Nuclear Schiff moment

Size: px
Start display at page:

Download "Nuclear Schiff moment"

Transcription

1 Nuclear Schiff moment V.F. Dmitriev, Budker Institute of Nuclear Physics, Novosibirsk, Russia R.A. Sen'kov, I.B. Khriplovich, V.V. Flambaum

2 Schiff theorem The energy of a neutral atom with a point like nucleus in an external electric field does not depend on a nuclear dipole moment. This is true for electron dipole moment as well. E ext E (0) = 0 E int

3 Schiff moment operator (P- T- violating nuclear forces) 2 pa H0 = e ( ) V ( ) e a 2m φ r + r r d E + rε a b a a a b ext a ext r [ P, H ] = 0 e e aφ a ext = a 0 r ( r ) ZeE 0 In first order in a dipole moment and an external field we can add to the Hamiltonian the following expression:

4 r d r r r φ ( r ) + d E Z a a a ext One should remember that in this equation φ ( r ) should be understood as a mean value over nuclear ground state, since r r r r d φ r d φ r ( ) ( ) nuc nuc nuc r d r r r H H d E We obtain φ ( r ) ' = 0 a a + ext Z a 2 pa H ' = e% ( ) V ( ) e a 2m φ r + r r + rε a b a a a b a ext

5 where φ% ( r ) r r 3 ρ c ( r ' ) d 3 ρ c ( r ' ) = d r ' + d r ' r r ' Ze r r ' ρ Expansion of ( ) c r 1 ρ δ δ δ δ c p p p p 2 ( ) ( ) i i i j i j r = e r r Ze ( r ) er ( r ) + er r ( r ) p p p 1 i j k i j k erprp rp δ ( r ) p i j k 1 k i j 1 k i j ( δij + δ jk + δik ) + ( δij + δ jk + δik ) 5 5

6 4π S i i Dipole component ( ) δ r where Q S = e r r e r r e r i 2 i i ij j p c p 10 p 6 p 15 Z p S i = 1 10 p er 2 p r i 5 p 3 eri r 2 c 2 3 Q ij Ze p er p j The form of the above equation for the schiff moment is unique. The coefficient 5/3 is fixed by condition of absence of the ghost dipole mode which corresponds to displacement of the nucleus as a whole.

7 Under small displacement the nuclear isoscalar density transforms as 0 r a = 0 r a 0 The transition density is: tr r = 0 The absence of the ghost mode means that the integral of the isoscalar part of the Schiff moment operator with this transition density must yield zero. d 3 r S 0 i r 0 r i = d 3 r 1 10 r2 r i 5 3 r i r Q ij Z r j 0 r i =0 r r

8 P and T violating NN interaction W rr 1 rr 2 = g [ g 0 r 1 r 2 g 2 r 1 r r 1 r 2 g r r 2 ] r exp m r m p r 12 Opposite parity contribution to nuclear mean field U dir r = g 2 m r rn 3 0 r ' 2 dr ' b r, r ' [ g 0 2g 2 p r ' n r ' g 1 p r ' n r ' ] m p Z N A Correction to a single particle orbit wave function r S = S S

9 Core polarization Response of the core particles to the strong residual interaction with the valence nucleon creates an additional contribution to the Schiff moment. ' %S = ' S 0 ' %S ' n n ' ' ' ' F W %S = %S %S S

10 Elimination of the ghost mode contribution S r = a r 2 b r =0 O E 2 ex J n r = n S r d 0 E ex b r =0 =J 1 r 0 2 =J 3 r / J 1 r

11 The proton component of the Schiff moment. Solid curve is the renormalized operator after subtraction of the ghost mode, dashed curve is the bare operator.

12 The neutron component of the renormalized Schiff moment.

13 Results for Mercury nucleus. S = g g g g g g 2 [ e fm 3 ] J. H. de Jesus and J. Engel (2005) S= 0.007g g g g g g For atomic EDM we have the upper bound d Hg e cm Combining our result with calculations of the atomic EDM (Flambaum et al.) we obtain g The standard model estimates is g

14 Nucleon dipole moments contribution φ% ( r ) r r 3 ρ c ( r ' ) d 3 ρ c ( r ' ) = d r ' + d r ' r r ' Ze r r ' rd= a rd a c r = p e r rr p a rd a r r rr a Repeating the expansion over nucleon coordinates and separating the dipole component we obtain for the Schiff moment S i = 1 a 6 d i r 2 a a r 2 c 1 a 15 d j [ 3r i a a r j a ij r 2 a Q ij Ze ]

15 ' %S = ' S 0 ' %S ' n n ' ' ' ' F Polarization effects for the neutron component of the Schiff moment. Radial dependence of the proton component of the Schiff moment induced by core polarization. Dashed curve is the tensor component.

16 Results for Hg S =s p d p s n d n s p =0.20±0.02 fm 2 s n =1.895±0.035 fm 2 From the atomic calculations, cited above, we have d= S [e fm 3 ] From the experiment this implies for the Schiff moment S Hg e fm 3 d p e cm, d n e cm. Existing upper limit for the neutron dipole moment is: d n e cm

17 For the proton dipole moment the existing upper limit was: d p 4± e cm Theoretical uncertainty The value cited above does not reflects the real accuracy of the theory. It came from the differences in adopted values of the residual interaction constants. The uncertainty in calculations of the core polarization using RPA with effective forces can be estimated from the following considerations. Using RPA with effective forces we can fit different nuclear moments in one nucleus. Then, in neighbor nuclei the calculated moments will differ from the data. This difference can be regarded as an uncertainty in our theory. In our experience this difference is of the order of 20% on average, reaching sometimes the value of 30%. To be safe we can adopt a conservative 30% uncertainty in calculations of. It gives s p s p =0.2±0.06 fm 2 For the proton dipole moment we obtain d p e cm

18 Relativistic corrections Relativistic corrections appear in higher order terms of charge density expansion. The first correction comes from p r r r r r i j k l m i j k l m p p p p p δ ( r ) The atomic matrix element for the correction contains higher order derivatives of the electron wave functions at r= 0. It is convenient to expand the product of radial wave functions near r= 0. For Dirac wave functions ( ) ( ) ( ) ( ) f r f r + g r g r = b r s p s p k k= 1 With this expansion all the corrections can be summed in a new P- and T- odd so called LOCAL DIPOLE MOMENT 1 k + 1 k + 4 k + 1 L = e bk r r k = 1,3,5... ( k + 1)( k + 4) r r 3 k

19 The first term is just the Schiff moment and the other terms are the relativistic corrections. The coefficients b k can be calculated analytically for a uniformly charged sphere. For the first correction we have 2 3 ( Zα) b = b for s p / 2 5 RN atomic transition 2 9 ( Zα) b = b for s p 20 RN / 2 atomic transition

20 Results for the first correction 1 7 L' r r = r r

21 Conclusions Calculations of nuclear Schiff moments combined with atomic structure calculations and data from atomic experiments can bring new information about such fundamental quantities like nucleon dipole moments. Effects of nuclear polarization are important and should be taken into consideration in calculations of the Schiff moment. Relativistic corrections are sizable for heavy atoms and should not be ignored either.

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Schiff Moments. J. Engel. October 23, 2014

Schiff Moments. J. Engel. October 23, 2014 Schiff Moments J. Engel October 23, 2014 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T -violating πnn vertices: N? ḡ π New physics

More information

Schiff Moments. J. Engel. November 4, 2016

Schiff Moments. J. Engel. November 4, 2016 Schiff Moments J. Engel November 4, 2016 One Way Things Get EDMs Starting at fundamental level and working up: Underlying fundamental theory generates three T-violating πnn vertices: N? ḡ π New physics

More information

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU Nuclear structure aspects of Schiff Moments N.Auerbach Tel Aviv University and MSU T-P-odd electromagnetic moments In the absence of parity (P) and time (T) reversal violation the T P-odd moments for a

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS V.F. Dmitriev 1, and I.B. Khriplovich 2 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia Abstract We discuss the present state of the theory of nuclear

More information

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri Closed-shell Atomic Electric Dipole Moments K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri An observation of EDM of a non-degenerate physical system is a direct unambiguous evidence of

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia HISTORY AND PERSPECTIVES OF P AND T VIOLATION IN ATOMS I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia I. HISTORY Historically, good reasons to start just with /P, /T effects.

More information

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions V.A. Dzuba, V.V. Flambaum, and J.S.M. Ginges School of Physics,

More information

Atomic electric dipole moment calculation with perturbed coupled cluster method

Atomic electric dipole moment calculation with perturbed coupled cluster method Atomic electric dipole moment calculation with perturbed coupled cluster method D. Angom Theoretical Physics Division, Physical Research Laboratory, Ahmedabad 380 009 Symposium on 50 Years of Coupled Cluster

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI Workshop, November 6, 2014

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI Workshop, November 6, 2014 Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI Workshop, November 6, 2014 Outline Very short review of Schiff theorem Multipole expansion

More information

Electric dipole moments of light nuclei

Electric dipole moments of light nuclei Electric dipole moments of light nuclei In collaboration with Nodoka Yamanaka (IPN Orsay) E. Hiyama (RIKEN), T. Yamada (Kanto Gakuin Univ.), Y. Funaki (Beihang Univ.) 2017/4/24 RPP Marseille CP violation

More information

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects Bhanu Pratap Das Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore 560 034, India Outline

More information

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics T + - + - He Ra EDM Spin EDM Spin β - θ ν e He Kr 6 He 6 Li + Supported by DOE, Office of Nuclear Physics Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained.

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained. Lecture : Hyperfine Structure of Spectral Lines: Page- In this lecture, we will go through the hyperfine structure of atoms. Various origins of the hyperfine structure are discussed The coupling of nuclear

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin Pseudo-scalar s d C. S. Wu 1912-1997 Parity (space reversal) x, y, z -x, -y, -z z y Parity z x x y Pseudo-scalar

More information

The Nucleus. PHY 3101 D. Acosta

The Nucleus. PHY 3101 D. Acosta The Nucleus PHY 30 D. Acosta Rutherford Scattering Experiments by Geiger & Marsden in 909 /5/005 PHY 30 -- D. Acosta Rutherford Model of the Atom Conclusion: the atom contains a positive nucleus < 0 fm

More information

Electric Dipole Moments: Phenomenology & Implications

Electric Dipole Moments: Phenomenology & Implications Electric Dipole Moments: Phenomenology & Implications M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI Workshop, Amherst May 015! 1 Outline I. Experimental situation II. Effective

More information

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Dependence on the distance between neutrons (or protons)

More information

arxiv:physics/ v1 [physics.atom-ph] 10 Jul 1997

arxiv:physics/ v1 [physics.atom-ph] 10 Jul 1997 Enhancement of the electric dipole moment of the electron in BaF molecule. arxiv:physics/9707011v1 [physics.atom-ph] 10 Jul 1997 M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko Petersburg

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Atomic Parity Violation in Ytterbium

Atomic Parity Violation in Ytterbium Atomic Parity Violation in Ytterbium K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker http://budker.berkeley.edu Atomic PV: important landmarks! 1959 Ya. B. Zel dovich: APV (Neutr. Current) Opt.

More information

Electric and magnetic multipoles

Electric and magnetic multipoles Electric and magnetic multipoles Trond Saue Trond Saue (LCPQ, Toulouse) Electric and magnetic multipoles Virginia Tech 2017 1 / 22 Multipole expansions In multipolar gauge the expectation value of the

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011 Alpha decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 21, 2011 NUCS 342 (Lecture 13) February 21, 2011 1 / 27 Outline 1 The Geiger-Nuttall law NUCS 342 (Lecture

More information

arxiv: v1 [physics.atom-ph] 10 Aug 2018

arxiv: v1 [physics.atom-ph] 10 Aug 2018 Enhanced nuclear Schiff moment and time reversal violation in 229 Th molecules V.V. Flambaum 1,2 1 School of Physics, University of New South Wales, Sydney 2052, Australia and 2 Johannes Gutenberg-Universität

More information

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Hyperfine effects in atomic physics are due to the interaction of the atomic electrons with the electric and magnetic multipole

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

Prospects for Atomic Parity Violation Experiments

Prospects for Atomic Parity Violation Experiments Prospects for Atomic Parity Violation Experiments Konstantin Tsigutkin and Dima Budker http://socrates.berkeley.edu/~budker socrates.berkeley.edu/~budker/ Outline A brief story of parity violation in atoms

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

The magnetic force acting between nucleons

The magnetic force acting between nucleons The magnetic force acting between nucleons *Valerio Dallacasa and + Norman D. Cook * University of Verona, Verona, Italy + University of Southern California, Los Angeles, California, USA, and Kansai University,

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

arxiv: v1 [physics.atom-ph] 1 Apr 2015

arxiv: v1 [physics.atom-ph] 1 Apr 2015 Electric dipole moment of 225 Ra due to P- and T-violating weak interactions Yashpal Singh and B. K. Sahoo Theoretical Physics Division, Physical Research Laboratory, Navrangpura, hmedabad - 380009, India

More information

Double-Beta Decay, CP Violation, and Nuclear Structure

Double-Beta Decay, CP Violation, and Nuclear Structure Double-Beta Decay, CP Violation, and Nuclear Structure J. Engel University of North Carolina March 10, 2014 n p W e! " x n W p e Double-Beta Decay Neutrinos: What We Know Come in three flavors, none of

More information

ELECTRON SHELL IMPACT ON NUCLEI

ELECTRON SHELL IMPACT ON NUCLEI ELECTRON SHELL IMPACT ON THE ALPHA-DECAY OF HEAVY NUCLEI Yu.M. Tchuvil sky Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia In co-authorship with S.Yu. Igashov

More information

3. Introductory Nuclear Physics 1; The Liquid Drop Model

3. Introductory Nuclear Physics 1; The Liquid Drop Model 3. Introductory Nuclear Physics 1; The Liquid Drop Model Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number is Z and the nucleus is written

More information

arxiv: v2 [nucl-th] 11 Jun 2018

arxiv: v2 [nucl-th] 11 Jun 2018 Nuclear spin dependence of time reversal invariance violating effects in neutron scattering Vladimir Gudkov Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 908,

More information

Nuclear octupole correlations and the enhancement of atomic time-reversal violation

Nuclear octupole correlations and the enhancement of atomic time-reversal violation PHYSICAL REVIEW C, VOLUME 61, 035502 Nuclear octupole correlations and the enhancement of atomic time-reversal violation J. Engel, 1 J. L. Friar, 2 and A. C. Hayes 2 1 Department of Physics and Astronomy,

More information

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theoretical Physics and Astrophysics Group Indian Institute of Astrophysics Bangalore Collaborators: H. S. Nataraj, B. K. Sahoo,

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential Lecture 3 Last lecture we were in the middle of deriving the energies of the bound states of the Λ in the nucleus. We will continue with solving the non-relativistic Schroedinger equation for a spherically

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? Charge density distribution of a nucleus from electron scattering SLAC: 21 GeV e s ; λ ~ 0.1 fm (to first order assume that this is also the matter distribution

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS PHYS 30121 NUCLEAR AND PARTICLE PHYSICS DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS Discrete symmetries are ones that do not depend on any continuous parameter. The classic example is reflection

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

An Introduction to Hyperfine Structure and Its G-factor

An Introduction to Hyperfine Structure and Its G-factor An Introduction to Hyperfine Structure and Its G-factor Xiqiao Wang East Tennessee State University April 25, 2012 1 1. Introduction In a book chapter entitled Model Calculations of Radiation Induced Damage

More information

Deformed (Nilsson) shell model

Deformed (Nilsson) shell model Deformed (Nilsson) shell model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 31, 2011 NUCS 342 (Lecture 9) January 31, 2011 1 / 35 Outline 1 Infinitely deep potential

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 13, 009 Nuclear Shell Model continued 3/13/009 1 Atomic Physics Nuclear Physics V = V r f r L r S r Tot Spin-Orbit Interaction ( ) ( ) Spin of e magnetic

More information

Beta and gamma decays

Beta and gamma decays Beta and gamma decays April 9, 2002 Simple Fermi theory of beta decay ² Beta decay is one of the most easily found kinds of radioactivity. As we have seen, this result of the weak interaction leads to

More information

Status of the Search for an EDM of 225 Ra

Status of the Search for an EDM of 225 Ra Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod Outline Why is an EDM interesting?

More information

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014 Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014 Outline Very short review of Schiff theorem Multipole

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Bohr s Correspondence Principle Bohr s Correspondence Principle states that quantum mechanics is in agreement with classical physics when the energy differences between quantized

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

Pairing Correlations in Nuclei on Neutron Drip Line

Pairing Correlations in Nuclei on Neutron Drip Line Pairing Correlations in Nuclei on Neutron Drip Line INT Workshop on Pairing degrees of freedom in nuclei and the nuclear medium Nov. 14-17, 2005 Hiroyuki Sagawa (University of Aizu) Introduction Three-body

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

EDMs of stable atoms and molecules

EDMs of stable atoms and molecules W.Heil EDMs of stable atoms and molecules outline Introduction EDM sensitivity Recent progress in -EDMs paramagnetic atoms/molecules -EDMs diamagnetic atoms Conclusion and outlook Solvay workshop Beyond

More information

Parity non-conservation in thallium

Parity non-conservation in thallium Parity non-conservation in thallium M. G. Kozlov and S. G. Porsev Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia W. R. Johnson Department of Physics, Notre Dame University, Notre Dame,

More information

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Cheng-Pang Liu TRIUMF Research Facility, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 Abstract. The anapole moment is a parity-odd

More information

atomic structure practice test D) neutrons and protons B) empty space and has a small, positively charged nucleus C) neutron

atomic structure practice test D) neutrons and protons B) empty space and has a small, positively charged nucleus C) neutron atomic structure practice test 1. The major portion of an atom's mass consists of A) electrons and protons B) electrons and neutrons C) neutrons and positrons D) neutrons and protons 2. Which subatomic

More information

4 Electric Fields in Matter

4 Electric Fields in Matter 4 Electric Fields in Matter 4.1 Parity and Time Reversal: Lecture 10 (a) We discussed how fields transform under parity and time reversal. A useful table is Quantity Parity Time Reversal t Even Odd r Odd

More information

6-3 Solving Systems by Elimination

6-3 Solving Systems by Elimination Another method for solving systems of equations is elimination. Like substitution, the goal of elimination is to get one equation that has only one variable. To do this by elimination, you add the two

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Friday May 15th, 2014, 14-17h Examiners: Prof. J. Cline, Prof. H. Guo, Prof. G. Gervais (Chair), and Prof. D. Hanna INSTRUCTIONS

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini Electromagnetic reactions from few to many-body systems Giuseppina Orlandini ECT* Workshop on Recent advances and challenges in the description of nuclear reactions at the limit of stability, March 5-9,

More information

Relativistic Corrections to the Neutron Electric. Dipole Moment in Valence Quark Models. Abstract

Relativistic Corrections to the Neutron Electric. Dipole Moment in Valence Quark Models. Abstract UM P 92/42 Relativistic Corrections to the Neutron Electric Dipole Moment in Valence Quark Models John P. Costella and Bruce H. J. McKellar School of Physics, The University of Melbourne, Parkville 3052,

More information

PHYS3031 -Advanced Optics and Nuclear Physics, Paper 2. Session 2, 2014

PHYS3031 -Advanced Optics and Nuclear Physics, Paper 2. Session 2, 2014 THE UNIVERSITY OF NE\V SOUTH \ivales SCHOOL OF PHYSICS FINAL EXAMINATION PHYS3031 -Advanced Optics and Nuclear Physics, Paper 2 Session 2, 2014 1. Time allowed - 2 hours 2. Total number of questions -

More information

U(x) Finite Well. E Re ψ(x) Classically forbidden

U(x) Finite Well. E Re ψ(x) Classically forbidden Final Exam Physics 2130 Modern Physics Tuesday December 18, 2001 Point distribution: All questions are worth points 8 points. Answers should be bubbled onto the answer sheet. 1. At what common energy E

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

Question 1 (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so.

Question 1 (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so. Question (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so. + is the surface term. The volume term has to subtract this term since

More information

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011 Preliminaries Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 6, 2011 NUCS 342 (Lecture 0) January 6, 2011 1 / 21 Outline 1 Useful links NUCS 342 (Lecture 0) January

More information

The nucleus and its structure

The nucleus and its structure The nucleus and its structure Presently no complete theory to fully describe structure and behavior of nuclei based solely on knowledge of force between nucleons (although tremendous progress for A < 12

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100

Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100 Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100 R.V.Jolos, L.A.Malov, N.Yu.Shirikova and A.V.Sushkov JINR, Dubna, June 15-19 Introduction In recent years an experimental program has

More information

Nuclear Physics Part 2A: Radioactive Decays

Nuclear Physics Part 2A: Radioactive Decays Nuclear Physics Part 2A: Radioactive Decays Last modified: 23/10/2018 Links What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are electrons Anti-particles

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

arxiv:physics/ v1 15 Sep 2004

arxiv:physics/ v1 15 Sep 2004 Two-step method for precise calculation of core properties in molecules A.V. Titov, N.S. Mosyagin, A.N. Petrov, and T.A. Isaev Petersburg Nuclear Physics Institute, Gatchina, St.-Petersburg district 188300,

More information

EDMs and CP Violation (in the LHC Era)

EDMs and CP Violation (in the LHC Era) Lepton Moments - Cape Cod - July 2014 EDMs and CP Violation (in the LHC Era) Adam Ritz University of Victoria w/~ D. McKeen, M. Pospelov [1208.4597, 1303.1172, 1311.5537] w/~ M. Le Dall, M. Pospelov [to

More information

CGC effects on J/ψ production

CGC effects on J/ψ production CGC effects on J/ψ production Kirill Tuchin based on work with D. Kharzeev, G. Levin and M. Nardi 6th Winter Workshop on Nuclear Dynamics Jan.-9 Ocho Rios, Jamaica Introduction I Inclusive light hadron

More information

arxiv:nucl-th/ v2 4 Apr 2003

arxiv:nucl-th/ v2 4 Apr 2003 Collective Properties of Low-lying Octupole Excitations in 28 82 Pb 126, 2 Ca 4 and 8 O 2 XR Zhou a,b, EG Zhao a,b,d, BG Dong c, XZ Zhang c, GL Long a,d arxiv:nucl-th/21132v2 4 Apr 23 a Department of Physics,

More information

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment IL NUOVO CIMENTO Vol.?, N.?? Atomic Parity Non-Conservation in Francium: The FrPNC Experiment at TRIUMF S. Aubin( 1 ), E. Gomez( 2 ), J. A. Behr( 3 ), M. R. Pearson( 3 ), D. Sheng( 4 ), J. Zhang( 4 ),

More information

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q APAS 50. Internal Processes in Gases. Fall 999. Transition Probabilities and Selection Rules. Correspondence between Classical and Quantum Mechanical Transition Rates According to the correspondence principle

More information

Manifestations of Low-Mass Dark Bosons

Manifestations of Low-Mass Dark Bosons Manifestations of Low-Mass Dark Bosons Yevgeny Stadnik Humboldt Fellow Johannes Gutenberg University, Mainz, Germany Collaborators (Theory): Victor Flambaum (UNSW) Collaborators (Experiment): CASPEr collaboration

More information

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 6 Fermion Pairing WS2010/11: Introduction to Nuclear and Particle Physics Experimental indications for Cooper-Pairing Solid state physics: Pairing of electrons near the Fermi surface with antiparallel

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Part II Particle and Nuclear Physics Examples Sheet 4

Part II Particle and Nuclear Physics Examples Sheet 4 Part II Particle and Nuclear Physics Examples Sheet 4 T. Potter Lent/Easter Terms 018 Basic Nuclear Properties 8. (B) The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

More information