Counterfactual Evaluation and Learning from Logged User Feedback

Size: px
Start display at page:

Download "Counterfactual Evaluation and Learning from Logged User Feedback"

Transcription

1 Counterfactual Evaluation and Learning from Logged User Feedback Adith Swaminathan Department of Computer Science Cornell University Committee: Thorsten Joachims (chair), Johannes Gehrke, Éva Tardos, Robert Kleinberg

2 Interactive Systems Search E-commerce We collect user interactions for Personalization Evaluating performance Improving systems Entertainment SmartHome

3 Logs of Interactive Systems Alice: Strategy game Civilization 5 x: Context x 1 = (Alice, strat) y 1 = (Civ5) δ 1 = 7$ y: Action Alice: $$$ δ: Feedback 3

4 Example: Ad Placement Context x: User and page Action y: Ad Feedback δ: Click / no-click 4

5 Example: Chatbot Context x: Query Action y: GIF Feedback δ: Thumbs up / down 5

6 Goal Use to x 1 = (Alice, strat) y 1 = (Civ5) δ 1 = 7$ Evaluate new model Train models 6

7 Non-solutions Ignore Annotate x 1 = (Alice, strat) y 1 = (Civ5) δ 1 = 7$ x 1 = (Alice, strat) y 1 = (Civ5) δ 1 = 7$ y = (AoE2) Evaluate: Online A/B Train: Bandit algorithms Evaluate: Hold-out Train: Supervised learning 7

8 Thesis: Re-use logged data Logged interventions Observational logs??? x 1, y 1, δ 1 Evaluating slates [ICML 16 workshop] Batch Learning from Bandit Feedback (BLBF) [ICML 15] Better BLBF [NIPS 15] x 1, y 1, δ 1 Recommender systems [ICML 16] Learning to rank [WSDM 17] 8

9 Wald s insight: What s missing? Where to add armor? Cover bullet-holes? (Survivor bias!) Beware: Confounding due to missing info 9

10 Overview Introduction Interactive systems Reusing data How good is this new system? Project: MNAR (Schnabel et al, ICML 2016) Find the best new system Project: POEM 10

11 Romance Lovers Horror Lovers Movie Recommendation O Observed Y/N Horror Romance Drama Y True Rating Data is Missing Not At Random (MNAR) Example adapted from (Steck et al, 2010) 11

12 Selection Bias in Recommendations User-induced (e.g. browsing) System-induced (e.g. advertising) Question: What if we ignore these biases? 12

13 Romance Lovers Horror Lovers Evaluating recommendations under Selection Bias O Observed Y/N Y Recommend Y True Rating Horror Romance Drama Observed ratings are misleading

14 Romance Lovers Horror Lovers Evaluating rating predictions under Selection Bias Horror Romance Drama Horror Romance Drama Observed losses are misleading Y 1 Pred Ratings (worse) Y 2 Pred Ratings (better) 14

15 patients Users Recommendations as Treatments Fix selection bias potential outcomes framework Counterfactual Outcomes Y Items treatments Factual Outcomes Y Understand assignment mechanism (Imbens & Ruben, 2015) 15

16 Assignment Mechanism for Recommendation P u,i = P O u,i = 1 Propensities P Horror Romance Drama Inverse Propensity Scoring (IPS) is unbiased if P u,i > 0: p p/10 p/2 R IPS = 1 U I u,i 1{O ui =1} P u,i Y u,i Y u,i 2 p/10 p p/2 (Horvitz & Thompson, 1952; Rosenbaum & Rubin, 1983;...) 16

17 Interventional vs. Observational Interventional (Controlled Experiments) We control assignment mechanism (e.g. ad placement) Propensities P u,i = P O u,i = 1 known [ Just log propensities! ] Requirement: P u,i > 0 (prob. assignment) Observational Assignment mechanism not under our control (e.g. reviews/ratings) Use features Z; P u,i = P O u,i = 1 Z [ Estimate propensity ] Requirement: O u,i Y u,i Z (unconfounded) 17

18 Propensity Estimation Supervised Regression Problem P u,i = P O u,i = 1 Z Off-the-shelf ML, e.g., Logistic regression Naïve Bayes Bernoulli Matrix Factorization Observations O Horror Romance Drama IPS is robust to inaccurate propensities 18

19 Debiased Collaborative Filtering Y ERM = argmin V,W O u,i =1 1 P u,i Y u,i V u W i 2 + λ V F 2 + W F 2 Observations O Features Z Observed ratings Y Propensity estimation MF Complete Data Model Latent variables Missing Data Model discriminative generative (Marlin et al, 2007; Steck, 2011;...) 19

20 Collaborative Filtering Results Two real-world MNAR datasets YAHOO: Song ratings (15400 users; Marlin & Zemel, 2009) COAT: Shopping ratings (300 users; new Schnabel et al, 2016) Report performance on MAR datasets 20

21 Overview Introduction Interactive systems Reusing data How good is this new system? Project: MNAR Find the best new system Project: POEM (Swaminathan & Joachims, ICML 2015) 21

22 Evaluate with logged interventions New System π, π: x y How good is π? R π = E x E π δ Estimate R π using y i ~ Old System π 0 x 1, y 1, δ 1 = 1 22

23 System: Stochastic Policies Definition [Deterministic Policy]: Function y = π(x) that picks action y for context x Definition [Stochastic Policy]: Distribution π y x that samples action y given context x Y x Y x π 1 x π 1 (Y x) π 2 x π 2 (Y x) 23

24 Recap: IPS R ips π = 1 n i π(y i x i ) π 0 y i x i δ i π 0 π 24

25 Now: Learning Problem Find the best π Π, argmin π Π R π Empirical Risk Minimization: Work-horse of ML π = argmin π Π R(π) + λ Reg(π) Train loss Regularizer 25

26 ERM with IPS: Issue π 0 (Y x) π(y x) π 0 (Y x) π (Y x) argmin π Ƹ R π = 1 n i π(y i x i ) π 0 y i x i δ i Can we detect and avoid IPS failure when learning? 26

27 ERM: Generalization Error Bound Classic ERM: argmin π Π R π + λ Reg(π) Train loss Regularizer Classic Risk Bound: R π R π + O(Ϲ[Π]) Data used to estimate R(π) did not depend on π (Vapnik & Chervonenkis, 1979) 27

28 Now: π influences its data π 0 (Y x) π(y x) π 0 (Y x) π (Y x) argmin π Ƹ R π = 1 n i π(y i x i ) π 0 y i x i δ i 28

29 Counterfactual Learning Risk Bound: R π R π + O Var π n + O(Ϲ[Π]) Off-policy est. Emp. variance Regularizer Objective: argmin π Π R π + λ 1 Var π n + λ 2 Reg(π) Accounts for different Counterfactual Risk Minimization Τ π(y x) π 0 (y x) variability across Π (Maurer & Pontil, 2009; Bottou et al, 2013; Swaminathan & Joachims, 2015) 29

30 CRM for Structured Prediction Policy class, H: Stochastic linear rules π w y x exp w T ψ x, y Same form as Cond. Random Field or Structural SVM Learning: Use x i, y i, δ i, p i to find good w Policy Optimizer for Exponential Models (POEM) (Swaminathan & Joachims, 2015) 30

31 Case Study: Newsbox Placement Context x: Query, User, Ranked docs, Newsbox content features Action y: Position to place newsbox Loss δ: (1 MRR) of entire SERP Pos 1 Logger π 0 : Multinomial using production position scorer Pos 2 Pos 3 31

32 News Box Placement: Results Across 100 datasets, POEM consistently beats production ranker 32

33 Overview Introduction Interactive systems Reusing data How good is this new system? Find the best new system Discussion 33

34 Goal Re-use to x 1 = (Alice, strat) y 1 = (Civ5) δ 1 = 7$ Evaluate new model offline IPS (Off-policy estimation) Train models offline POEM 34

35 Thesis: Re-use logged data Logged interventions Observational logs??? x 1, y 1, δ 1 Evaluating slates [ICML 16 workshop] Batch Learning from Bandit Feedback (BLBF) [ICML 15] Better BLBF [NIPS 15] x 1, y 1, δ 1 Recommender systems [ICML 16] Learning to rank [WSDM 17] 35

36 Thesis: Other Projects Better BLBF Equivariant Optimization with Self-Normalized Estimators (Swaminathan & Joachims, NIPS 2015) Solve propensity overfitting when learning from bandit feedback Several variance reduction methods (clipping, control variates, explicit control, under-fit propensities). How do they compare and interact? 36

37 Thesis: Other Projects Evaluating slates Off-Policy Evaluation for Slate Recommendation (Swaminathan et al, ICML Workshop on Personalization 2016) Usable alternative to IPS for combinatorial contextual bandits Several ways to achieve a good bias-variance trade-off. How best to explore/exploit structured action spaces? 37

38 Thesis: Other Projects Learning to rank De-biasing Learning to Rank when using Implicit Feedback (Joachims et al, WSDM 2017) To get around getting randomized data, piggyback on randomness in user actions Can employ click models as propensity estimators. How to best adapt them for this purpose? 38

39 Counterfactual Techniques Model the world Model the bias e.g., predict user-item ratings Project: MNAR e.g., CTR of recommender Project: POEM Causal modelling Monte Carlo estimation 39

40 Looking Ahead Bridge Causal Inference and ML Off-policy Reinforcement Learning 40

41 Conclusion See also and Horror Romance Drama Thanks! π 0 (Y x) π (Y x) adith@cs.cornell.edu 41

42 Thorsten Prathmesh Hema Swetha Isaac Johannes Omkar Ashesh Laure Thanks! Bobby Sunny Abhishek Matthew Ruben Éva Hooda Anshumali Fabian Pannaga Stavros Karthik Raman Shuo Ethan Krishnaram Telang Siddarth Chandrasekaran Amit Soumen Anitha Nikos Karn Pushpak Saraswathi David Grangier Tobias Z Aditya GP Swaminathan Navdeep Ashudeep Auro Ramdas Arun Lillian Peter Frazier Basu Abi Sankaranarayanan Becky AkshayK/B Chenhao Indu Aravind Charlie Alekh Jon Prema Moontae K.P. Miro Yexiang Raja Vikram M. John Lu Hema Aparna Abbi Maarten Karthik Sridharan Ashwinkumar Ramesh Ashish Claire Damien Lefortier Sarah Wenlei Ria/Nina Harshal David Mimno Sumita Raghu Anne Schuth Shinde Ainur Tirth Artem Binit Bishan Maithra Daan Reetika Arzoo 42

Recommendations as Treatments: Debiasing Learning and Evaluation

Recommendations as Treatments: Debiasing Learning and Evaluation ICML 2016, NYC Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten Joachims Cornell University, Google Funded in part through NSF Awards IIS-1247637, IIS-1217686, IIS-1513692. Romance

More information

Counterfactual Model for Learning Systems

Counterfactual Model for Learning Systems Counterfactual Model for Learning Systems CS 7792 - Fall 28 Thorsten Joachims Department of Computer Science & Department of Information Science Cornell University Imbens, Rubin, Causal Inference for Statistical

More information

Counterfactual Evaluation and Learning

Counterfactual Evaluation and Learning SIGIR 26 Tutorial Counterfactual Evaluation and Learning Adith Swaminathan, Thorsten Joachims Department of Computer Science & Department of Information Science Cornell University Website: http://www.cs.cornell.edu/~adith/cfactsigir26/

More information

Outline. Offline Evaluation of Online Metrics Counterfactual Estimation Advanced Estimators. Case Studies & Demo Summary

Outline. Offline Evaluation of Online Metrics Counterfactual Estimation Advanced Estimators. Case Studies & Demo Summary Outline Offline Evaluation of Online Metrics Counterfactual Estimation Advanced Estimators 1. Self-Normalized Estimator 2. Doubly Robust Estimator 3. Slates Estimator Case Studies & Demo Summary IPS: Issues

More information

arxiv: v2 [cs.lg] 27 May 2016

arxiv: v2 [cs.lg] 27 May 2016 Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten Joachims Cornell University, Ithaca, NY, USA {TBS49, FA234, AS3354, NC475, TJ36}@CORNELL.EDU arxiv:602.05352v2 [cs.lg] 27 May

More information

The Self-Normalized Estimator for Counterfactual Learning

The Self-Normalized Estimator for Counterfactual Learning The Self-Normalized Estimator for Counterfactual Learning Adith Swaminathan Department of Computer Science Cornell University adith@cs.cornell.edu Thorsten Joachims Department of Computer Science Cornell

More information

arxiv: v2 [cs.lg] 26 Jun 2017

arxiv: v2 [cs.lg] 26 Jun 2017 Effective Evaluation Using Logged Bandit Feedback from Multiple Loggers Aman Agarwal, Soumya Basu, Tobias Schnabel, Thorsten Joachims Cornell University, Dept. of Computer Science Ithaca, NY, USA [aa2398,sb2352,tbs49,tj36]@cornell.edu

More information

Offline Evaluation of Ranking Policies with Click Models

Offline Evaluation of Ranking Policies with Click Models Offline Evaluation of Ranking Policies with Click Models Shuai Li The Chinese University of Hong Kong Joint work with Yasin Abbasi-Yadkori (Adobe Research) Branislav Kveton (Google Research, was in Adobe

More information

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering Matrix Factorization Techniques For Recommender Systems Collaborative Filtering Markus Freitag, Jan-Felix Schwarz 28 April 2011 Agenda 2 1. Paper Backgrounds 2. Latent Factor Models 3. Overfitting & Regularization

More information

Learning from Rational * Behavior

Learning from Rational * Behavior Learning from Rational * Behavior Josef Broder, Olivier Chapelle, Geri Gay, Arpita Ghosh, Laura Granka, Thorsten Joachims, Bobby Kleinberg, Madhu Kurup, Filip Radlinski, Karthik Raman, Tobias Schnabel,

More information

* Matrix Factorization and Recommendation Systems

* Matrix Factorization and Recommendation Systems Matrix Factorization and Recommendation Systems Originally presented at HLF Workshop on Matrix Factorization with Loren Anderson (University of Minnesota Twin Cities) on 25 th September, 2017 15 th March,

More information

Counterfactual Learning-to-Rank for Additive Metrics and Deep Models

Counterfactual Learning-to-Rank for Additive Metrics and Deep Models Counterfactual Learning-to-Rank for Additive Metrics and Deep Models Aman Agarwal Cornell University Ithaca, NY aman@cs.cornell.edu Ivan Zaitsev Cornell University Ithaca, NY iz44@cornell.edu Thorsten

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Recommendation Tobias Scheffer Recommendation Engines Recommendation of products, music, contacts,.. Based on user features, item

More information

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Yingfei Wang, Chu Wang and Warren B. Powell Princeton University Yingfei Wang Optimal Learning Methods June 22, 2016

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 21, 2014 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 21, 2014 1 / 52 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Estimating Position Bias without Intrusive Interventions

Estimating Position Bias without Intrusive Interventions Estimating Position Bias without Intrusive Interventions ABSTRACT Aman Agarwal Cornell University Ithaca, NY aa2398@cornell.edu Xuanhui Wang, Cheng Li, Marc Najor Google Inc. Mountain View, CA {xuanhui,chgli,najor}@google.com

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems Instructor: Yizhou Sun yzsun@cs.ucla.edu May 17, 2017 Methods Learnt: Last Lecture Classification Clustering Vector Data Text Data Recommender System Decision

More information

Machine Learning in the Data Revolution Era

Machine Learning in the Data Revolution Era Machine Learning in the Data Revolution Era Shai Shalev-Shwartz School of Computer Science and Engineering The Hebrew University of Jerusalem Machine Learning Seminar Series, Google & University of Waterloo,

More information

Doubly Robust Policy Evaluation and Learning

Doubly Robust Policy Evaluation and Learning Doubly Robust Policy Evaluation and Learning Miroslav Dudik, John Langford and Lihong Li Yahoo! Research Discussed by Miao Liu October 9, 2011 October 9, 2011 1 / 17 1 Introduction 2 Problem Definition

More information

Large-scale Information Processing, Summer Recommender Systems (part 2)

Large-scale Information Processing, Summer Recommender Systems (part 2) Large-scale Information Processing, Summer 2015 5 th Exercise Recommender Systems (part 2) Emmanouil Tzouridis tzouridis@kma.informatik.tu-darmstadt.de Knowledge Mining & Assessment SVM question When a

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

Deep-Treat: Learning Optimal Personalized Treatments from Observational Data using Neural Networks

Deep-Treat: Learning Optimal Personalized Treatments from Observational Data using Neural Networks Deep-Treat: Learning Optimal Personalized Treatments from Observational Data using Neural Networks Onur Atan 1, James Jordon 2, Mihaela van der Schaar 2,3,1 1 Electrical Engineering Department, University

More information

Estimation Considerations in Contextual Bandits

Estimation Considerations in Contextual Bandits Estimation Considerations in Contextual Bandits Maria Dimakopoulou Zhengyuan Zhou Susan Athey Guido Imbens arxiv:1711.07077v4 [stat.ml] 16 Dec 2018 Abstract Contextual bandit algorithms are sensitive to

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 29-30, 2015 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 29-30, 2015 1 / 61 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

Data Integration for Big Data Analysis for finite population inference

Data Integration for Big Data Analysis for finite population inference for Big Data Analysis for finite population inference Jae-kwang Kim ISU January 23, 2018 1 / 36 What is big data? 2 / 36 Data do not speak for themselves Knowledge Reproducibility Information Intepretation

More information

Deep Counterfactual Networks with Propensity-Dropout

Deep Counterfactual Networks with Propensity-Dropout with Propensity-Dropout Ahmed M. Alaa, 1 Michael Weisz, 2 Mihaela van der Schaar 1 2 3 Abstract We propose a novel approach for inferring the individualized causal effects of a treatment (intervention)

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

DEEP LEARNING WITH LOGGED BANDIT FEEDBACK

DEEP LEARNING WITH LOGGED BANDIT FEEDBACK DP LARNING WITH LOGGD BANDIT FDBACK Thorsten Joachims Cornell University tj@cs.cornell.edu Adith Saminathan Microsoft Research adsamin@microsoft.com Maarten de Rijke University of Amsterdam derijke@uva.nl

More information

Covariate Balancing Propensity Score for General Treatment Regimes

Covariate Balancing Propensity Score for General Treatment Regimes Covariate Balancing Propensity Score for General Treatment Regimes Kosuke Imai Princeton University October 14, 2014 Talk at the Department of Psychiatry, Columbia University Joint work with Christian

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems By Yehuda Koren Robert Bell Chris Volinsky Presented by Peng Xu Supervised by Prof. Michel Desmarais 1 Contents 1. Introduction 4. A Basic Matrix

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

Models, Data, Learning Problems

Models, Data, Learning Problems Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Models, Data, Learning Problems Tobias Scheffer Overview Types of learning problems: Supervised Learning (Classification, Regression,

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems Patrick Seemann, December 16 th, 2014 16.12.2014 Fachbereich Informatik Recommender Systems Seminar Patrick Seemann Topics Intro New-User / New-Item

More information

Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem

Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem Masrour Zoghi 1, Shimon Whiteson 1, Rémi Munos 2 and Maarten de Rijke 1 University of Amsterdam 1 ; INRIA Lille / MSR-NE 2 June 24,

More information

Discrete Latent Variable Models

Discrete Latent Variable Models Discrete Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 14 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 1 / 29 Summary Major themes in the course

More information

Off-policy Evaluation and Learning

Off-policy Evaluation and Learning COMS E6998.001: Bandits and Reinforcement Learning Fall 2017 Off-policy Evaluation and Learning Lecturer: Alekh Agarwal Lecture 7, October 11 Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

COUNTERFACTUAL REASONING AND LEARNING SYSTEMS LÉON BOTTOU

COUNTERFACTUAL REASONING AND LEARNING SYSTEMS LÉON BOTTOU COUNTERFACTUAL REASONING AND LEARNING SYSTEMS LÉON BOTTOU MSR Joint work with Jonas Peters Joaquin Quiñonero Candela Denis Xavier Charles D. Max Chickering Elon Portugaly Dipankar Ray Patrice Simard Ed

More information

Recommender Systems EE448, Big Data Mining, Lecture 10. Weinan Zhang Shanghai Jiao Tong University

Recommender Systems EE448, Big Data Mining, Lecture 10. Weinan Zhang Shanghai Jiao Tong University 2018 EE448, Big Data Mining, Lecture 10 Recommender Systems Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html Content of This Course Overview of

More information

Predictive Discrete Latent Factor Models for large incomplete dyadic data

Predictive Discrete Latent Factor Models for large incomplete dyadic data Predictive Discrete Latent Factor Models for large incomplete dyadic data Deepak Agarwal, Srujana Merugu, Abhishek Agarwal Y! Research MMDS Workshop, Stanford University 6/25/2008 Agenda Motivating applications

More information

Probabilistic Matrix Factorization with Non-random Missing Data

Probabilistic Matrix Factorization with Non-random Missing Data José Miguel Hernández-Lobato Neil Houlsby Zoubin Ghahramani University of Cambridge, Department of Engineering, Cambridge CB2 1PZ, UK JMH233@CAM.AC.UK NMTH2@CAM.AC.UK ZOUBIN@ENG.CAM.AC.UK Abstract We propose

More information

Foundations of Machine Learning

Foundations of Machine Learning Introduction to ML Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu page 1 Logistics Prerequisites: basics in linear algebra, probability, and analysis of algorithms. Workload: about

More information

Propensity Score Weighting with Multilevel Data

Propensity Score Weighting with Multilevel Data Propensity Score Weighting with Multilevel Data Fan Li Department of Statistical Science Duke University October 25, 2012 Joint work with Alan Zaslavsky and Mary Beth Landrum Introduction In comparative

More information

Unbiased Learning to Rank with Unbiased Propensity Estimation

Unbiased Learning to Rank with Unbiased Propensity Estimation Unbiased Learning to Rank with Unbiased Propensity Estimation Qingyao Ai CICS, UMass Amherst Amherst, MA, USA aiqy@cs.umass.edu Keping Bi CICS, UMass Amherst Amherst, MA, USA kbi@cs.umass.edu Cheng Luo

More information

Estimating the Marginal Odds Ratio in Observational Studies

Estimating the Marginal Odds Ratio in Observational Studies Estimating the Marginal Odds Ratio in Observational Studies Travis Loux Christiana Drake Department of Statistics University of California, Davis June 20, 2011 Outline The Counterfactual Model Odds Ratios

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Double Robustness. Bang and Robins (2005) Kang and Schafer (2007)

Double Robustness. Bang and Robins (2005) Kang and Schafer (2007) Double Robustness Bang and Robins (2005) Kang and Schafer (2007) Set-Up Assume throughout that treatment assignment is ignorable given covariates (similar to assumption that data are missing at random

More information

Learning with Exploration

Learning with Exploration Learning with Exploration John Langford (Yahoo!) { With help from many } Austin, March 24, 2011 Yahoo! wants to interactively choose content and use the observed feedback to improve future content choices.

More information

Generalization and Overfitting

Generalization and Overfitting Generalization and Overfitting Model Selection Maria-Florina (Nina) Balcan February 24th, 2016 PAC/SLT models for Supervised Learning Data Source Distribution D on X Learning Algorithm Expert / Oracle

More information

Collaborative topic models: motivations cont

Collaborative topic models: motivations cont Collaborative topic models: motivations cont Two topics: machine learning social network analysis Two people: " boy Two articles: article A! girl article B Preferences: The boy likes A and B --- no problem.

More information

Statistical learning theory for ranking problems

Statistical learning theory for ranking problems Statistical learning theory for ranking problems University of Michigan September 3, 2015 / MLSIG Seminar @ IISc Outline Learning to rank as supervised ML 1 Learning to rank as supervised ML Features Label

More information

Generative Models for Discrete Data

Generative Models for Discrete Data Generative Models for Discrete Data ddebarr@uw.edu 2016-04-21 Agenda Bayesian Concept Learning Beta-Binomial Model Dirichlet-Multinomial Model Naïve Bayes Classifiers Bayesian Concept Learning Numbers

More information

Factor Modeling for Advertisement Targeting

Factor Modeling for Advertisement Targeting Ye Chen 1, Michael Kapralov 2, Dmitry Pavlov 3, John F. Canny 4 1 ebay Inc, 2 Stanford University, 3 Yandex Labs, 4 UC Berkeley NIPS-2009 Presented by Miao Liu May 27, 2010 Introduction GaP model Sponsored

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Learning from Logged Implicit Exploration Data

Learning from Logged Implicit Exploration Data Learning from Logged Implicit Exploration Data Alexander L. Strehl Facebook Inc. 1601 S California Ave Palo Alto, CA 94304 astrehl@facebook.com Lihong Li Yahoo! Research 4401 Great America Parkway Santa

More information

Econ.AI. The role for Deep Neural Networks in Economics. Matt Taddy UChicago and Microsoft

Econ.AI. The role for Deep Neural Networks in Economics. Matt Taddy UChicago and Microsoft Econ.AI The role for Deep Neural Networks in Economics Matt Taddy UChicago and Microsoft What is AI? Domain Structure + Data Generation + General Purpose ML Econ Theory / Biz Frame Structural Econometrics

More information

Propensity Score Analysis with Hierarchical Data

Propensity Score Analysis with Hierarchical Data Propensity Score Analysis with Hierarchical Data Fan Li Alan Zaslavsky Mary Beth Landrum Department of Health Care Policy Harvard Medical School May 19, 2008 Introduction Population-based observational

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machine Learning Theory (CS 6783) Tu-Th 1:25 to 2:40 PM Hollister, 306 Instructor : Karthik Sridharan ABOUT THE COURSE No exams! 5 assignments that count towards your grades (55%) One term project (40%)

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Point-of-Interest Recommendations: Learning Potential Check-ins from Friends

Point-of-Interest Recommendations: Learning Potential Check-ins from Friends Point-of-Interest Recommendations: Learning Potential Check-ins from Friends Huayu Li, Yong Ge +, Richang Hong, Hengshu Zhu University of North Carolina at Charlotte + University of Arizona Hefei University

More information

Collaborative Filtering on Ordinal User Feedback

Collaborative Filtering on Ordinal User Feedback Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Collaborative Filtering on Ordinal User Feedback Yehuda Koren Google yehudako@gmail.com Joseph Sill Analytics Consultant

More information

Combining multiple observational data sources to estimate causal eects

Combining multiple observational data sources to estimate causal eects Department of Statistics, North Carolina State University Combining multiple observational data sources to estimate causal eects Shu Yang* syang24@ncsuedu Joint work with Peng Ding UC Berkeley May 23,

More information

Summary and discussion of The central role of the propensity score in observational studies for causal effects

Summary and discussion of The central role of the propensity score in observational studies for causal effects Summary and discussion of The central role of the propensity score in observational studies for causal effects Statistics Journal Club, 36-825 Jessica Chemali and Michael Vespe 1 Summary 1.1 Background

More information

Human Interaction with Recommendation Systems

Human Interaction with Recommendation Systems Sven Schmit Stanford University Carlos Riquelme Google Brain Abstract Many recommendation algorithms rely on user data to generate recommendations. However, these recommendations also affect the data obtained

More information

BACKPROPAGATION THROUGH THE VOID

BACKPROPAGATION THROUGH THE VOID BACKPROPAGATION THROUGH THE VOID Optimizing Control Variates for Black-Box Gradient Estimation 27 Nov 2017, University of Cambridge Speaker: Geoffrey Roeder, University of Toronto OPTIMIZING EXPECTATIONS

More information

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation Yue Ning 1 Yue Shi 2 Liangjie Hong 2 Huzefa Rangwala 3 Naren Ramakrishnan 1 1 Virginia Tech 2 Yahoo Research. Yue Shi

More information

Bayesian Contextual Multi-armed Bandits

Bayesian Contextual Multi-armed Bandits Bayesian Contextual Multi-armed Bandits Xiaoting Zhao Joint Work with Peter I. Frazier School of Operations Research and Information Engineering Cornell University October 22, 2012 1 / 33 Outline 1 Motivating

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Automated Tuning of Ad Auctions

Automated Tuning of Ad Auctions Automated Tuning of Ad Auctions Dilan Gorur, Debabrata Sengupta, Levi Boyles, Patrick Jordan, Eren Manavoglu, Elon Portugaly, Meng Wei, Yaojia Zhu Microsoft {dgorur, desengup, leboyles, pajordan, ermana,

More information

Causal Inference and Recommendation Systems. David M. Blei Departments of Computer Science and Statistics Data Science Institute Columbia University

Causal Inference and Recommendation Systems. David M. Blei Departments of Computer Science and Statistics Data Science Institute Columbia University Causal Inference and Recommendation Systems David M. Blei Departments of Computer Science and Statistics Data Science Institute Columbia University EF In: Ratings or click data Out: A system that provides

More information

Selection on Observables: Propensity Score Matching.

Selection on Observables: Propensity Score Matching. Selection on Observables: Propensity Score Matching. Department of Economics and Management Irene Brunetti ireneb@ec.unipi.it 24/10/2017 I. Brunetti Labour Economics in an European Perspective 24/10/2017

More information

Stochastic Gradient Descent. CS 584: Big Data Analytics

Stochastic Gradient Descent. CS 584: Big Data Analytics Stochastic Gradient Descent CS 584: Big Data Analytics Gradient Descent Recap Simplest and extremely popular Main Idea: take a step proportional to the negative of the gradient Easy to implement Each iteration

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

SQL-Rank: A Listwise Approach to Collaborative Ranking

SQL-Rank: A Listwise Approach to Collaborative Ranking SQL-Rank: A Listwise Approach to Collaborative Ranking Liwei Wu Depts of Statistics and Computer Science UC Davis ICML 18, Stockholm, Sweden July 10-15, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

SIMULATION-BASED SENSITIVITY ANALYSIS FOR MATCHING ESTIMATORS

SIMULATION-BASED SENSITIVITY ANALYSIS FOR MATCHING ESTIMATORS SIMULATION-BASED SENSITIVITY ANALYSIS FOR MATCHING ESTIMATORS TOMMASO NANNICINI universidad carlos iii de madrid UK Stata Users Group Meeting London, September 10, 2007 CONTENT Presentation of a Stata

More information

Matrix Factorization and Collaborative Filtering

Matrix Factorization and Collaborative Filtering 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Matrix Factorization and Collaborative Filtering MF Readings: (Koren et al., 2009)

More information

Learning Representations for Counterfactual Inference. Fredrik Johansson 1, Uri Shalit 2, David Sontag 2

Learning Representations for Counterfactual Inference. Fredrik Johansson 1, Uri Shalit 2, David Sontag 2 Learning Representations for Counterfactual Inference Fredrik Johansson 1, Uri Shalit 2, David Sontag 2 1 2 Counterfactual inference Patient Anna comes in with hypertension. She is 50 years old, Asian

More information

Lecture 3: Causal inference

Lecture 3: Causal inference MACHINE LEARNING FOR HEALTHCARE 6.S897, HST.S53 Lecture 3: Causal inference Prof. David Sontag MIT EECS, CSAIL, IMES (Thanks to Uri Shalit for many of the slides) *Last week: Type 2 diabetes 1994 2000

More information

Gradient Boosting (Continued)

Gradient Boosting (Continued) Gradient Boosting (Continued) David Rosenberg New York University April 4, 2016 David Rosenberg (New York University) DS-GA 1003 April 4, 2016 1 / 31 Boosting Fits an Additive Model Boosting Fits an Additive

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 4, 2015 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Predictive analysis on Multivariate, Time Series datasets using Shapelets

Predictive analysis on Multivariate, Time Series datasets using Shapelets 1 Predictive analysis on Multivariate, Time Series datasets using Shapelets Hemal Thakkar Department of Computer Science, Stanford University hemal@stanford.edu hemal.tt@gmail.com Abstract Multivariate,

More information

Large-scale Ordinal Collaborative Filtering

Large-scale Ordinal Collaborative Filtering Large-scale Ordinal Collaborative Filtering Ulrich Paquet, Blaise Thomson, and Ole Winther Microsoft Research Cambridge, University of Cambridge, Technical University of Denmark ulripa@microsoft.com,brmt2@cam.ac.uk,owi@imm.dtu.dk

More information

diluted treatment effect estimation for trigger analysis in online controlled experiments

diluted treatment effect estimation for trigger analysis in online controlled experiments diluted treatment effect estimation for trigger analysis in online controlled experiments Alex Deng and Victor Hu February 2, 2015 Microsoft outline Trigger Analysis and The Dilution Problem Traditional

More information

Reinforcement Learning via Policy Optimization

Reinforcement Learning via Policy Optimization Reinforcement Learning via Policy Optimization Hanxiao Liu November 22, 2017 1 / 27 Reinforcement Learning Policy a π(s) 2 / 27 Example - Mario 3 / 27 Example - ChatBot 4 / 27 Applications - Video Games

More information

multilevel modeling: concepts, applications and interpretations

multilevel modeling: concepts, applications and interpretations multilevel modeling: concepts, applications and interpretations lynne c. messer 27 october 2010 warning social and reproductive / perinatal epidemiologist concepts why context matters multilevel models

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Econometric Analysis of Cross Section and Panel Data

Econometric Analysis of Cross Section and Panel Data Econometric Analysis of Cross Section and Panel Data Jeffrey M. Wooldridge / The MIT Press Cambridge, Massachusetts London, England Contents Preface Acknowledgments xvii xxiii I INTRODUCTION AND BACKGROUND

More information

Preliminaries. Data Mining. The art of extracting knowledge from large bodies of structured data. Let s put it to use!

Preliminaries. Data Mining. The art of extracting knowledge from large bodies of structured data. Let s put it to use! Data Mining The art of extracting knowledge from large bodies of structured data. Let s put it to use! 1 Recommendations 2 Basic Recommendations with Collaborative Filtering Making Recommendations 4 The

More information

Interventions. Online Learning from User Interactions through Interventions. Interactive Learning Systems

Interventions. Online Learning from User Interactions through Interventions. Interactive Learning Systems Online Learning from Interactions through Interventions CS 7792 - Fall 2016 horsten Joachims Department of Computer Science & Department of Information Science Cornell University Y. Yue, J. Broder, R.

More information

Weighting Methods. Harvard University STAT186/GOV2002 CAUSAL INFERENCE. Fall Kosuke Imai

Weighting Methods. Harvard University STAT186/GOV2002 CAUSAL INFERENCE. Fall Kosuke Imai Weighting Methods Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Weighting Methods Stat186/Gov2002 Fall 2018 1 / 13 Motivation Matching methods for improving

More information

Causal Inference Basics

Causal Inference Basics Causal Inference Basics Sam Lendle October 09, 2013 Observed data, question, counterfactuals Observed data: n i.i.d copies of baseline covariates W, treatment A {0, 1}, and outcome Y. O i = (W i, A i,

More information

Bounded Off-Policy Evaluation with Missing Data for Course Recommendation and Curriculum Design

Bounded Off-Policy Evaluation with Missing Data for Course Recommendation and Curriculum Design Bounded Off-Policy Evaluation with Missing Data for Course Recommendation and Curriculum Design William Hoiles University of California, Los Angeles Mihaela van der Schaar University of California, Los

More information

OUTCOME REGRESSION AND PROPENSITY SCORES (CHAPTER 15) BIOS Outcome regressions and propensity scores

OUTCOME REGRESSION AND PROPENSITY SCORES (CHAPTER 15) BIOS Outcome regressions and propensity scores OUTCOME REGRESSION AND PROPENSITY SCORES (CHAPTER 15) BIOS 776 1 15 Outcome regressions and propensity scores Outcome Regression and Propensity Scores ( 15) Outline 15.1 Outcome regression 15.2 Propensity

More information

Algorithms for Collaborative Filtering

Algorithms for Collaborative Filtering Algorithms for Collaborative Filtering or How to Get Half Way to Winning $1million from Netflix Todd Lipcon Advisor: Prof. Philip Klein The Real-World Problem E-commerce sites would like to make personalized

More information