MTH6108 Coding theory Coursework 7

Size: px
Start display at page:

Download "MTH6108 Coding theory Coursework 7"

Transcription

1 1 Let C be the linear [6, 3]-code over F 5 with generator matrix (a) By applying the matrix operations MO1 5, put this in standard form, ie find a standard-form generator matrix for a code D equivalent to C (b) Write down a parity-check matrix for D Solution (a) Swap rows 1 and 2: Multiply row 1 by 4: Add row 1 to row 3: Add 3 times row 2 to row 3: Add 3 times row 3 to row 2: (b) Given a generator matrix (I B), the matrix ( B T I) is a parity-check matrix So we get

2 2 Suppose C is a linear [n, k]-code with a generator matrix in the form (A I k ), where I k is the k k identity matrix and A is a k (n k) matrix How can you construct a parity-check matrix for C? More general version for enthusiasts: suppose the generator matrix has the form (A I k B), where A is a k s matrix and B is a k (n k s) matrix, for some s Construct a parity-check matrix Solution A parity-check matrix is (I n k A T ) The proof of this a simple modification of Proposition 58 For the more general version, start with the equation (A B C) D E F = AD + BE + CF for matrices A, B, C, D, E, F of appropriate size Now consider the matrix ( ) H = I left A T B T Iright, where I left consists of the first s columns of I n k, and I right consists of the last n k s columns Then H has the right size to be a parity-check matrix, and has linearly independent rows (because its columns include the standard basis vectors, so it has rank at least n k) So we just need to check that GH T = 0: GH T = (A I B) I top A B I bottom = AItop (A B) + BI bottom where I top and I bottom have the obvious meanings But note that AI top + BI bottom I top = (A B) I bottom = (A B)I = (A B), so GH T = 0

3 3 Let C be the linear [5, 3]-code over F 3 with generator matrix (a) What is the dimension of C? (b) Find all the words in C, and write down a generator matrix for C (c) Let D = C C Find all the words in D, and write down a generator matrix for D (d) Find a generator matrix for D (e) Find a syndrome look-up table for C, and use it to decode the word Solution (a) 5 3 = 2, by Theorem 53 (b) Let G be the given generator matrix Applying MO3 twice, we get a new generator matrix F = (Recall that MO1 3 give you a new generator matrix for the same code, so we know that this is a generator matrix for C All we ve really done here is to put G in echelon form) Now it s easy to find the words in C, ie the words w such that Fw T = 0: you can choose w 2 and w 5 to be whatever you want, and the equations Fw T = 0 determine w 1, w 3, w 4 We get C = {00000, 00111, 00222, 12000, 12111, 12222, 21000, 21111, 21222} So a generator matrix for C is H = ( (c) A word lies in D if and only if it lies in C and C So we check each word w C to see whether it lies in C If we let H be the above generator matrix for C, then H is a parity-check matrix for C, so w C if and only if Hw T = 0 Checking the nine words, we find that D = {00000, 00111, 00222} )

4 D is 1-dimensional, and has a generator matrix G = ( ) (d) We can t apply the usual trick here, because D doesn t have a standard-form generator matrix But we can use the question above: the above generator matrix for D has an identity matrix at the right-hand side, and so we get a generator matrix for D (e) Using the parity-check matrix H above: leader syndrome To decode 10101, we work out its syndrome 12, and then we subtract the leader with the same syndrome to get = 11102

5 4 Suppose C is a linear [4, 2]-code over F 3 such that C = C Show that C is equivalent to the code with generator matrix (You may assume that any code D which is equivalent to C satisfies D = D) Solution We know we can get our matrix into standard form: 1 0 a b 0 1 c d Now the code generated by this matrix is dual to itself In particular, vv = 0 for each v in this code So 1 + a 2 + b 2 = 0, and by checking the possibilities we find that a, b 0 Similarly c, d 0 Now we can apply MO5 to columns 3 and 4 to guarantee that a = b = 1 Now the two rows v, w of this matrix must satisfy vw = 0, since the code is selfdual Hence c + d = 0, with c, d non-zero, so c, d equal 1 and 2 in some order If c = 2, then apply MO4 to swap columns 3 and 4 And now we have reached the desired matrix

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q MATH-315201 This question paper consists of 6 printed pages, each of which is identified by the reference MATH-3152 Only approved basic scientific calculators may be used. c UNIVERSITY OF LEEDS Examination

More information

Mathematics Department

Mathematics Department Mathematics Department Matthew Pressland Room 7.355 V57 WT 27/8 Advanced Higher Mathematics for INFOTECH Exercise Sheet 2. Let C F 6 3 be the linear code defined by the generator matrix G = 2 2 (a) Find

More information

Binary Linear Codes G = = [ I 3 B ] , G 4 = None of these matrices are in standard form. Note that the matrix 1 0 0

Binary Linear Codes G = = [ I 3 B ] , G 4 = None of these matrices are in standard form. Note that the matrix 1 0 0 Coding Theory Massoud Malek Binary Linear Codes Generator and Parity-Check Matrices. A subset C of IK n is called a linear code, if C is a subspace of IK n (i.e., C is closed under addition). A linear

More information

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either:

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either: 4.3 Row operations As we have seen in Section 4.1 we can simplify a system of equations by either: 1. Swapping the order of the equations around. For example: can become 3x 1 + 7x 2 = 9 x 1 2x 1 = 2 x

More information

1 Last time: linear systems and row operations

1 Last time: linear systems and row operations 1 Last time: linear systems and row operations Here s what we did last time: a system of linear equations or linear system is a list of equations a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

More information

Matrix multiplications that do row operations

Matrix multiplications that do row operations May 6, 204 Matrix multiplications that do row operations page Matrix multiplications that do row operations Introduction We have yet to justify our method for finding inverse matrices using row operations:

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1.

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1. Cyclic Codes II Generator Matrix We would now like to consider how the ideas we have previously discussed for linear codes are interpreted in this polynomial version of cyclic codes. Theorem 6: If the

More information

11 Minimal Distance and the Parity Check Matrix

11 Minimal Distance and the Parity Check Matrix MATH32031: Coding Theory Part 12: Hamming Codes 11 Minimal Distance and the Parity Check Matrix Theorem 23 (Distance Theorem for Linear Codes) Let C be an [n, k] F q -code with parity check matrix H. Then

More information

Determining a span. λ + µ + ν = x 2λ + 2µ 10ν = y λ + 3µ 9ν = z.

Determining a span. λ + µ + ν = x 2λ + 2µ 10ν = y λ + 3µ 9ν = z. Determining a span Set V = R 3 and v 1 = (1, 2, 1), v 2 := (1, 2, 3), v 3 := (1 10, 9). We want to determine the span of these vectors. In other words, given (x, y, z) R 3, when is (x, y, z) span(v 1,

More information

MATH32031: Coding Theory Part 15: Summary

MATH32031: Coding Theory Part 15: Summary MATH32031: Coding Theory Part 15: Summary 1 The initial problem The main goal of coding theory is to develop techniques which permit the detection of errors in the transmission of information and, if necessary,

More information

Section 4.5. Matrix Inverses

Section 4.5. Matrix Inverses Section 4.5 Matrix Inverses The Definition of Inverse Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4 MA B PRACTICAL - HOMEWORK SET SOLUTIONS (Reading) ( pts)[ch, Problem (d), (e)] Solution (d) We have matrix form Ax = b and vector equation 4 i= x iv i = b, where v i is the ith column of A, and 4 A = 8

More information

The extended coset leader weight enumerator

The extended coset leader weight enumerator The extended coset leader weight enumerator Relinde Jurrius Ruud Pellikaan Eindhoven University of Technology, The Netherlands Symposium on Information Theory in the Benelux, 2009 1/14 Outline Codes, weights

More information

Solving Consistent Linear Systems

Solving Consistent Linear Systems Solving Consistent Linear Systems Matrix Notation An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.

More information

Exercise Sketch these lines and find their intersection.

Exercise Sketch these lines and find their intersection. These are brief notes for the lecture on Friday August 21, 2009: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct. 1. Solving systems of linear

More information

Inverses and Elementary Matrices

Inverses and Elementary Matrices Inverses and Elementary Matrices 1-12-2013 Matrix inversion gives a method for solving some systems of equations Suppose a 11 x 1 +a 12 x 2 + +a 1n x n = b 1 a 21 x 1 +a 22 x 2 + +a 2n x n = b 2 a n1 x

More information

MATH 310, REVIEW SHEET 2

MATH 310, REVIEW SHEET 2 MATH 310, REVIEW SHEET 2 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,

More information

Second Midterm Exam April 14, 2011 Answers., and

Second Midterm Exam April 14, 2011 Answers., and Mathematics 34, Spring Problem ( points) (a) Consider the matrices all matrices. Second Midterm Exam April 4, Answers [ Do these matrices span M? ] [, ] [, and Lectures & (Wilson) ], as vectors in the

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

18.06 Problem Set 3 Due Wednesday, 27 February 2008 at 4 pm in

18.06 Problem Set 3 Due Wednesday, 27 February 2008 at 4 pm in 8.6 Problem Set 3 Due Wednesday, 27 February 28 at 4 pm in 2-6. Problem : Do problem 7 from section 2.7 (pg. 5) in the book. Solution (2+3+3+2 points) a) False. One example is when A = [ ] 2. 3 4 b) False.

More information

Linear Methods (Math 211) - Lecture 2

Linear Methods (Math 211) - Lecture 2 Linear Methods (Math 211) - Lecture 2 David Roe September 11, 2013 Recall Last time: Linear Systems Matrices Geometric Perspective Parametric Form Today 1 Row Echelon Form 2 Rank 3 Gaussian Elimination

More information

Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages )

Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages ) Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages 57-6) Recall that the basis for a subspace S is a set of vectors that both spans S and is linearly independent. Moreover, we saw in section 2.3 that

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

MTH6108 Coding theory

MTH6108 Coding theory MTH6108 Coding theory Contents 1 Introduction and definitions 2 2 Good codes 6 2.1 The main coding theory problem............................ 6 2.2 The Singleton bound...................................

More information

MATH 54 - WORKSHEET 1 MONDAY 6/22

MATH 54 - WORKSHEET 1 MONDAY 6/22 MATH 54 - WORKSHEET 1 MONDAY 6/22 Row Operations: (1 (Replacement Add a multiple of one row to another row. (2 (Interchange Swap two rows. (3 (Scaling Multiply an entire row by a nonzero constant. A matrix

More information

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4]. Lecture Notes: Rank of a Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Linear Independence Definition 1. Let r 1, r 2,..., r m

More information

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 Notation: We will use the notations x 1 x 2 x n and also (x 1, x 2,, x n ) to denote a vector x F n where F is a finite field. 1. [20=6+5+9]

More information

B. Cyclic Codes. Primitive polynomials are the generator polynomials of cyclic codes.

B. Cyclic Codes. Primitive polynomials are the generator polynomials of cyclic codes. B. Cyclic Codes A cyclic code is a linear block code with the further property that a shift of a codeword results in another codeword. These are based on polynomials whose elements are coefficients from

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3 Answers in blue. If you have questions or spot an error, let me know. 3 4. Find all matrices that commute with A =. 4 3 a b If we set B = and set AB = BA, we see that 3a + 4b = 3a 4c, 4a + 3b = 3b 4d,

More information

Vector spaces. EE 387, Notes 8, Handout #12

Vector spaces. EE 387, Notes 8, Handout #12 Vector spaces EE 387, Notes 8, Handout #12 A vector space V of vectors over a field F of scalars is a set with a binary operator + on V and a scalar-vector product satisfying these axioms: 1. (V, +) is

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

Sections 6.1 and 6.2: Systems of Linear Equations

Sections 6.1 and 6.2: Systems of Linear Equations What is a linear equation? Sections 6.1 and 6.2: Systems of Linear Equations We are now going to discuss solving systems of two or more linear equations with two variables. Recall that solving an equation

More information

Solution Set 3, Fall '12

Solution Set 3, Fall '12 Solution Set 3, 86 Fall '2 Do Problem 5 from 32 [ 3 5 Solution (a) A = Only one elimination step is needed to produce the 2 6 echelon form The pivot is the in row, column, and the entry to eliminate is

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

1 GSW Sets of Systems

1 GSW Sets of Systems 1 Often, we have to solve a whole series of sets of simultaneous equations of the form y Ax, all of which have the same matrix A, but each of which has a different known vector y, and a different unknown

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Linear Algebra. and

Linear Algebra. and Instructions Please answer the six problems on your own paper. These are essay questions: you should write in complete sentences. 1. Are the two matrices 1 2 2 1 3 5 2 7 and 1 1 1 4 4 2 5 5 2 row equivalent?

More information

MathQuest: Linear Algebra. Answer: (False). We can write the third vector as a linear combination of the first two: v 3 = 3v 1 +2v 2.

MathQuest: Linear Algebra. Answer: (False). We can write the third vector as a linear combination of the first two: v 3 = 3v 1 +2v 2. MathQuest: Linear Algebra Linear Independence. True or False The following vectors are linearly independent: (,0,0), (0,0,2), (3,0,4) Answer: (False). We can write the third vector as a linear combination

More information

Math 512 Syllabus Spring 2017, LIU Post

Math 512 Syllabus Spring 2017, LIU Post Week Class Date Material Math 512 Syllabus Spring 2017, LIU Post 1 1/23 ISBN, error-detecting codes HW: Exercises 1.1, 1.3, 1.5, 1.8, 1.14, 1.15 If x, y satisfy ISBN-10 check, then so does x + y. 2 1/30

More information

Linear Algebra I Lecture 8

Linear Algebra I Lecture 8 Linear Algebra I Lecture 8 Xi Chen 1 1 University of Alberta January 25, 2019 Outline 1 2 Gauss-Jordan Elimination Given a system of linear equations f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

The product of matrices

The product of matrices Geometria Lingotto LeLing9: Matrix multiplication C ontents: The product of two matrices Proof of the Rank theorem The algebra of square matrices: the product is not commutative Rotations and elementary

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

POLI270 - Linear Algebra

POLI270 - Linear Algebra POLI7 - Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and

More information

Error Detection and Correction: Hamming Code; Reed-Muller Code

Error Detection and Correction: Hamming Code; Reed-Muller Code Error Detection and Correction: Hamming Code; Reed-Muller Code Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Hamming Code: Motivation

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Cyclic Redundancy Check Codes

Cyclic Redundancy Check Codes Cyclic Redundancy Check Codes Lectures No. 17 and 18 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview These lectures will look at the following: Cyclic

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

Chapter 2. Error Correcting Codes. 2.1 Basic Notions

Chapter 2. Error Correcting Codes. 2.1 Basic Notions Chapter 2 Error Correcting Codes The identification number schemes we discussed in the previous chapter give us the ability to determine if an error has been made in recording or transmitting information.

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then 1 Sec 21 Matrix Operations Review Let A, B, and C be matrices of the same size, and let r and s be scalars Then (i) A + B = B + A (iv) r(a + B) = ra + rb (ii) (A + B) + C = A + (B + C) (v) (r + s)a = ra

More information

Matrices, Row Reduction of Matrices

Matrices, Row Reduction of Matrices Matrices, Row Reduction of Matrices October 9, 014 1 Row Reduction and Echelon Forms In the previous section, we saw a procedure for solving systems of equations It is simple in that it consists of only

More information

Instruction: Operations with Matrices ( ) ( ) log 8 log 25 = If the corresponding elements do not equal, then the matrices are not equal.

Instruction: Operations with Matrices ( ) ( ) log 8 log 25 = If the corresponding elements do not equal, then the matrices are not equal. 7 Instruction: Operations with Matrices Two matrices are said to be equal if they have the same size and their corresponding elements are equal. For example, 3 ( ) ( ) ( ) ( ) log 8 log log log3 8 If the

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

Eigenvalues & Eigenvectors

Eigenvalues & Eigenvectors Eigenvalues & Eigenvectors Page 1 Eigenvalues are a very important concept in linear algebra, and one that comes up in other mathematics courses as well. The word eigen is German for inherent or characteristic,

More information

Hamming codes and simplex codes ( )

Hamming codes and simplex codes ( ) Chapter 6 Hamming codes and simplex codes (2018-03-17) Synopsis. Hamming codes are essentially the first non-trivial family of codes that we shall meet. We start by proving the Distance Theorem for linear

More information

Game Engineering: 2D

Game Engineering: 2D Game Engineering: 2D CS420-2010F-06 2D Math David Galles Department of Computer Science University of San Francisco 06-0: Back to Basics A Vector is a displacement Vector has both direction and length

More information

Solutions to Math 51 First Exam April 21, 2011

Solutions to Math 51 First Exam April 21, 2011 Solutions to Math 5 First Exam April,. ( points) (a) Give the precise definition of a (linear) subspace V of R n. (4 points) A linear subspace V of R n is a subset V R n which satisfies V. If x, y V then

More information

Lecture 2 Systems of Linear Equations and Matrices, Continued

Lecture 2 Systems of Linear Equations and Matrices, Continued Lecture 2 Systems of Linear Equations and Matrices, Continued Math 19620 Outline of Lecture Algorithm for putting a matrix in row reduced echelon form - i.e. Gauss-Jordan Elimination Number of Solutions

More information

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Linear Block Codes February 14, 2007 1. Code 1: n = 4, n k = 2 Parity Check Equations: x 1 + x 3 = 0, x 1 + x 2 + x 4 = 0 Parity Bits: x 3 = x 1,

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4 Department of Aerospace Engineering AE6 Mathematics for Aerospace Engineers Assignment No.. Decide whether or not the following vectors are linearly independent, by solving c v + c v + c 3 v 3 + c v :

More information

Answers and Solutions to (Even Numbered) Suggested Exercises in Sections of Grimaldi s Discrete and Combinatorial Mathematics

Answers and Solutions to (Even Numbered) Suggested Exercises in Sections of Grimaldi s Discrete and Combinatorial Mathematics Answers and Solutions to (Even Numbered) Suggested Exercises in Sections 6.5-6.9 of Grimaldi s Discrete and Combinatorial Mathematics Section 6.5 6.5.2. a. r = = + = c + e. So the error pattern is e =.

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

} has dimension = k rank A > 0 over F. For any vector b!

} has dimension = k rank A > 0 over F. For any vector b! FINAL EXAM Math 115B, UCSB, Winter 2009 - SOLUTIONS Due in SH6518 or as an email attachment at 12:00pm, March 16, 2009. You are to work on your own, and may only consult your notes, text and the class

More information

MATH 2030: ASSIGNMENT 4 SOLUTIONS

MATH 2030: ASSIGNMENT 4 SOLUTIONS MATH 23: ASSIGNMENT 4 SOLUTIONS More on the LU factorization Q.: pg 96, q 24. Find the P t LU factorization of the matrix 2 A = 3 2 2 A.. By interchanging row and row 4 we get a matrix that may be easily

More information

Lecture 13: Row and column spaces

Lecture 13: Row and column spaces Spring 2018 UW-Madison Lecture 13: Row and column spaces 1 The column space of a matrix 1.1 Definition The column space of matrix A denoted as Col(A) is the space consisting of all linear combinations

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW

REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW 20 CHAPTER 1 Systems of Linear Equations REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW The last type of operation is slightly more complicated. Suppose that we want to write down the elementary

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture Week9 Vector Spaces 9. Opening Remarks 9.. Solvable or not solvable, that s the question Consider the picture (,) (,) p(χ) = γ + γ χ + γ χ (, ) depicting three points in R and a quadratic polynomial (polynomial

More information

Linear Systems. Math A Bianca Santoro. September 23, 2016

Linear Systems. Math A Bianca Santoro. September 23, 2016 Linear Systems Math A4600 - Bianca Santoro September 3, 06 Goal: Understand how to solve Ax = b. Toy Model: Let s study the following system There are two nice ways of thinking about this system: x + y

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Properties of the matrix product Let us show that the matrix product we

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic Unit II - Matrix arithmetic matrix multiplication matrix inverses elementary matrices finding the inverse of a matrix determinants Unit II - Matrix arithmetic 1 Things we can already do with matrices equality

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

Section 12.4 Algebra of Matrices

Section 12.4 Algebra of Matrices 244 Section 2.4 Algebra of Matrices Before we can discuss Matrix Algebra, we need to have a clear idea what it means to say that two matrices are equal. Let's start a definition. Equal Matrices Two matrices

More information

3. Coding theory 3.1. Basic concepts

3. Coding theory 3.1. Basic concepts 3. CODING THEORY 1 3. Coding theory 3.1. Basic concepts In this chapter we will discuss briefly some aspects of error correcting codes. The main problem is that if information is sent via a noisy channel,

More information

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain Section Exercise : We are given the following augumented matrix 3 7 6 3 We have to bring it to the diagonal form The entries below the diagonal are already zero, so we work from bottom to top Adding the

More information

Algorithms to Compute Bases and the Rank of a Matrix

Algorithms to Compute Bases and the Rank of a Matrix Algorithms to Compute Bases and the Rank of a Matrix Subspaces associated to a matrix Suppose that A is an m n matrix The row space of A is the subspace of R n spanned by the rows of A The column space

More information

Math 215 HW #9 Solutions

Math 215 HW #9 Solutions Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith

More information

Calculating determinants for larger matrices

Calculating determinants for larger matrices Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

More information

Solutions to problems from Chapter 3

Solutions to problems from Chapter 3 Solutions to problems from Chapter 3 Manjunatha. P manjup.jnnce@gmail.com Professor Dept. of ECE J.N.N. College of Engineering, Shimoga February 28, 2016 For a systematic (7,4) linear block code, the parity

More information

Matrix Inverses. November 19, 2014

Matrix Inverses. November 19, 2014 Matrix Inverses November 9, 204 22 The Inverse of a Matrix Now that we have discussed how to multiply two matrices, we can finally have a proper discussion of what we mean by the expression A for a matrix

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Homework 11/Solutions. (Section 6.8 Exercise 3). Which pairs of the following vector spaces are isomorphic?

Homework 11/Solutions. (Section 6.8 Exercise 3). Which pairs of the following vector spaces are isomorphic? MTH 9-4 Linear Algebra I F Section Exercises 6.8,4,5 7.,b 7.,, Homework /Solutions (Section 6.8 Exercise ). Which pairs of the following vector spaces are isomorphic? R 7, R, M(, ), M(, 4), M(4, ), P 6,

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information