Linear Algebra V = T = ( 4 3 ).


 Norah Gilbert
 1 years ago
 Views:
Transcription
1 Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a dimensional column vector and V is a 5dimensional column vector: W V Subscripts are used to denote single elements of the vector For example W V 4 A row vector is a list of numbers stored horizontally The dimension of a row vector is the number of values in the vector U is a 4dimensional row vector and T is a dimensional rowvector: 4 5 U 4 T 4 Elements are accessed by subscript: U T 4 The term vector is used to refer to either a row vector or a column vector in situations where it doesn t matter whether the values are stored in a column or in a row
2 Two vectors with a common dimension can be added or subtracted: 4 + Any vector can be multiplied by a scalar coefficient: 6 Combining addition and scalar multiplication gives a linear combination: 4 Geometrically a vector V can be viewed as a line segment in ddimensional space with its tail at the origin and its head at the point V 4 V  U V is the vector and U is the vector 
3 The scalar product also called the dot product or inner product is formed from two vectors V and W having the same dimension The scalar product is a single number a scalar and is notated V W or V W The definition of the scalar product is V W i V i W i For example if V and W If U 4 4 and T V W U T If two ddimensional vectors U and V have inner product U V then U and V are orthogonal or perpendicular Viewing dimensional vectors as points in the plane V x y U x y then V U when V and U are perpendicular in the geometric sense the angle between them is π/ radians 4 V   U V is the vector and U is the vector 
4 A linear combination of ddimensional vectors V V V m is an expression of the form c V + c V + + c m V m where c c m are scalars called coefficients For example if V 4 V and c c c then c V + c V + c V is V A set of ddimensional vectors V V m are linearly dependent if there exist scalars c c m not all of which are zero such that the linear combination c V + + c m V m is zero For example V V V 6 are linearly dependent since if c c and c then c V + c V + c V A set of ddimensional vectors V V m are linearly independent if they are not linearly dependent That is whenever c V + + c m V m then c c m For example suppose V V 5 V 6 and c V + c V + c V The linear combination can be written c + 5c 6c c c c + c c + c + c From the second line c and from the final line c c From the third line c c so we conclude c c hence V V V are linearly independent 4
5 It is a fact that any set of m > d ddimensional vectors must be linearly dependent For example there can never be a set of 4 linearly independent vectors having dimension Matrices A m n matrix A is a m n array of numbers where M ij refers to the value in the i th row and j th column For example the following is a matrix A 4 where A A etc The following is a matrix B where B B etc Matrices of the same shape can be added and subtracted: 4 Any matrix can be multiplied by a scalar: We can form linear combinations of matrices:
6 A ndimensional column vector is also a n matrix A ndimensional row vector is also a n matrix The transpose of an m n matrix A written A is an n m matrix where A ij A ji For example 4 A matrix A is symmetric if A A For example 4 is symmetric while S 4 5 T is not If A is a m n matrix and V is a ndimensional column vector we can form the matrix vector product W AV where W i is the dot product of V with row i of A For example
7 The nullspace of M written NullM is the set of all vectors V such that MV For example if then 4 V is in NullM The zero vector is always in NullM and if the columns of M are linearly independent the zero vector is the only vector in NullM But if the columns of M are linearly dependent there will be infinitely many nonzero vectors in NullM A square m m matrix with nullspace containing only the zero vector is nonsingular otherwise it is singular Equivalently a square matrix is nonsingular if and only if its columns are linearly independent If A is a m n matrix and B is a n r matrix we can form the matrix matrix product C AB where C is a m r matrix whose elements are defined as: C ij is the dot product of row i of A with column j of B For example 4 where for example
8 Rectangular matrices can only be multiplied if the number of columns in the first matrix is equal to the number of rows in the second matrix ie AB can be formed only if A is m n and B is n r For square matrices the products AB and BA can both be formed However it is important to note that they are different: For any matrix m n matrix A the products A A and AA can always be formed The first product is n n and the second product is m m The product A A is the columnwise inner product matrix since A A ij product of the i th column of A with the j th column of A is the inner The product AA is the rowwise inner product matrix since AA ij is the inner product of the i th row of A with the j th row of A 8
9 For example if A 4 then A A and AA Note that both A A and AA are symmetric The identity matrix is a special square n n matrix I where I jj and I ij if i j For example the 4 4 identity matrix is I The identity matrix acts like for matrix multiplication: AI A and IA A if A is m n the first I is the m m identity matrix and the second I is the n n identity matrix 9
10 If A is a square n n matrix with linearly independent columns then an n n matrix A can be constructed such that AA A A I where I is the n n identity For example A 7 A / / 7/ / For a matrix the general form of the inverse is a b A c d A ad bc d b c a where if ad bc A is singular and has no inverse For d > the formula for the inverse of a d d matrix is very complicated but inverses can be easily calculated on a computer
CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33
Linear Algebra 1/33 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct
More informationLecture 3: Matrix and Matrix Operations
Lecture 3: Matrix and Matrix Operations Representation, row vector, column vector, element of a matrix. Examples of matrix representations Tables and spreadsheets ScalarMatrix operation: Scaling a matrix
More informationCS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34
Linear Algebra /34 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct axes)
More informationReview of Linear Algebra
Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=
More informationChapter 2. Matrix Arithmetic. Chapter 2
Matrix Arithmetic Matrix Addition and Subtraction Addition and subtraction act elementwise on matrices. In order for the addition/subtraction (A B) to be possible, the two matrices A and B must have the
More informationReview of linear algebra
Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of
More informationPhys 201. Matrices and Determinants
Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1
More informationElementary maths for GMT
Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1
More informationMath Bootcamp An pdimensional vector is p numbers put together. Written as. x 1 x =. x p
Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An pdimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the
More informationIntroduction to Matrix Algebra
Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A pdimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p
More informationMatrix Basic Concepts
Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types
More informationMATH.2720 Introduction to Programming with MATLAB Vector and Matrix Algebra
MATH.2720 Introduction to Programming with MATLAB Vector and Matrix Algebra A. Vectors A vector is a quantity that has both magnitude and direction, like velocity. The location of a vector is irrelevant;
More informationCalculus II  Basic Matrix Operations
Calculus II  Basic Matrix Operations Ryan C Daileda Terminology A matrix is a rectangular array of numbers, for example 7,, 7 7 9, or / / /4 / / /4 / / /4 / /6 The numbers in any matrix are called its
More informationPOLI270  Linear Algebra
POLI7  Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and
More informationMatrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.
function Matrices Calculus III Summer 2013, Session II Wednesday, July 10, 2013 Agenda function 1. 2. function function Definition An m n matrix is a rectangular array of numbers arranged in m horizontal
More informationMatrices. Chapter Definitions and Notations
Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which
More informationLinear Algebra and Matrix Inversion
Jim Lambers MAT 46/56 Spring Semester 29 Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much
More informationLinear Algebra review Powers of a diagonalizable matrix Spectral decomposition
Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing
More informationSection 9.2: Matrices.. a m1 a m2 a mn
Section 9.2: Matrices Definition: A matrix is a rectangular array of numbers: a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn In general, a ij denotes the (i, j) entry of A. That is, the entry in
More informationLecture 3 Linear Algebra Background
Lecture 3 Linear Algebra Background Dan Sheldon September 17, 2012 Motivation Preview of next class: y (1) w 0 + w 1 x (1) 1 + w 2 x (1) 2 +... + w d x (1) d y (2) w 0 + w 1 x (2) 1 + w 2 x (2) 2 +...
More informationMath Linear Algebra Final Exam Review Sheet
Math 151 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a componentwise operation. Two vectors v and w may be added together as long as they contain the same number n of
More informationLecture 6: Geometry of OLS Estimation of Linear Regession
Lecture 6: Geometry of OLS Estimation of Linear Regession Xuexin Wang WISE Oct 2013 1 / 22 Matrix Algebra An n m matrix A is a rectangular array that consists of nm elements arranged in n rows and m columns
More information401 Review. 6. Power analysis for one/twosample hypothesis tests and for correlation analysis.
401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis
More informationMath 360 Linear Algebra Fall Class Notes. a a a a a a. a a a
Math 360 Linear Algebra Fall 2008 91008 Class Notes Matrices As we have already seen, a matrix is a rectangular array of numbers. If a matrix A has m columns and n rows, we say that its dimensions are
More informationMatrices BUSINESS MATHEMATICS
Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question
More informationThe matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.
) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to
More information3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions
A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence
More informationMATRICES AND MATRIX OPERATIONS
SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)
More informationAppendix A: Matrices
Appendix A: Matrices A matrix is a rectangular array of numbers Such arrays have rows and columns The numbers of rows and columns are referred to as the dimensions of a matrix A matrix with, say, 5 rows
More informationA matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and
Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.
More informationMatrix Arithmetic. j=1
An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the ith row and jth column
More informationLecture Notes in Linear Algebra
Lecture Notes in Linear Algebra Dr. Abdullah AlAzemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................
More informationBasic Concepts in Linear Algebra
Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University February 2, 2015 Grady B Wright Linear Algebra Basics February 2, 2015 1 / 39 Numerical Linear Algebra Linear
More informationLinear Algebra (Review) Volker Tresp 2017
Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.
More informationA matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and
Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.
More informationFinite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.
Finite Mathematics Chapter 2 Section 2.1 Systems of Linear Equations: An Introduction Systems of Equations Recall that a system of two linear equations in two variables may be written in the general form
More informationMath Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT
Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear
More informationMATH2210 Notebook 2 Spring 2018
MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................
More informationChapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations
Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2
More informationSection 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.
Section 9.2: Matrices Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. That is, a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn A
More informationDM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini
DM559 Linear and Integer Programming Lecture 3 Matrix Operations Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline and 1 2 3 and 4 2 Outline and 1 2
More informationReview of Basic Concepts in Linear Algebra
Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra
More information. a m1 a mn. a 1 a 2 a = a n
Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by
More informationLinear Algebra. 1.1 Introduction to vectors 1.2 Lengths and dot products. January 28th, 2013 Math 301. Monday, January 28, 13
Linear Algebra 1.1 Introduction to vectors 1.2 Lengths and dot products January 28th, 2013 Math 301 Notation for linear systems 12w +4x + 23y +9z =0 2u + v +5w 2x +2y +8z =1 5u + v 6w +2x +4y z =6 8u 4v
More informationChapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of
Chapter 2 Linear Algebra In this chapter, we study the formal structure that provides the background for quantum mechanics. The basic ideas of the mathematical machinery, linear algebra, are rather simple
More informationLinear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.
POLI 7  Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes  Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems
More informationLinear Algebra (Review) Volker Tresp 2018
Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A onedimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the ith component of c c T = (c 1, c
More informationLinear Algebra review Powers of a diagonalizable matrix Spectral decomposition
Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing
More informationIntroduction. Vectors and Matrices. Vectors [1] Vectors [2]
Introduction Vectors and Matrices Dr. TGI Fernando 1 2 Data is frequently arranged in arrays, that is, sets whose elements are indexed by one or more subscripts. Vector  one dimensional array Matrix 
More informationCS 246 Review of Linear Algebra 01/17/19
1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x
More informationA FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic
A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION AttributionNonCommercialShareAlike (CC BYNCSA)
More informationA primer on matrices
A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous
More informationM. Matrices and Linear Algebra
M. Matrices and Linear Algebra. Matrix algebra. In section D we calculated the determinants of square arrays of numbers. Such arrays are important in mathematics and its applications; they are called matrices.
More informationLecture 2: VectorVector Operations
Lecture 2: VectorVector Operations VectorVector Operations Addition of two vectors Geometric representation of addition and subtraction of vectors Vectors and points Dot product of two vectors Geometric
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More information2.1 Matrices. 3 5 Solve for the variables in the following matrix equation.
2.1 Matrices Reminder: A matrix with m rows and n columns has size m x n. (This is also sometimes referred to as the order of the matrix.) The entry in the ith row and jth column of a matrix A is denoted
More information1 Matrices and matrix algebra
1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns
More informationLecture 7. Econ August 18
Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar
More informationA Review of Matrix Analysis
Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value
More informationElementary Row Operations on Matrices
King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix
More informationMatrix & Linear Algebra
Matrix & Linear Algebra Jamie Monogan University of Georgia For more information: http://monogan.myweb.uga.edu/teaching/mm/ Jamie Monogan (UGA) Matrix & Linear Algebra 1 / 84 Vectors Vectors Vector: A
More informationImage Registration Lecture 2: Vectors and Matrices
Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this
More informationExample. We can represent the information on July sales more simply as
CHAPTER 1 MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS 11 Matrices and Vectors In many occasions, we can arrange a number of values of interest into an rectangular array For example: Example We can
More informationLinear Algebra Review. Vectors
Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors
More informationGraphics (INFOGR), , Block IV, lecture 8 Deb Panja. Today: Matrices. Welcome
Graphics (INFOGR), 201718, Block IV, lecture 8 Deb Panja Today: Matrices Welcome 1 Today Matrices: why and what? Matrix operations Determinants Adjoint/adjugate and inverse of matrices Geometric interpretation
More informationa11 a A = : a 21 a 22
Matrices The study of linear systems is facilitated by introducing matrices. Matrix theory provides a convenient language and notation to express many of the ideas concisely, and complicated formulas are
More informationSection 12.4 Algebra of Matrices
244 Section 2.4 Algebra of Matrices Before we can discuss Matrix Algebra, we need to have a clear idea what it means to say that two matrices are equal. Let's start a definition. Equal Matrices Two matrices
More informationMaterials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat
Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s
More informationFinite Math  Jterm Section Systems of Linear Equations in Two Variables Example 1. Solve the system
Finite Math  Jterm 07 Lecture Notes  //07 Homework Section 4.  9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4.  Systems of Linear Equations in Two Variables Example. Solve the system
More informationMA 138 Calculus 2 with Life Science Applications Matrices (Section 9.2)
MA 38 Calculus 2 with Life Science Applications Matrices (Section 92) Alberto Corso albertocorso@ukyedu Department of Mathematics University of Kentucky Friday, March 3, 207 Identity Matrix and Inverse
More informationMatrix Algebra. Matrix Algebra. Chapter 8  S&B
Chapter 8  S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number
More informationElementary Linear Algebra
Elementary Linear Algebra Linear algebra is the study of; linear sets of equations and their transformation properties. Linear algebra allows the analysis of; rotations in space, least squares fitting,
More informationChapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form
Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1
More informationMatrices and systems of linear equations
Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra  MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.
More informationMatrices and Vectors
Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix
More informationMathematics for Graphics and Vision
Mathematics for Graphics and Vision Steven Mills March 3, 06 Contents Introduction 5 Scalars 6. Visualising Scalars........................ 6. Operations on Scalars...................... 6.3 A Note on
More informationChapter 1. Matrix Algebra
ST4233, Linear Models, Semester 1 20082009 Chapter 1. Matrix Algebra 1 Matrix and vector notation Definition 1.1 A matrix is a rectangular or square array of numbers of variables. We use uppercase boldface
More informationMath 60. Rumbos Spring Solutions to Assignment #17
Math 60. Rumbos Spring 2009 1 Solutions to Assignment #17 a b 1. Prove that if ad bc 0 then the matrix A = is invertible and c d compute A 1. a b Solution: Let A = and assume that ad bc 0. c d First consider
More informationChapter 2. Ma 322 Fall Ma 322. Sept 2327
Chapter 2 Ma 322 Fall 2013 Ma 322 Sept 2327 Summary ˆ Matrices and their Operations. ˆ Special matrices: Zero, Square, Identity. ˆ Elementary Matrices, Permutation Matrices. ˆ Voodoo Principle. What is
More informationChapter 1 Vector Spaces
Chapter 1 Vector Spaces PerOlof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field
More informationn n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full
n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x
More informationKnowledge Discovery and Data Mining 1 (VO) ( )
Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory
More informationCLASS 12 ALGEBRA OF MATRICES
CLASS 12 ALGEBRA OF MATRICES Deepak Sir 9811291604 SHRI SAI MASTERS TUITION CENTER CLASS 12 A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements
More informationLinear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds
Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds These notes are meant to provide a brief introduction to the topics from Linear Algebra that will be useful in Math3315/CSE3365, Introduction
More informationAppendix C Vector and matrix algebra
Appendix C Vector and matrix algebra Concepts Scalars Vectors, rows and columns, matrices Adding and subtracting vectors and matrices Multiplying them by scalars Products of vectors and matrices, scalar
More informationMAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :
MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..
More informationChapter 7. Linear Algebra: Matrices, Vectors,
Chapter 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems Linear algebra includes the theory and application of linear systems of equations, linear transformations, and eigenvalue problems.
More informationMatrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices
Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in
More informationVectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.
Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes Matrices and linear equations A matrix is an mbyn array of numbers A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a
More informationMATRICES. a m,1 a m,n A =
MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of
More informationChapter 2 Notes, Linear Algebra 5e Lay
Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication
More informationMaths for Signals and Systems Linear Algebra for Engineering Applications
Maths for Signals and Systems Linear Algebra for Engineering Applications Lectures 12, Tuesday 11 th October 2016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON
More informationChapter 3: Theory Review: Solutions Math 308 F Spring 2015
Chapter : Theory Review: Solutions Math 08 F Spring 05. What two properties must a function T : R m R n satisfy to be a linear transformation? (a) For all vectors u and v in R m, T (u + v) T (u) + T (v)
More informationProperties of Matrices and Operations on Matrices
Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,
More informationMatrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix
Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Matrix Operations Matrix Addition and Matrix Scalar Multiply Matrix Multiply Matrix
More informationTopics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij
Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix
More information[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of
. Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,
More informationGEOMETRY OF MATRICES x 1
GEOMETRY OF MATRICES. SPACES OF VECTORS.. Definition of R n. The space R n consists of all column vectors with n components. The components are real numbers... Representation of Vectors in R n.... R. The
More information7.6 The Inverse of a Square Matrix
7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use GaussJordan elimination to find inverses
More information