Homework 11/Solutions. (Section 6.8 Exercise 3). Which pairs of the following vector spaces are isomorphic?

Size: px
Start display at page:

Download "Homework 11/Solutions. (Section 6.8 Exercise 3). Which pairs of the following vector spaces are isomorphic?"

Transcription

1 MTH 9-4 Linear Algebra I F Section Exercises 6.8,4,5 7.,b 7.,, Homework /Solutions (Section 6.8 Exercise ). Which pairs of the following vector spaces are isomorphic? R 7, R, M(, ), M(, 4), M(4, ), P 6, P 8, P, P Since dim R n = n, dim M(m, n) = mn and dim P n = n+ we obtain the following chart: V R 7 R M(, ) M(, 4) M(4, ) P 6 P 8 P P dim V By Theorem 6. two finite dimensional vector spaces are isomorphic if and only if they have the same dimension. Also a finite dimensional vectors space is not isomorphic to an infinite dimensional vector space. So we obtain the following (unordered) pairs of isomorphic vector spaces dim V = 7 : {R 7, P 6 } dim V = 9 : {R 9, M(, )} dim V = : {R, M(, 4)}, {R, P }, {P, M(, 4)}, {R, M(4, )}, {P, M(4, )}, {M(, 4), M(4, )} (Section 6.8 Exercise 4). (a). For any vector space V, show that id V : V V is an isomorphism. (b) Suppose T : V V is an isomorphism from the vector space V to the vector space V. Prove that T is invertible and that T is an isomorphism from V to V. (c) Suppose T : V V and T : V V are isomorphisms. Prove that T T : V V is an isomorphism. (a) By Lemma A.5. in the appendix of the notes, id V id V = id V. So id V is an inverse of id V. Also by Section 6. Exercise 6, id V is linear and so id V is an isomorphism. (b) This is obvious with the definition of an isomorphism in the notes. (But observe that according to Theorem 6.8 in the notes, the definition of an isomorphism in the notes is equivalent to the definition in the book). (c) By (b) T and T are invertible and so by A.5.6 in the appendix of the notes, T T is invertible. By Theorem 6.7, T T is invertible and so by Theorem 6.8, T T is an isomorphism.

2 (Section 6.8 Exercise 5). (a) Show that any vector space V is isomorphic to itself. (b) Show that if a vector space V is isomorphic to a vector space V, then V is isomorphic to V. (c) Show that if the vector space V is isomorphic to the vector space V and V is isomorphic to the vector space V, then V is isomorphic to V. Recall call first that by definition a vector space V is isomorphic a vector space W if and only if there exists an isomorphism T : V W. (a) By Section 6.8 Exercise 4a, id V : V V is an isomorphism. So V is isomorphic to V. (b) Suppose that the vector space V is isomorphic to the vector space V. Then there there exists an isomorphism T : V V. By Section 6.8 Exercise 4b, T : V V is an isomorphism and so V is isomorphic to V. (c) Suppose the vector space V is isomorphic to the vector space V and V is isomorphic to the vector space V. Then there exist an isomorphism T : V V and an isomorphism T : V V. By Section 6.8 Exercise 4c, T T : V V is an isomorphism and so V is isomorphic to V. 7 (Section 7. Exercise b). Use Theorem 7.4 to compute det 9 5 by keeping 4 8 track of the changes that occur as you apply row operations to put the matrix in reduced row-echelon form R4 + R R4 R R R R R R 5 5 R4 R4 R R R R4 66 So the determinant is R + R R R R R R4 5R R4 R R4 R4 R + 7 R R 66 7 (Section 7. Exercise ). Suppose A is a square matrix. Use induction to prove for any integer n, that det A n = (det A) n.

3 Recall first that A n is inductively defined by A = I, and A n+ = A n A By definition of a regular determinant function det I =. Thus det A = det I = = (det A) and so det A n = (det A) n holds for n =. Suppose now that ( ) det A n = (det A) n for some non-negative integer n. Then det A n+ = det A n A definition of A n+ = det A n det A Theorem 7.7 = (det A) n det A by the induction assumption ( ) = (det A) n+ Property of R So det A n+ = (det A) n+. Thus by the principal of induction, det A n = (det A) n holds for all non-negative integers n. (Section 7. Exercise ). Prove that if the square matrix A is invertible, then det A = (det A). Since A is invertible, AA = I. Thus by Theorem 7.7, det(a) det(a ) = det(aa ) = det I. By definition of a regular determinant function det I = and so det(a) det(a ) =. Thus det A = (det A). (Section 7. Exercise ). Prove that if A and P are n n- matrices and P is invertible, then det(p AP ) = det A Using Theorem 7.7 twice we compute ( ) det(p AP ) = det P (AP ) = det P det(ap ) = det P det A det P = det P det P det A By Section 7. Exercise, det(p ) = (det P ) and so det P det P =. Thus det(p AP ) = det A. A. Fill in all the? in the proof of the following Theorem: Theorem A. Let A be a m n matrix and B its reduced row echelon form. Let x f,..., x ft be the free variables of B and let s be number of non-zero rows of B. Let (e,..., e n ) be the standard basis for R n and let b k be row k of B. Then (b,..., b s ) is a basis for RowA and (b,..., b s, e f,..., e ft ) is basis for R n.

4 Proof. Put D = (b,..., b s, e f,..., e ft ) Note that (b,..., b s ) is the list of non-zero rows of B. By Theorem N.7.5 (b,..., b s ) is a basis for RowA. So we just need to show that D is a basis for R n. Note that s is the number lead variables and so n = s + t. Thus D is a list of length n in the n -dimensional vector space R n. So by Theorem N.5.5 ( ) D is basis of R n if and only if D is linearly independent. To show that D is linearly independent, let r,..., r s, u,..., u t R such that ( ) r b r s b s + u e f u t e ft = Let k s and let b klk be the leading in b k. Then b klk is the only non-zero entry in Column l k of B and so the l k entry of b j is for all j s with j k. Since x lk is a leading variable, l k f j for all j t and so also the l k entry of e fj is. Thus the l k entry of the linear combination on the left side of the equation ( ) is r k. Hence r k = for all k s. Thus ( ) implies u e f u t e ft = Since (e,..., e n ) is a basis and so linearly independent this gives u j = for all j t. Thus D is linearly independent, and so by ( ) D is a basis for R n. ( ) B. Let V = span (,,,, ), (,,,, ), (,,,, ). Find a basis for V and extend it to a basis of R 5. Hint: Use Theorem A to find both bases simultaneously. We use the Gauss-Jordan Algorithm to compute the reduced row echelon form of the matrix A formed by the the above list of vectors as rows. R R R R R R R R R R R Thus by Theorem I, 4

5 is a basis for ColA = V and since x, x 4, x 5 are the free variables is a basis for R 5. 5

Homework Set #8 Solutions

Homework Set #8 Solutions Exercises.2 (p. 19) Homework Set #8 Solutions Assignment: Do #6, 8, 12, 14, 2, 24, 26, 29, 0, 2, 4, 5, 6, 9, 40, 42 6. Reducing the matrix to echelon form: 1 5 2 1 R2 R2 R1 1 5 0 18 12 2 1 R R 2R1 1 5

More information

MATH10212 Linear Algebra B Homework 7

MATH10212 Linear Algebra B Homework 7 MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Homework 5 M 373K Mark Lindberg and Travis Schedler

Homework 5 M 373K Mark Lindberg and Travis Schedler Homework 5 M 373K Mark Lindberg and Travis Schedler 1. Artin, Chapter 3, Exercise.1. Prove that the numbers of the form a + b, where a and b are rational numbers, form a subfield of C. Let F be the numbers

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.4 Solving Systems of Linear Equations 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.4. Solving Systems of Linear Equations Note. We give an algorithm for solving a system of linear equations (called

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

Math 22 Fall 2018 Midterm 2

Math 22 Fall 2018 Midterm 2 Math 22 Fall 218 Midterm 2 October 23, 218 NAME: SECTION (check one box): Section 1 (S. Allen 12:5) Section 2 (A. Babei 2:1) Instructions: 1. Write your name legibly on this page, and indicate your section

More information

Math 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID:

Math 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID: Math 2030, Matrix Theory and Linear Algebra I, Fall 20 Final Exam, December 3, 20 FIRST NAME: LAST NAME: STUDENT ID: SIGNATURE: Part I: True or false questions Decide whether each statement is true or

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is,

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is, 65 Diagonalizable Matrices It is useful to introduce few more concepts, that are common in the literature Definition 65 The characteristic polynomial of an n n matrix A is the function p(λ) det(a λi) Example

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

5 Linear Transformations

5 Linear Transformations Lecture 13 5 Linear Transformations 5.1 Basic Definitions and Examples We have already come across with the notion of linear transformations on euclidean spaces. We shall now see that this notion readily

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Exam 1 Exam date: 9/26/17 Time Limit: 80 Minutes Name: Student ID: GSI or Section: This exam contains 6 pages (including this cover page) and 7 problems. Problems are printed

More information

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS MATH Q MIDTERM EXAM I PRACTICE PROBLEMS Date and place: Thursday, November, 8, in-class exam Section : : :5pm at MONT Section : 9: :5pm at MONT 5 Material: Sections,, 7 Lecture 9 8, Quiz, Worksheet 9 8,

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

SPRING OF 2008 D. DETERMINANTS

SPRING OF 2008 D. DETERMINANTS 18024 SPRING OF 2008 D DETERMINANTS In many applications of linear algebra to calculus and geometry, the concept of a determinant plays an important role This chapter studies the basic properties of determinants

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

MATH10212 Linear Algebra B Homework Week 5

MATH10212 Linear Algebra B Homework Week 5 MATH Linear Algebra B Homework Week 5 Students are strongly advised to acquire a copy of the Textbook: D C Lay Linear Algebra its Applications Pearson 6 (or other editions) Normally homework assignments

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii) . Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is

More information

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS There will be eight problems on the final. The following are sample problems. Problem 1. Let F be the vector space of all real valued functions on

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Linear Algebra I Lecture 8

Linear Algebra I Lecture 8 Linear Algebra I Lecture 8 Xi Chen 1 1 University of Alberta January 25, 2019 Outline 1 2 Gauss-Jordan Elimination Given a system of linear equations f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Math 544, Exam 2 Information.

Math 544, Exam 2 Information. Math 544, Exam 2 Information. 10/12/10, LC 115, 2:00-3:15. Exam 2 will be based on: Sections 1.7, 1.9, 3.2, 3.3, 3.4; The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/544fa10/544.html)

More information

(Practice)Exam in Linear Algebra

(Practice)Exam in Linear Algebra (Practice)Exam in Linear Algebra May 016 First Year at The Faculties of Engineering and Science and of Health This test has 10 pages and 16 multiple-choice problems. In two-sided print. It is allowed to

More information

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics Ulrich Meierfrankenfeld Department of Mathematics Michigan State University East Lansing MI 48824 meier@math.msu.edu

More information

Linear System Equations

Linear System Equations King Saud University September 24, 2018 Table of contents 1 2 3 4 Definition A linear system of equations with m equations and n unknowns is defined as follows: a 1,1 x 1 + a 1,2 x 2 + + a 1,n x n = b

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

No books, notes, any calculator, or electronic devices are allowed on this exam. Show all of your steps in each answer to receive a full credit.

No books, notes, any calculator, or electronic devices are allowed on this exam. Show all of your steps in each answer to receive a full credit. MTH 309-001 Fall 2016 Exam 1 10/05/16 Name (Print): PID: READ CAREFULLY THE FOLLOWING INSTRUCTION Do not open your exam until told to do so. This exam contains 7 pages (including this cover page) and 7

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

Linear Algebra 2 More on determinants and Evalues Exercises and Thanksgiving Activities

Linear Algebra 2 More on determinants and Evalues Exercises and Thanksgiving Activities Linear Algebra 2 More on determinants and Evalues Exercises and Thanksgiving Activities 2. Determinant of a linear transformation, change of basis. In the solution set of Homework 1, New Series, I included

More information

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ Question No: 1 (Marks: 1) If for a linear transformation the equation T(x) =0 has only the trivial solution then T is One-to-one Onto Question

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich Fields. We learned to work with fields of numbers in school: Q = fractions of integers R = all real numbers, represented by infinite

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Topics in linear algebra

Topics in linear algebra Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over

More information

INVERSE OF A MATRIX [2.2]

INVERSE OF A MATRIX [2.2] INVERSE OF A MATRIX [2.2] The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now) such

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Diagonalization MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Motivation Today we consider two fundamental questions: Given an n n matrix A, does there exist a basis

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Determinants An Introduction

Determinants An Introduction Determinants An Introduction Professor Je rey Stuart Department of Mathematics Paci c Lutheran University Tacoma, WA 9844 USA je rey.stuart@plu.edu The determinant is a useful function that takes a square

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2.

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2. SSM: Linear Algebra Section 61 61 Chapter 6 1 2 1 Fails to be invertible; since det = 6 6 = 0 3 6 3 5 3 Invertible; since det = 33 35 = 2 7 11 5 Invertible; since det 2 5 7 0 11 7 = 2 11 5 + 0 + 0 0 0

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

LINEAR ALGEBRA QUESTION BANK

LINEAR ALGEBRA QUESTION BANK LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

More information

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS i i EXAM Exam #1 Math 2360, Second Summer Session, 2002 April 24, 2001 ANSWERS i 50 pts. Problem 1. In each part you are given the augmented matrix of a system of linear equations, with the coefficent

More information

Final EXAM Preparation Sheet

Final EXAM Preparation Sheet Final EXAM Preparation Sheet M369 Fall 217 1 Key concepts The following list contains the main concepts and ideas that we have explored this semester. For each concept, make sure that you remember about

More information

Math 265 Midterm 2 Review

Math 265 Midterm 2 Review Math 65 Midterm Review March 6, 06 Things you should be able to do This list is not meant to be ehaustive, but to remind you of things I may ask you to do on the eam. These are roughly in the order they

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them. Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence

More information

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 Answer the questions in the spaces provided on the question sheets. You must show your work to get credit for your answers. There will

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Question 7. Consider a linear system A x = b with 4 unknown. x = [x 1, x 2, x 3, x 4 ] T. The augmented

Question 7. Consider a linear system A x = b with 4 unknown. x = [x 1, x 2, x 3, x 4 ] T. The augmented Question. How many solutions does x 6 = 4 + i have Practice Problems 6 d) 5 Question. Which of the following is a cubed root of the complex number i. 6 e i arctan() e i(arctan() π) e i(arctan() π)/3 6

More information

Linear algebra II Tutorial solutions #1 A = x 1

Linear algebra II Tutorial solutions #1 A = x 1 Linear algebra II Tutorial solutions #. Find the eigenvalues and the eigenvectors of the matrix [ ] 5 2 A =. 4 3 Since tra = 8 and deta = 5 8 = 7, the characteristic polynomial is f(λ) = λ 2 (tra)λ+deta

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

Signature. Printed Name. Math 312 Hour Exam 1 Jerry L. Kazdan March 5, :00 1:20

Signature. Printed Name. Math 312 Hour Exam 1 Jerry L. Kazdan March 5, :00 1:20 Signature Printed Name Math 312 Hour Exam 1 Jerry L. Kazdan March 5, 1998 12:00 1:20 Directions: This exam has three parts. Part A has 4 True-False questions, Part B has 3 short answer questions, and Part

More information

Final Examination 201-NYC-05 - Linear Algebra I December 8 th, and b = 4. Find the value(s) of a for which the equation Ax = b

Final Examination 201-NYC-05 - Linear Algebra I December 8 th, and b = 4. Find the value(s) of a for which the equation Ax = b Final Examination -NYC-5 - Linear Algebra I December 8 th 7. (4 points) Let A = has: (a) a unique solution. a a (b) infinitely many solutions. (c) no solution. and b = 4. Find the value(s) of a for which

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

Section 4.5. Matrix Inverses

Section 4.5. Matrix Inverses Section 4.5 Matrix Inverses The Definition of Inverse Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

MATH. 20F SAMPLE FINAL (WINTER 2010)

MATH. 20F SAMPLE FINAL (WINTER 2010) MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total

More information

1.8 Dual Spaces (non-examinable)

1.8 Dual Spaces (non-examinable) 2 Theorem 1715 is just a restatement in terms of linear morphisms of a fact that you might have come across before: every m n matrix can be row-reduced to reduced echelon form using row operations Moreover,

More information

SYMBOL EXPLANATION EXAMPLE

SYMBOL EXPLANATION EXAMPLE MATH 4310 PRELIM I REVIEW Notation These are the symbols we have used in class, leading up to Prelim I, and which I will use on the exam SYMBOL EXPLANATION EXAMPLE {a, b, c, } The is the way to write the

More information

Review Notes for Midterm #2

Review Notes for Midterm #2 Review Notes for Midterm #2 Joris Vankerschaver This version: Nov. 2, 200 Abstract This is a summary of the basic definitions and results that we discussed during class. Whenever a proof is provided, I

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

Exercise Sketch these lines and find their intersection.

Exercise Sketch these lines and find their intersection. These are brief notes for the lecture on Friday August 21, 2009: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct. 1. Solving systems of linear

More information

Honors Advanced Mathematics Determinants page 1

Honors Advanced Mathematics Determinants page 1 Determinants page 1 Determinants For every square matrix A, there is a number called the determinant of the matrix, denoted as det(a) or A. Sometimes the bars are written just around the numbers of the

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information