seminar 20

24 Derevianko s observation Brueckner level: ( h 0 + V HF + ˆΣ ɛ Br v ) ψbr v = h PNC ψ Br v PNC δvpnc HF ψv Br E PNC = ψ7s Br ez + δ RPA (ez) + ψ Br 6s ψ Br 7s ez + δ RPA (ez) ψ Br 6s Type 7s ez 6s 7s ez 6s E PNC Coul Breit % -0.60% -0.59% -0.59% Using this result for the Breit correction, the final theoretical PNC amplitudes become Group Coul Breit E PNC Novosibirsk Notre Dame N D Atomic Physics TU Dresden Seminar 21

25 Summary PNC With Breit corrections: E theor PNC = (4) or (10)? and the deviation of the Q W from the standard model is reduced to 1.5 σ if 0.4% theoretical accuracy is still assumed. However, if a more realistic 1% theoretical uncertainty is assumed, the corresponding value of the weak-charge becomes Q W ( 133 Cs) = (0.28) expt (0.74) theor and shows NO significant deviation from the standard model. 4 HELP! accurate calculations needed HELP! 4 A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000); V. A. Dzuba et al., Phys. Rev. A 63, (2001); M. G. Kozlov et al., arxiv:physics ( ). N D Atomic Physics TU Dresden Seminar 22

Atomic-Physics Tests of QED & the Standard Model

Atomic-Physics Tests of QED & the Standard Model Atomic-Physics Tests of QED & the Standard Model W.R. Johnson Notre Dame University http://www.nd.edu/ johnson Abstract A brief review of tests of strong-field QED in many-electron atoms and of atomic

More information

Precise Relativistic many-body calculations for alkali-metal atoms

Precise Relativistic many-body calculations for alkali-metal atoms Precise Relativistic many-body calculations for alkali-metal atoms W.R. Johnson, M.S. Safronova, and A. Derevianko Notre Dame University http://www.nd.edu/ johnson Abstract The single-double (SD) method,

More information

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Walter Johnson University of Notre Dame 1) Weak charge Q W of 133 Cs provides a test of the Standard Electroweak Model. 2)

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

CURRENT STATUS AND FUTURE PROSPECTS

CURRENT STATUS AND FUTURE PROSPECTS AMO seminar - Berkeley March 18, 2008 ATOMIC PNC THEORY: CURRENT STATUS AND FUTURE PROSPECTS MARIANNA SAFRONOVA OUTLINE Motivation & Summary of experiment Nuclear spin-independent PNC & weak charge How

More information

current status And future prospects

current status And future prospects September 20, 2007 Rare Isotopes & Fundamental symmetries workshop Atomic pnc theory: current status And future prospects marianna safronova outline Motivation & Summary of experiment Nuclear spin-independent

More information

HIGH PRECISION CALCULATION FOR THE DEVELOPMENT OF ATOMIC CLOCK AND THE SEARCH BEYOND THE STANDARD MODEL. Z. Zuhrianda

HIGH PRECISION CALCULATION FOR THE DEVELOPMENT OF ATOMIC CLOCK AND THE SEARCH BEYOND THE STANDARD MODEL. Z. Zuhrianda HIGH PRECISION CALCULATION FOR THE DEVELOPMENT OF ATOMIC CLOCK AND THE SEARCH BEYOND THE STANDARD MODEL by Z. Zuhrianda A dissertation submitted to the Faculty of the University of Delaware in partial

More information

ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS

ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS University of Virginia Colloquium ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS MARIANNA SAFRONOVA November 11, 2011 OUTLINE Atomic physics tests of fundamental physics Parity violation Search for

More information

Atomic Parity Violation in Ytterbium

Atomic Parity Violation in Ytterbium Atomic Parity Violation in Ytterbium K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker http://budker.berkeley.edu Atomic PV: important landmarks! 1959 Ya. B. Zel dovich: APV (Neutr. Current) Opt.

More information

Status of Atomic PNC: Experiment/Theory

Status of Atomic PNC: Experiment/Theory Status of Atomic PNC: Experiment/Theory W. R. Johnson University of Notre Dame Abstract Atomic PNC measurements and calculations are reviewed with emphasis on the 6s 7s transition in cesium and the corresponding

More information

Atomic Parity Violation

Atomic Parity Violation Atomic Parity Violation Junghyun Lee APV proposes new physics beyond the standard model of elementary particles. APV is usually measured through the weak nuclear charge Q w, quantifying the strength of

More information

Tests of fundamental symmetries with atoms and molecules

Tests of fundamental symmetries with atoms and molecules Tests of fundamental symmetries with atoms and molecules 1 Listening to an atom q Coulomb forces + Quantum Electro-Dynamics => a relatively simple interpretation q Unprecedented control over internal and

More information

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS V.F. Dmitriev 1, and I.B. Khriplovich 2 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia Abstract We discuss the present state of the theory of nuclear

More information

Prospects for Atomic Parity Violation Experiments

Prospects for Atomic Parity Violation Experiments Prospects for Atomic Parity Violation Experiments Konstantin Tsigutkin and Dima Budker http://socrates.berkeley.edu/~budker socrates.berkeley.edu/~budker/ Outline A brief story of parity violation in atoms

More information

High-precision calculation of the parity-nonconserving amplitude in francium

High-precision calculation of the parity-nonconserving amplitude in francium High-precision calculation of the parity-nonconserving amplitude in francium M. S. Safronova and W. R. Johnson Department of Physics, Notre Dame University, Notre Dame, Indiana 46556 Received 6 December

More information

Triple excitations in the coupled-cluster method. Application to atomic properties.

Triple excitations in the coupled-cluster method. Application to atomic properties. Triple excitations in the coupled-cluster method. Application to atomic properties. Sergey G. Porsev 1 and Andrei Derevianko 2 1 Petersburg Nuclear Physics Institute Gatchina, Russia 2 University of Nevada

More information

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia HISTORY AND PERSPECTIVES OF P AND T VIOLATION IN ATOMS I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia I. HISTORY Historically, good reasons to start just with /P, /T effects.

More information

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS DAMOP 2010 May 29, 2010 DEVELOPMENT OF A CONFIGURATION-INTERACTION INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS MARIANNA SAFRONOVA MIKHAIL KOZLOV PNPI, RUSSIA DANSHA JIANG UNIVERSITY OF DELAWARE

More information

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment IL NUOVO CIMENTO Vol.?, N.?? Atomic Parity Non-Conservation in Francium: The FrPNC Experiment at TRIUMF S. Aubin( 1 ), E. Gomez( 2 ), J. A. Behr( 3 ), M. R. Pearson( 3 ), D. Sheng( 4 ), J. Zhang( 4 ),

More information

Parity non-conservation in thallium

Parity non-conservation in thallium Parity non-conservation in thallium M. G. Kozlov and S. G. Porsev Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia W. R. Johnson Department of Physics, Notre Dame University, Notre Dame,

More information

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland Proposed experiment for the anapole measurement in francium Luis A. Orozco Joint Quantum Institute University of Maryland FrPNC collaboration: S. Aubin, J. A. Behr, V. Flambaum, E. Gomez, G. Gwinner, K.

More information

arxiv: v2 [physics.atom-ph] 26 Sep 2016

arxiv: v2 [physics.atom-ph] 26 Sep 2016 Noname manuscript No. (will be inserted by the editor) Electron structure of superheavy elements Uut, Fl and Uup (Z=113 to 115). V. A. Dzuba V. V. Flambaum arxiv:1608.03048v [physics.atom-ph] 6 Sep 016

More information

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Work done in collaboration with Prof. Gene Sprouse from SUNYSB And Prof. David DeMille from Yale University.

More information

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Cheng-Pang Liu TRIUMF Research Facility, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 Abstract. The anapole moment is a parity-odd

More information

Hadronic Parity Violation

Hadronic Parity Violation Hadronic Parity Violation Barry R. Holstein UMass May 9, 007 INT Talk Analogy TV Detective Show 10 Min. Problem: (Body!) 35 Min. Clues (including red herrings) 5 Min. Solution (Culprit brought to justice)

More information

Atomic Clocks and the Search for Variation of Fundamental Constants

Atomic Clocks and the Search for Variation of Fundamental Constants January 22, 2015 Atomic Clocks and the Search for Variation of Fundamental Constants MARIANNA SAFRONOVA University of Maryland Outline Blackbody radiation shifts in atomic clocks: Al +, Yb, Sr Theoretical

More information

Many-body calculations of the static atom-wall interaction potential for alkali-metal atoms

Many-body calculations of the static atom-wall interaction potential for alkali-metal atoms PHYSICAL REVIEW A VOLUME 57 NUMBER 4 APRIL 1998 Many-body calculations of the static atom-wall interaction potential for alkali-metal atoms A. Derevianko and W. R. Johnson Department of Physics Notre Dame

More information

Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium.

Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium. Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium. S. J. Pollock and M. C. Welliver Dep t of Physics, University of Colorado, Boulder CO 80309 (July 12, 1999) We have

More information

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring,

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring, The Z pole Cross-section (pb) 10 5 10 4 Z e + e hadrons 10 3 10 2 CESR DORIS PEP W + W - 10 KEKB PEP-II PETRA TRISTAN SLC LEP I LEP II 0 20 40 60 80 100 120 140 160 180 200 220 Centre-of-mass energy (GeV)

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information

arxiv: v2 [physics.atom-ph] 1 Apr 2013

arxiv: v2 [physics.atom-ph] 1 Apr 2013 Calculation of parity non-conserving optical rotation in iodine at 1315 nm G. E. Katsoprinakis, L. Bougas and T. P. Rakitzis Institute of Electronic Structure and Lasers, Foundation for Research and Technology-Hellas,

More information

Theoretical study of lifetimes and polarizabilities in Ba +

Theoretical study of lifetimes and polarizabilities in Ba + PHYSICAL REVIEW A 78, 012508 2008 Theoretical study of lifetimes and polarizabilities in Ba + E. Iskrenova-Tchoukova and M. S. Safronova Department of Physics and Astronomy, University of Delaware, Newark,

More information

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco What we know about Francium University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco www.jqi.umd.edu The slides are available at: http://www.physics.umd.edu/rgroups/amo/orozco/results/2018/results18.htm

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

University of Groningen. Radium Ion Spectroscopy Giri, Gouri Shankar

University of Groningen. Radium Ion Spectroscopy Giri, Gouri Shankar University of Groningen Radium Ion Spectroscopy Giri, Gouri Shankar IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document

More information

arxiv: v1 [physics.atom-ph] 26 Jan 2012

arxiv: v1 [physics.atom-ph] 26 Jan 2012 Electric dipole moment enhancement factor of thallium S. G. Porsev 1,2, M. S. Safronova 1, and M. G. Kozlov 2 1 Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

More information

Physics 129, Fall 2010; Prof. D. Budker

Physics 129, Fall 2010; Prof. D. Budker Physics 129, Fall 2010; Prof. D. Budker Intrinsic parity of particles A brief history of parity: Concept found (no parity in everyday life): O. Laporte, 1924 Concept understood: Wigner, 1927 Concept becomes

More information

arxiv:hep-ph/ v1 14 Jul 1999

arxiv:hep-ph/ v1 14 Jul 1999 University of Florence University of Geneva DFF-341/7/99 UGVA-DPT-1999 07-1047 arxiv:hep-ph/9907355v1 14 Jul 1999 SM Kaluza-Klein Excitations and Electroweak Precision Tests R. Casalbuoni a,b, S. De Curtis

More information

Dimuon asymmetry and electroweak precision with Z

Dimuon asymmetry and electroweak precision with Z Dimuon asymmetry and electroweak precision with Z Seodong Shin Seoul National University, Seoul, Korea TeV 2011, 20 May 2011 Work in progress with H.D. Kim and R. Dermisek Outline Introduction : Same charge

More information

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH IEEE-IFCS IFCS 2010, Newport Beach, CA June 2, 2010 BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH Marianna Safronova 1, M.G. Kozlov 1,2 Dansha Jiang 1, and U.I. Safronova 3

More information

Symbolic and numeric Scientific computing for atomic physics

Symbolic and numeric Scientific computing for atomic physics University of Delaware Computational Science Initiative meeting November 9, 2007 Symbolic and numeric Scientific computing for atomic physics Marianna Safronova outline Motivation Symbolic computing Numeric

More information

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF The FrPNC Experiment, weak interaction studies in Francium at TRIUMF E Gomez 1, S Aubin 2, R Collister 3, J A Behr 4, G Gwinner 3, L A Orozco 5, M R Pearson 4, M Tandecki 3, D Sheng 5, J Zhang 5 1 Institute

More information

An extended liquid drop approach

An extended liquid drop approach An extended liquid drop approach Symmetry energy, charge radii and neutron skins Lex Dieperink 1 Piet van Isacker 2 1 Kernfysisch Versneller Instituut University of Groningen 2 GANIL, Caen, France ECT,

More information

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion Towards a Precise Measurement of Atomic Parity Violation in a Single + Ion TRIµP Program Trapped dioactive Isotopes: µ-laboratories for fundamental Physics Kernfysisch Versneller Instituut (KVI) University

More information

Atomic Calculations for Future Technology and Study of Fundamental Problems

Atomic Calculations for Future Technology and Study of Fundamental Problems Atomic Calculations for Future Technology and Study of Fundamental Problems M. S. Safronova Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA Abstract. Selected modern

More information

List of Publications (Peer-Reviewed Journals)

List of Publications (Peer-Reviewed Journals) List of Publications (Peer-Reviewed Journals) 1. Blackbody radiation shift in a 43 Ca+ ion optical frequency standard, Bindiya Arora, M.S. Safronova, and Charles W. Clark, submitted to Phys. Rev. Lett.

More information

Parity Violation in Diatomic Molecules

Parity Violation in Diatomic Molecules Parity Violation in Diatomic Molecules Jeff Ammon, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille Physics Department, Yale University *Physics Department, US Coast Guard Academy DeMille Group Funding:

More information

Fundamental Symmetries in Laser Trapped Francium

Fundamental Symmetries in Laser Trapped Francium CAADA S ATIOAL LABORATORY FOR PARTICLE AD UCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the ational Research Council Canada Fundamental

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions V.A. Dzuba, V.V. Flambaum, and J.S.M. Ginges School of Physics,

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Resolving all-order method convergence problems for atomic physics applications

Resolving all-order method convergence problems for atomic physics applications PHYSICA REVIEW A 83, 052502 (2011) Resolving all-order method convergence problems for atomic physics applications H. Gharibnejad, 1 E. Eliav, 2 M. S. Safronova, 3 and A. Dereviano 1 1 Department of Physics,

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects Bhanu Pratap Das Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore 560 034, India Outline

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U. Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) William J. Marciano (October 26, 2010) Based on talks at: W&M, Rockefeller, BNL and U. Washington Outline 1. General

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

Neutrino cross sections and nuclear structure

Neutrino cross sections and nuclear structure Neutrino cross sections and nuclear structure Dipartimento di Fisica Università del Salento Istituto Nazionale di Fisica Nucleare sez. di Lecce NOW08 Conca Specchiulla, Sept. 11, 2008 In collaboration

More information

Atomic parity nonconservation in Ra+ Wansbeek, L. W.; Sahoo, B. K.; Timmermans, Robertus; Jungmann, Klaus-Peter; Das, B. P.; Mukherjee, D.

Atomic parity nonconservation in Ra+ Wansbeek, L. W.; Sahoo, B. K.; Timmermans, Robertus; Jungmann, Klaus-Peter; Das, B. P.; Mukherjee, D. University o Groningen Atomic parity nonconservation in Ra+ Wansbeek, L. W.; Sahoo, B. K.; Timmermans, Robertus; Jungmann, Klaus-Peter; Das, B. P.; Mukherjee, D. Published in: Physical Review A DOI: 10.1103/physreva.78.050501

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

2008 Brooks/Cole 2. Frequency (Hz)

2008 Brooks/Cole 2. Frequency (Hz) Electromagnetic Radiation and Matter Oscillating electric and magnetic fields. Magnetic field Electric field Chapter 7: Electron Configurations and the Periodic Table Traveling wave moves through space

More information

Determination of the static polarizability of the 8s 2 S 1/2 state of atomic cesium

Determination of the static polarizability of the 8s 2 S 1/2 state of atomic cesium Determination of the static polarizability of the 8s 2 S 1/2 state of atomic cesium Mevan Gunawardena School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 4797, USA

More information

Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence

Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence U. I. Safronova* Physics Department, University of Nevada, Reno, Nevada

More information

Isotopic variation of parity violation in atomic ytterbium

Isotopic variation of parity violation in atomic ytterbium Isotopic variation of parity violation in atomic ytterbium D. Antypas 1,*, A. Fabricant 2, J.E. Stalnaker 3, K. Tsigutkin 4,. Flambaum 2,5 and D. Budker 1,2,6 1 Helmholtz-Institut Mainz, Mainz 55128, Germany

More information

Tests of the Electroweak Theory

Tests of the Electroweak Theory Tests of the Electroweak Theory History/introduction Weak charged current QED Weak neutral current Precision tests Rare processes CP violation and B decays Neutrino mass FNAL (December 13, 2005) Paul Langacker

More information

CHEM 1311A. E. Kent Barefield. Course web page.

CHEM 1311A. E. Kent Barefield. Course web page. CHEM 1311A E. Kent Barefield Course web page http://web.chemistry.gatech.edu/~barefield/1311/chem1311a.html Two requests: cell phones to silent/off no lap tops in operation during class Bring your transmitter

More information

Reanalysis of the Reactor Neutrino Anomaly

Reanalysis of the Reactor Neutrino Anomaly LA-UR-13-24535 Reanalysis of the Reactor Neutrino Anomaly A. Hayes, J. Friar, G. Garvey, G. Jungman (LANL) G. Jonkmans (Chalk River) INT 5 th Nov 2013 The Reactor Antineutrino Anomaly The Reactor Neutrino

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Many-body and model-potential calculations of low-energy photoionization parameters for francium

Many-body and model-potential calculations of low-energy photoionization parameters for francium Many-body and model-potential calculations of low-energy photoionization parameters for francium A. Derevianko and W. R. Johnson Department of Physics, Notre Dame University, Notre Dame, Indiana 46556

More information

Radiative-capture reactions

Radiative-capture reactions Radiative-capture reactions P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1. Introduction, definitions 2. Electromagnetic

More information

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU Nuclear structure aspects of Schiff Moments N.Auerbach Tel Aviv University and MSU T-P-odd electromagnetic moments In the absence of parity (P) and time (T) reversal violation the T P-odd moments for a

More information

Interpretation of the Wigner Energy as due to RPA Correlations

Interpretation of the Wigner Energy as due to RPA Correlations Interpretation of the Wigner Energy as due to RPA Correlations arxiv:nucl-th/001009v1 5 Jan 00 Kai Neergård Næstved Gymnasium og HF Nygårdsvej 43, DK-4700 Næstved, Denmark neergard@inet.uni.dk Abstract

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

Reconciliation of experimental and theoretical electric tensor polarizabilities of the cesium ground state

Reconciliation of experimental and theoretical electric tensor polarizabilities of the cesium ground state Europhysics Letters PREPRINT Reconciliation of experimental and theoretical electric tensor polarizabilities of the cesium ground state S. Ulzega ( ), A. Hofer, P. Moroshkin and A. Weis Physics Department,

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Xe nuclear spin maser and search for atomic EDM

Xe nuclear spin maser and search for atomic EDM Xe nuclear spin maser and search for atomic EDM T. Inoue, A. Yoshimi *, M. Uchida, T. Furukawa, N. Hatakeyama, M. Tsuchiya, H. Hayashi, and K. Asahi Department of Physics, Tokyo Institute of Technology

More information

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theoretical Physics and Astrophysics Group Indian Institute of Astrophysics Bangalore Collaborators: H. S. Nataraj, B. K. Sahoo,

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

Nuclear Schiff moment

Nuclear Schiff moment Nuclear Schiff moment V.F. Dmitriev, Budker Institute of Nuclear Physics, Novosibirsk, Russia R.A. Sen'kov, I.B. Khriplovich, V.V. Flambaum Schiff theorem The energy of a neutral atom with a point like

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

Structure of the deuteron

Structure of the deuteron Seminar II Structure of the deuteron Author : Nejc Košnik Advisor : dr. Simon Širca Department of Physics, University of Ljubljana November 17, 004 Abstract Basic properties of the deuteron are given.

More information

Charm CP Violation and the electric dipole moment of the neutron

Charm CP Violation and the electric dipole moment of the neutron and the electric dipole moment of the neutron Thomas Mannel (with N. Uraltsev, arxiv:1202.6270 and arxiv:1205.0233) Theoretische Physik I Universität Siegen Seminar at TUM, 14.1.2013 Contents Introduction

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca +

Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca + Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca + M. S. Safronova 1 and U. I. Safronova 2,3 1 Department of Physics

More information

Status of the Search for an EDM of 225 Ra

Status of the Search for an EDM of 225 Ra Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod Outline Why is an EDM interesting?

More information

Low-Frequency Conductivity in the Average-Atom Approximation

Low-Frequency Conductivity in the Average-Atom Approximation Low-Frequency Conductivity in the Average-Atom Approximation Walter Johnson, Notre Dame University Collaborators: Joe Nilsen, K.T. Cheng, Jim Albritton, Michael Kuchiev, C. Guet, G. Bertsch Related Contributions:

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Electric dipole moments: theory and experiment

Electric dipole moments: theory and experiment Electric dipole moments: theory and experiment EA Hinds Blois June 2002 Two motivations to measure EDMs EDM violates T symmetry Deeply connected to CP violation and the matter-antimatter asymmetry of the

More information

arxiv:physics/ v1 [physics.atom-ph] 10 Jul 1997

arxiv:physics/ v1 [physics.atom-ph] 10 Jul 1997 Enhancement of the electric dipole moment of the electron in BaF molecule. arxiv:physics/9707011v1 [physics.atom-ph] 10 Jul 1997 M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko Petersburg

More information

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Dependence on the distance between neutrons (or protons)

More information

Chemistry Points

Chemistry Points Chemistry 485 Spring, 2o1o 100 Points Distributed: Mon., 3 May 2o1o, 12:45 Final Exam Due: Mon., 3 May 2o1o, 2:45 pm The questions in this exam may require information that can be found in the attached

More information