Algorithms to Compute Bases and the Rank of a Matrix

Size: px
Start display at page:

Download "Algorithms to Compute Bases and the Rank of a Matrix"

Transcription

1 Algorithms to Compute Bases and the Rank of a Matrix Subspaces associated to a matrix Suppose that A is an m n matrix The row space of A is the subspace of R n spanned by the rows of A The column space of A is the subspace of R m spanned by the columns of A The null space of A is the subspace N(A) = { x R n A x = m } of R n N(A) is a subspace of R n by the Subspace Theorem (Theorem of Lecture Note 4) The row rank of A is the dimension of the row space of A The column rank of A is the dimension of the column space of A The nullity of A is the dimension of the null space N(A) More on row equivalence We give some theorems on row equivalence, showing that some subspaces constructed from matrices do not change under elementary row operations This allows us to find important information about these subspaces from the RRE form of a matrix These interpretations will be given later in this note Theorem Suppose that the m n matrices A A m and B = are row equivalent (with A,, A m, B,, B m R n ) Then the subspaces Span(A,, A m ) and Span(B,, B m ) of R n are equal To prove Theorem, we need only verify it for a single elementary row operation Theorem Suppose that A and B are row equivalent matrices Then N(A) = N(B) B B m Theorem is just a restatement of Theorem of Lecture Note Theorem 3 Suppose that m n matrices (A,, A n ) and B = (B,, B n ) with A,, A n, B,, B n R m are row equivalent Then the subspaces {(x,, x n ) T R n x A + + x n A n = } and {(x,, x n ) T R n x B + + x n B n = } of R n are equal That is, A,, A n and B,, B n have the same dependence relations and Theorem 3 follows from Theorem and the identities A B x x n x x n = x A + + x n A n = x B + + x n B n

2 of formula () of Lecture Note Algorithm to compute a basis of the row space of a matrix Suppose that A A A m is an m n matrix Transform A into its reduced row echelon form B Then the nonzero rows of B form a basis of the row space Span(A,, A m ) of A To establish this algorithm, apply Theorem to conclude that the span of the rows of B is equal to the row space of A Using the fact that every nonzero row of the RRE form B contains a leading one, it follows from the definition of linear independence that the nonzero rows of B are linearly independent Example 4 Let u = (,,, 5), u = (, 4,, 8), u 3 = (3,,, 3) Find a basis of the subspace X = Span(u, u, u 3 ) of R 4 Solution: Let u u u 3 = We compute the RRE form of A which is 3 The first two rows are nonzero Thus is a basis of X {(,,, 3), (,,, )} Algorithm to refine the columns of a matrix to a basis of its column space Suppose that (A, A,, A n ) is an m n matrix Transform A into its reduced row echelon form B = (B, B,, B n ) Let B i, B i,, B ir be the columns of B which contain a leading Then {A i, A i,, A ir } is a basis of the column space Span(A, A,, A n ) of A To establish this algorithm, observe using Theorem 3 that the RRE form B of A gives the standard form solutions to the equation x A + + x n A n = Substituting the standard form solution for the x i, we obtain first that A i, A i,, A ir are linearly independent, and then that they span the column space of A

3 Example 5 Find a subset of the vectors v = 3, v = 4, v 3 =, v 4 = which is a basis of the subspace W = Span(v, v, v 3, v 4 ) of R Solution: Let (v, v, v, v 4 ) = We compute the RRE form of A which is 3 There are leading ones in the first and third columns Thus v =, v 3 = 3 is a basis of W Algorithm to compute a basis of the null space of a matrix Let (a ij ) be an m n matrix, and x x x = x n be a n vector of indeterminates Let N(A) be the null space of the matrix A By Theorem, a basis for N(A) can be found by solving the system A x = m using Gaussian elimination to find the standard form solution, putting the standard form solution into a column vector and expanding with indeterminate coefficients The vectors in this expansion are a basis of N(A) Example Find a basis of N(A) if Solution: We compute that the RRE form of A is 3

4 We write the standard form solution as x s x x 3 = s t s = s x 4 t with s, t R Thus is a basis of N(A), + t Algorithm to extend a set of linearly independent row vectors to a basis of R n Suppose that w,, w m R n are linearly independent Let {e,, e n } be the standard basis of R n Transform the m n matrix w w w m into a reduced row echelon form B Let B i, B i,, B i n m be the indices of the columns of B which do not contain a leading Then {w,, w m, e i,, e in m } is a basis of R n To establish this algorithm, recall that the span of the rows of the RRE form of B is equal to Span(w,, w m ) by Theorem Since w,, w m are linearly independent, B contains m leading ones One then checks that the rows of B and e i,, e in m are linearly independent We then have that w,, w m, e i,, e in m span an n-dimensional subspace of R n, so they are a basis of R n by ) of Theorem 4 of Lecture Note 4 The rank of a matrix Theorem 7 rowrank(a) = columnrank(a) Proof Let r be the number of leading ones in the RRE form of A By the algorithm to compute a basis of a row space of a matrix, a basis of the row space of A has r vectors By the algorithm to refine the columns of a matrix to a basis of its column space, a basis of the column space of A also has r vectors Thus the row space and column space of A have the same dimension We define the rank of A to be the row rank of A (which is also the column rank of A) Theorem 8 (Rank Nullity Theorem) Suppose that A is an m n matrix Then rank(a) + nullity(a) = n Proof Let r be the number of leading ones in the RRE form of A Then rank(a) = r (by the algorithm to compute a basis of the row space of a matrix or the algorithm to refine the columns of a matrix to a basis of its column space) The nullity of A is n r, by the algorithm to compute a basis of the null space of a matrix, since there are n r free variables in the general solution to A x = m 4

5 As explained in Theorem of Lecture Note 5, we have the following theorem Theorem 9 Suppose that A is an n n matrix Then the columns of A are linearly independent if and only if Det(A) Suppose that A is an m n matrix An r r submatrix of A is a matrix obtained from A by removing m r rows and n r columns Corollary Suppose that A is an m n matrix Then rank(a) = r if and only if Det(M) = for all (r +) (r +) submatrices M of A and there exists an r r submatrix M of A such that Det(M) Computing determinants has a high degree of complexity, so the best practical way to compute rank(a) of a particular matrix A is to compute the RRE form B of A, and then observe that rank(a) = the number of leading ones of B = the number of nonzero rows of B More applications of the Algorithms We can use coordinate vectors with respect to a convenient basis (say a standard basis) to apply the above algorithms to an arbitrary vector space Example Find a subset of the matrices ( ) ( 4 v =, v = 4 which is a basis of V = Span(v, v, v 3 ) ) ( 3, v 3 = 5 Solution: We use the algorithm to refine the column vectors of a matrix to a basis of its column space Let β = {e, e, e, e } be the standard basis of R Form the matrix ((v ) β, (v ) β, (v 3 ) β ) = We compute that the RRE form of A is, which has leading ones in the first and third columns Thus, 3 5 is a basis of the column space of A (the first and third columns of A) Since (v ) β = and (v 3) β = 3, 5 5 ),

6 we have that { ( v = is a basis of V Example Find a basis of the subspace of P 4 ) ( 3, v 3 = 5 )} U = {f P 4 f() = f() = } Solution: We apply the algorithm to compute a basis of the null space of a matrix We will find the linear conditions on the coefficients a, a, a, a 3 of () f(x) = a + a x + a x + a 3 x 3 P 4 for f to be in U These linear conditions are f() = a + a + a + a 3 = f(3) = a + a + 4a + 8a 3 = The coefficient matrix of this homogeneous system of equations is ( ) 4 8 We compute that the RRE form of A is ( 3 7 We write the standard form solution as a t + t a a = 3t 7t t = t a 3 t with t, t R Substituting the solutions a a a = 3 a 3 back into (), we obtain that and a a a a 3 ) 3 + t = { 3x + x, 7x + x 3} is a basis of U (We are really working with coordinate vectors with respect to the basis β = {, x, x, x 3 } of P 4 ) 7 7

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces Section 1: Linear Independence Recall that every row on the left-hand side of the coefficient matrix of a linear system A x = b which could

More information

Row Space and Column Space of a Matrix

Row Space and Column Space of a Matrix Row Space and Column Space of a Matrix 1/18 Summary: To a m n matrix A = (a ij ), we can naturally associate subspaces of K n and of K m, called the row space of A and the column space of A, respectively.

More information

Math 323 Exam 2 Sample Problems Solution Guide October 31, 2013

Math 323 Exam 2 Sample Problems Solution Guide October 31, 2013 Math Exam Sample Problems Solution Guide October, Note that the following provides a guide to the solutions on the sample problems, but in some cases the complete solution would require more work or justification

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

Lecture 21: 5.6 Rank and Nullity

Lecture 21: 5.6 Rank and Nullity Lecture 21: 5.6 Rank and Nullity Wei-Ta Chu 2008/12/5 Rank and Nullity Definition The common dimension of the row and column space of a matrix A is called the rank ( 秩 ) of A and is denoted by rank(a);

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Winfried Just Department of Mathematics, Ohio University February 28, 218 Review: The linear span Definition Let { v 1, v 2,..., v n }

More information

4.9 The Rank-Nullity Theorem

4.9 The Rank-Nullity Theorem For Problems 7 10, use the ideas in this section to determine a basis for the subspace of R n spanned by the given set of vectors. 7. {(1, 1, 2), (5, 4, 1), (7, 5, 4)}. 8. {(1, 3, 3), (1, 5, 1), (2, 7,

More information

Math 313 Chapter 5 Review

Math 313 Chapter 5 Review Math 313 Chapter 5 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 5.1 Real Vector Spaces 2 2 5.2 Subspaces 3 3 5.3 Linear Independence 4 4 5.4 Basis and Dimension 5 5 5.5 Row

More information

Linear Maps and Matrices

Linear Maps and Matrices Linear Maps and Matrices Maps Suppose that V and W are sets A map F : V W is a function; that is, to every v V there is assigned a unique element w F v in W Two maps F : V W and G : V W are equal if F

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

Math 2174: Practice Midterm 1

Math 2174: Practice Midterm 1 Math 74: Practice Midterm Show your work and explain your reasoning as appropriate. No calculators. One page of handwritten notes is allowed for the exam, as well as one blank page of scratch paper.. Consider

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK)

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) In this lecture, F is a fixed field. One can assume F = R or C. 1. More about the spanning set 1.1. Let S = { v 1, v n } be n vectors in V, we have defined

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Matrix invertibility Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Corollary: Let A be an R C matrix. Then A is invertible if and only if R = C and the columns of A are linearly

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2. Linear Transformations Math 4377/638 Advanced Linear Algebra 2. Linear Transformations, Null Spaces and Ranges Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. =

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. = SECTION 3.3. PROBLEM. The null space of a matrix A is: N(A) {X : AX }. Here are the calculations of AX for X a,b,c,d, and e. Aa [ ][ ] 3 3 [ ][ ] Ac 3 3 [ ] 3 3 [ ] 4+4 6+6 Ae [ ], Ab [ ][ ] 3 3 3 [ ]

More information

Vector Spaces. (1) Every vector space V has a zero vector 0 V

Vector Spaces. (1) Every vector space V has a zero vector 0 V Vector Spaces 1. Vector Spaces A (real) vector space V is a set which has two operations: 1. An association of x, y V to an element x+y V. This operation is called vector addition. 2. The association of

More information

Math 102, Winter 2009, Homework 7

Math 102, Winter 2009, Homework 7 Math 2, Winter 29, Homework 7 () Find the standard matrix of the linear transformation T : R 3 R 3 obtained by reflection through the plane x + z = followed by a rotation about the positive x-axes by 6

More information

Midterm 1 Solutions Math Section 55 - Spring 2018 Instructor: Daren Cheng

Midterm 1 Solutions Math Section 55 - Spring 2018 Instructor: Daren Cheng Midterm 1 Solutions Math 20250 Section 55 - Spring 2018 Instructor: Daren Cheng #1 Do the following problems using row reduction. (a) (6 pts) Let A = 2 1 2 6 1 3 8 17 3 5 4 5 Find bases for N A and R A,

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Math 3C Lecture 25. John Douglas Moore

Math 3C Lecture 25. John Douglas Moore Math 3C Lecture 25 John Douglas Moore June 1, 2009 Let V be a vector space. A basis for V is a collection of vectors {v 1,..., v k } such that 1. V = Span{v 1,..., v k }, and 2. {v 1,..., v k } are linearly

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS EXAM Exam # Math 6 Summer II Morning Class Nov 5 ANSWERS i Problem Consider the matrix 6 pts A = 6 4 9 5 7 6 5 5 5 4 The RREF of A is the matrix R = A Find a basis for the nullspace of A Solve the homogeneous

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Solutions to Math 51 First Exam April 21, 2011

Solutions to Math 51 First Exam April 21, 2011 Solutions to Math 5 First Exam April,. ( points) (a) Give the precise definition of a (linear) subspace V of R n. (4 points) A linear subspace V of R n is a subset V R n which satisfies V. If x, y V then

More information

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces Chapter 2 General Vector Spaces Outline : Real vector spaces Subspaces Linear independence Basis and dimension Row Space, Column Space, and Nullspace 2 Real Vector Spaces 2 Example () Let u and v be vectors

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2 OHSX XM5 Linear Algebra: Multiple Choice Exercises for Chapter. In the following, a set is given together with operations of addition and scalar multiplication. Which is not a vector space under the given

More information

Math 353, Practice Midterm 1

Math 353, Practice Midterm 1 Math 353, Practice Midterm Name: This exam consists of 8 pages including this front page Ground Rules No calculator is allowed 2 Show your work for every problem unless otherwise stated Score 2 2 3 5 4

More information

Determining a span. λ + µ + ν = x 2λ + 2µ 10ν = y λ + 3µ 9ν = z.

Determining a span. λ + µ + ν = x 2λ + 2µ 10ν = y λ + 3µ 9ν = z. Determining a span Set V = R 3 and v 1 = (1, 2, 1), v 2 := (1, 2, 3), v 3 := (1 10, 9). We want to determine the span of these vectors. In other words, given (x, y, z) R 3, when is (x, y, z) span(v 1,

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages )

Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages ) Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages 57-6) Recall that the basis for a subspace S is a set of vectors that both spans S and is linearly independent. Moreover, we saw in section 2.3 that

More information

Definitions. Main Results

Definitions. Main Results Definitions Pivot of A Basis of V Main Results A column in rref(a) which contains a leading one has a corresponding column in A, called a pivot column of A. It is an independent set v 1,..., v k from data

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Math 108A: August 21, 2008 John Douglas Moore Our goal in these notes is to explain a few facts regarding linear systems of equations not included in the first few chapters

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

10. Rank-nullity Definition Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns.

10. Rank-nullity Definition Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns. 10. Rank-nullity Definition 10.1. Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns. The nullity ν(a) of A is the dimension of the kernel. The

More information

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra Lecture: Linear algebra. 1. Subspaces. 2. Orthogonal complement. 3. The four fundamental subspaces 4. Solutions of linear equation systems The fundamental theorem of linear algebra 5. Determining the fundamental

More information

GENERAL VECTOR SPACES AND SUBSPACES [4.1]

GENERAL VECTOR SPACES AND SUBSPACES [4.1] GENERAL VECTOR SPACES AND SUBSPACES [4.1] General vector spaces So far we have seen special spaces of vectors of n dimensions denoted by R n. It is possible to define more general vector spaces A vector

More information

Eigenvalues and Eigenvectors A =

Eigenvalues and Eigenvectors A = Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 Answer the questions in the spaces provided on the question sheets. You must show your work to get credit for your answers. There will

More information

SUMMARY OF MATH 1600

SUMMARY OF MATH 1600 SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You

More information

1 Systems of equations

1 Systems of equations Highlights from linear algebra David Milovich, Math 2 TA for sections -6 November, 28 Systems of equations A leading entry in a matrix is the first (leftmost) nonzero entry of a row. For example, the leading

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

More information

Eigenvalues, Eigenvectors. Eigenvalues and eigenvector will be fundamentally related to the nature of the solutions of state space systems.

Eigenvalues, Eigenvectors. Eigenvalues and eigenvector will be fundamentally related to the nature of the solutions of state space systems. Chapter 3 Linear Algebra In this Chapter we provide a review of some basic concepts from Linear Algebra which will be required in order to compute solutions of LTI systems in state space form, discuss

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

x y + z = 3 2y z = 1 4x + y = 0

x y + z = 3 2y z = 1 4x + y = 0 MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017 Lecture 03 Math 22 Summer 2017 Section 2 June 26, 2017 Just for today (10 minutes) Review row reduction algorithm (40 minutes) 1.3 (15 minutes) Classwork Review row reduction algorithm Review row reduction

More information

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ]

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ] Exam will be on Monday, October 6, 27. The syllabus for Exam 2 consists of Sections Two.III., Two.III.2, Two.III.3, Three.I, and Three.II. You should know the main definitions, results and computational

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix Definition: Let L : V 1 V 2 be a linear operator. The null space N (L) of L is the subspace of V 1 defined by N (L) = {x

More information

We see that this is a linear system with 3 equations in 3 unknowns. equation is A x = b, where

We see that this is a linear system with 3 equations in 3 unknowns. equation is A x = b, where Practice Problems Math 35 Spring 7: Solutions. Write the system of equations as a matrix equation and find all solutions using Gauss elimination: x + y + 4z =, x + 3y + z = 5, x + y + 5z = 3. We see that

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

ELE/MCE 503 Linear Algebra Facts Fall 2018

ELE/MCE 503 Linear Algebra Facts Fall 2018 ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2

More information

Dimension and Structure

Dimension and Structure 96 Chapter 7 Dimension and Structure 7.1 Basis and Dimensions Bases for Subspaces Definition 7.1.1. A set of vectors in a subspace V of R n is said to be a basis for V if it is linearly independent and

More information

Practice Final Exam. Solutions.

Practice Final Exam. Solutions. MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be

More information

Math 1553 Introduction to Linear Algebra

Math 1553 Introduction to Linear Algebra Math 1553 Introduction to Linear Algebra Lecture Notes Chapter 2 Matrix Algebra School of Mathematics The Georgia Institute of Technology Math 1553 Lecture Notes for Chapter 2 Introduction, Slide 1 Section

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008 Linear Algebra Chih-Wei Yi Dept. of Computer Science National Chiao Tung University November, 008 Section De nition and Examples Section De nition and Examples Section De nition and Examples De nition

More information

Lecture 13: Row and column spaces

Lecture 13: Row and column spaces Spring 2018 UW-Madison Lecture 13: Row and column spaces 1 The column space of a matrix 1.1 Definition The column space of matrix A denoted as Col(A) is the space consisting of all linear combinations

More information

IFT 6760A - Lecture 1 Linear Algebra Refresher

IFT 6760A - Lecture 1 Linear Algebra Refresher IFT 6760A - Lecture 1 Linear Algebra Refresher Scribe(s): Tianyu Li Instructor: Guillaume Rabusseau 1 Summary In the previous lecture we have introduced some applications of linear algebra in machine learning,

More information

Basis, Dimension, Kernel, Image

Basis, Dimension, Kernel, Image Basis, Dimension, Kernel, Image Definitions: Pivot, Basis, Rank and Nullity Main Results: Dimension, Pivot Theorem Main Results: Rank-Nullity, Row Rank, Pivot Method Definitions: Kernel, Image, rowspace,

More information

Solution: (a) S 1 = span. (b) S 2 = R n, x 1. x 1 + x 2 + x 3 + x 4 = 0. x 4 Solution: S 5 = x 2. x 3. (b) The standard basis vectors

Solution: (a) S 1 = span. (b) S 2 = R n, x 1. x 1 + x 2 + x 3 + x 4 = 0. x 4 Solution: S 5 = x 2. x 3. (b) The standard basis vectors .. Dimension In this section, we introduce the notion of dimension for a subspace. For a finite set, we can measure its size by counting its elements. We are interested in a measure of size on subspaces

More information

SSEA Math 51 Track Final Exam August 30, Problem Total Points Score

SSEA Math 51 Track Final Exam August 30, Problem Total Points Score Name: This is the final exam for the Math 5 track at SSEA. Answer as many problems as possible to the best of your ability; do not worry if you are not able to answer all of the problems. Partial credit

More information

Basis, Dimension, Kernel, Image

Basis, Dimension, Kernel, Image Basis, Dimension, Kernel, Image Definitions: Pivot, Basis, Rank and Nullity Main Results: Dimension, Pivot Theorem Main Results: Rank-Nullity, Row Rank, Pivot Method Definitions: Kernel, Image, rowspace,

More information

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 The full solution of Ax b x x p x h : The general solution is the sum of any particular solution of the system Ax b plus the general solution of the corresponding homogeneous system Ax. ) Reduce A b to

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

Rank & nullity. Defn. Let T : V W be linear. We define the rank of T to be rank T = dim im T & the nullity of T to be nullt = dim ker T.

Rank & nullity. Defn. Let T : V W be linear. We define the rank of T to be rank T = dim im T & the nullity of T to be nullt = dim ker T. Rank & nullity Aim lecture: We further study vector space complements, which is a tool which allows us to decompose linear problems into smaller ones. We give an algorithm for finding complements & an

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information