Point-of-Interest Recommendations: Learning Potential Check-ins from Friends

Size: px
Start display at page:

Download "Point-of-Interest Recommendations: Learning Potential Check-ins from Friends"

Transcription

1 Point-of-Interest Recommendations: Learning Potential Check-ins from Friends Huayu Li, Yong Ge +, Richang Hong, Hengshu Zhu University of North Carolina at Charlotte + University of Arizona Hefei University of Technology Baidu Research-Big Data Lab 1

2 Outline Introduction Research Problem Research Challenges Related Work Methodologies Experiments 2

3 Introduction Users Mobile Devices Location-based Social Network (LBSN) Services 3

4 Introduction 4

5 Introduction 5

6 Introduction 6

7 Introduction Information Overload Foursquare: 65 million venues Facebook: 16 million local business Yelp: 2.1 million claimed business New Region Which One? 7

8 Introduction Information Overload Foursquare: 65 million venues Facebook: 16 million local business Yelp: 2.1 million claimed business Which One? A location recommender system is very important! New Region 8

9 Research Problem Given a set of users and a set of locations they have visited before, the objective is to recommend the locations to an individual who might have interest to visit. visited recommended 9

10 Research Challenges Complex Decision Making Process Social Network Influence Geographical Influence 10

11 Research Challenges Complex Decision Making Process Social Network Influence Geographical Influence Data Sparsity Issue Each user only visits a limited number of locations. For new user/location, we do not have their check-in information. 11

12 Research Challenges Complex Decision Making Process Social Network Influence Geographical Influence Data Sparsity Issue Each user only visits a limited number of locations. For new user/location, we do not have their check-in information. Implicit Feedback Issue Only check-in frequency without explicit rating. We do not know user s explicit preference for locations. 12

13 Related Work Modeling Social Network Influence Social regularization constraint (WSDM 11) Social correlations (CIKM 12, IJCAI 13, ICDM 15) User-based collaborative filtering (SIGIR 11) Modeling geographical influence Incorporating geographical distance (KDD 11, SIGIR 11, AAAI 12, SIGSPATIAL 13, KDD 14, ICDM 15) Incorporating activity area (KDD 14) Incorporation nearest neighbors (CIKM 14) 13

14 Methods: Framework Learn potential locations from friends Learn user s preference for locations 14

15 Methods: Framework Learn potential locations from friends Learn user s preference for locations 15

16 Definition of Friends Social Friends F i s The users who socially connect with the target user i in LBSNs. Location Friends F i l The users who check-in the same locations as the target user i. Neighboring Friends F i n f 5 f 6 u i f 3 f 4 f 1 f 2 The users who live physically closest to the target user i. l 1 l 2 l 3 l 4 l 5 16

17 Definition of Friends Social Friends F i s The users who socially connect with the target user i in LBSNs. Location Friends F i l The users who check-in the same locations as the target user i. Neighboring Friends F i n f 5 f 6 u i f 3 f 4 f 1 f 2 The users who live physically F closest i = F s to i S(F l the target i ) S(F n user i ) i. l 1 l 2 l 3 l 4 l 5 17

18 Methods: Learning Potential Locations PROBLEM DEFINITION: For the target user i, given a set of locations that her friends have checked-in before but she never visits, the problem is to find top most potential locations that she might be interested in. u i 18

19 Methods: Learning Potential Locations u i Linear Aggregation Random Walk P ij pot? l j Location Candidate 19

20 Methods: Linear Aggregation Probability P ij pot that user i visits a location j: u i P pot ij max{sim(i, f; j)} j f F i ζsim u i, f + (1 ζ)p ij G Similarity of User Interest Similarity of Geo-location l j 20

21 Methods: Random Walk Nodes: users and locations Links: user-user, userlocation, location-location u i y = 1 β Ay + β M i o M i f + Fi +1 x Transition Matrix Restart Nodes P ij pot is the steady probability corresponding to location j 21

22 Methods: Learning Potential Locations Observed Locations Potential Locations Other Unobserved Locations 22

23 Methods: Framework Learn potential locations from friends Learn user s preference for locations 23

24 d Recommendation Models The preference pƹ ij of user i for location j: Users preference for locations P Category Feature Matrix Q = Q + ε U V Location Latent Matrix User Latent Matrix pƹ ij = (q icj + ε) u T i v j User s Preference for Category Tuning Parameter User s Typical Preference for Location 24

25 Recommendation Models Loss function of general form argmin U,V,Q E i p ij, p ik, p ih, p ij, p ik, p ih i Estimated Value + Θ(U, V, Q) j M i o, k M i p, h M i u Observed Locations Potential Locations Other Unobserved Locations 25

26 Recommendation Models Loss function of general form argmin U,V,Q E i p ij, p ik, p ih, p ij, p ik, p ih i Estimated Value + Θ(U, V, Q) j M i o, Observed Locations k M i p, h M i u Potential Locations Other Unobserved Locations λ u 2 U λ v 2 V λ q 2 Q 2 2 Regularization Term 26

27 Recommendation Models Loss function of general form Square Error based Model Ranking Error based Model argmin U,V,Q E i p ij, p ik, p ih, p ij, p ik, p ih i + Θ(U, V, Q) j M i o, Observed Locations k M i p, h M i u Potential Locations Other Unobserved Locations λ u 2 U λ v 2 V λ q 2 Q 2 2 Regularization Term 27

28 Square Error based Model The user s preference for a location is defined as: o 1 if j M i p ij = p α if j M i 0 otherwise Observed Locations Potential Locations Other unobserved Locations 28

29 Square Error based Model The user s preference for a location is defined as: o 1 if j M i p ij = p α if j M i 0 otherwise Squared error loss function M E i = w ij (p ij pƹ ij ) 2 j=1 Weight Matrix w ij = ቊ 1 + γ r o ij, if j M i 1, otherwise 29

30 Square Error based Model Squared error based objective function L N M = min U,V,Q i=1 j=1 + Θ(U, V, Q) w ij (p ij pƹ ij ) 2 Initialization Alternating Update Alternating Least Square 30

31 Ƹ Ƹ Ƹ Ranking Error based Model Model the ranking order among user s preference for three types of locations Observed Location ቊ pƹ ij > p ik, p ik > p ih j M i o,k M i p, h M i u Potential Location Potential Location Other Unobserved Location 31

32 Ƹ Ƹ Ƹ Ranking Error based Model Model the ranking order among user s preference for three types of locations ቊ pƹ ij > p ik, p ik > p ih Ranking error loss function E i = o p j M i k M i j M i o,k M i p, h M i u ln σ( pƹ ij pƹ ik ) p u k M h M i i Using Logistic Function to Model Ranking Order ln σ( pƹ ik pƹ ih ) 32

33 Ranking Error based Model Ranking error based objective function Sampling Initialization Update Stochastic Gradient Descent with Boostrap Sampling 33

34 Incorporating Geographical Influence Check-in probability is refined by a power-law function associated with the distance between user home position and a location. pƹ ij p G ij σ( pƹ ij ) powerlaw(d(i, j)) 34

35 Recommendation Strategies Standard Recommendation New User Recommendation Ƹ p ij = (q icj + ε) u i T v j Target User i New Location Recommendation pƹ ij p G ij σ σ l Sim ψ j G (j, l) pƹ il σ l ψ j Sim G (j, l) New Location 35

36 Experiments Datasets: Gowalla Test Methodology Selecting 80% as training and using the rest 20% as testing according to timestamp Evaluation Metrics: Top-K Recommendation Accuracy and Statistics of Data Set New Location Rec New User Rec #User #Location #Check-in Sparsity #New Location #Test #New User #Test 52,216 98,351 2,577, % 78, ,937 9,326 79,153 36

37 Exp. : Standard Recommendation Precision@K Recall@K Modeling unobserved check-ins can improve recommendation accuracy! 37

38 Exp. : Standard Recommendation Precision@K Recall@K Modeling potential check-ins can benefit recommendation! 38

39 Exp. : New User Recommendation Precision@K Recall@K Modeling potential check-ins can solve user cold-start issue! 39

40 Exp. : New Location Recommendation Performance comparison for new location recommendation in terms of Precision@K and Recall@K. Modeling potential check-ins can solve location cold-start issue! 40

41 Conclusion Empirically analyze the correlations between users and their three type of friends using real-world data Learn a set of locations for each user that her friends have checked-in before and she is most interested in Develop matrix factorization based models via different error loss functions with the learned potential check-ins, and propose two scalable optimization methods Design three different recommendation strategies 41

42 Thank You 42

Location Regularization-Based POI Recommendation in Location-Based Social Networks

Location Regularization-Based POI Recommendation in Location-Based Social Networks information Article Location Regularization-Based POI Recommendation in Location-Based Social Networks Lei Guo 1,2, * ID, Haoran Jiang 3 and Xinhua Wang 4 1 Postdoctoral Research Station of Management

More information

Aggregated Temporal Tensor Factorization Model for Point-of-interest Recommendation

Aggregated Temporal Tensor Factorization Model for Point-of-interest Recommendation Aggregated Temporal Tensor Factorization Model for Point-of-interest Recommendation Shenglin Zhao 1,2B, Michael R. Lyu 1,2, and Irwin King 1,2 1 Shenzhen Key Laboratory of Rich Media Big Data Analytics

More information

Circle-based Recommendation in Online Social Networks

Circle-based Recommendation in Online Social Networks Circle-based Recommendation in Online Social Networks Xiwang Yang, Harald Steck*, and Yong Liu Polytechnic Institute of NYU * Bell Labs/Netflix 1 Outline q Background & Motivation q Circle-based RS Trust

More information

Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs

Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs information Article Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs Lei Guo 1, *, Haoran Jiang 2, Xinhua Wang 3 and Fangai Liu 3 1 School of Management

More information

A Spatial-Temporal Probabilistic Matrix Factorization Model for Point-of-Interest Recommendation

A Spatial-Temporal Probabilistic Matrix Factorization Model for Point-of-Interest Recommendation Downloaded 9/13/17 to 152.15.112.71. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Abstract A Spatial-Temporal Probabilistic Matrix Factorization Model

More information

Friendship and Mobility: User Movement In Location-Based Social Networks. Eunjoon Cho* Seth A. Myers* Jure Leskovec

Friendship and Mobility: User Movement In Location-Based Social Networks. Eunjoon Cho* Seth A. Myers* Jure Leskovec Friendship and Mobility: User Movement In Location-Based Social Networks Eunjoon Cho* Seth A. Myers* Jure Leskovec Outline Introduction Related Work Data Observations from Data Model of Human Mobility

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan Link Prediction Eman Badr Mohammed Saquib Akmal Khan 11-06-2013 Link Prediction Which pair of nodes should be connected? Applications Facebook friend suggestion Recommendation systems Monitoring and controlling

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 29-30, 2015 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 29-30, 2015 1 / 61 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 21, 2014 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 21, 2014 1 / 52 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Recommendation Tobias Scheffer Recommendation Engines Recommendation of products, music, contacts,.. Based on user features, item

More information

Exploiting Geographic Dependencies for Real Estate Appraisal

Exploiting Geographic Dependencies for Real Estate Appraisal Exploiting Geographic Dependencies for Real Estate Appraisal Yanjie Fu Joint work with Hui Xiong, Yu Zheng, Yong Ge, Zhihua Zhou, Zijun Yao Rutgers, the State University of New Jersey Microsoft Research

More information

Collaborative Filtering

Collaborative Filtering Collaborative Filtering Nicholas Ruozzi University of Texas at Dallas based on the slides of Alex Smola & Narges Razavian Collaborative Filtering Combining information among collaborating entities to make

More information

Recommender Systems EE448, Big Data Mining, Lecture 10. Weinan Zhang Shanghai Jiao Tong University

Recommender Systems EE448, Big Data Mining, Lecture 10. Weinan Zhang Shanghai Jiao Tong University 2018 EE448, Big Data Mining, Lecture 10 Recommender Systems Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html Content of This Course Overview of

More information

Time-aware Point-of-interest Recommendation

Time-aware Point-of-interest Recommendation Time-aware Point-of-interest Recommendation Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-Thalmann School of Computer Engineering Nanyang Technological University Presented by ShenglinZHAO

More information

Inferring Friendship from Check-in Data of Location-Based Social Networks

Inferring Friendship from Check-in Data of Location-Based Social Networks Inferring Friendship from Check-in Data of Location-Based Social Networks Ran Cheng, Jun Pang, Yang Zhang Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

More information

Generative Models for Discrete Data

Generative Models for Discrete Data Generative Models for Discrete Data ddebarr@uw.edu 2016-04-21 Agenda Bayesian Concept Learning Beta-Binomial Model Dirichlet-Multinomial Model Naïve Bayes Classifiers Bayesian Concept Learning Numbers

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems Patrick Seemann, December 16 th, 2014 16.12.2014 Fachbereich Informatik Recommender Systems Seminar Patrick Seemann Topics Intro New-User / New-Item

More information

Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Bethlehem, PA

Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Bethlehem, PA Rutgers, The State University of New Jersey Nov. 12, 2012 Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Bethlehem, PA Motivation Modeling Social Streams Future

More information

APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS

APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS Yizhou Sun College of Computer and Information Science Northeastern University yzsun@ccs.neu.edu July 25, 2015 Heterogeneous Information Networks

More information

Yahoo! Labs Nov. 1 st, Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University

Yahoo! Labs Nov. 1 st, Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Yahoo! Labs Nov. 1 st, 2012 Liangjie Hong, Ph.D. Candidate Dept. of Computer Science and Engineering Lehigh University Motivation Modeling Social Streams Future work Motivation Modeling Social Streams

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 11, 2016 Paper presentations and final project proposal Send me the names of your group member (2 or 3 students) before October 15 (this Friday)

More information

Social and Technological Network Analysis: Spatial Networks, Mobility and Applications

Social and Technological Network Analysis: Spatial Networks, Mobility and Applications Social and Technological Network Analysis: Spatial Networks, Mobility and Applications Anastasios Noulas Computer Laboratory, University of Cambridge February 2015 Today s Outline 1. Introduction to spatial

More information

Collaborative topic models: motivations cont

Collaborative topic models: motivations cont Collaborative topic models: motivations cont Two topics: machine learning social network analysis Two people: " boy Two articles: article A! girl article B Preferences: The boy likes A and B --- no problem.

More information

Exploiting Geographical Neighborhood Characteristics for Location Recommendation

Exploiting Geographical Neighborhood Characteristics for Location Recommendation Exploiting Geographical Neighborhood Characteristics for Location Recommendation Yong Liu Wei Wei Aixin Sun Chunyan Miao School of Computer Engineering, Nanyang Technological University, Singapore, {liuy0054@e.,

More information

HBGG: a Hierarchical Bayesian Geographical Model for Group Recommendation

HBGG: a Hierarchical Bayesian Geographical Model for Group Recommendation : a Hierarchical Bayesian Geographical Model for Group Recommendation Ziyu Lu Hui Li ikos Mamoulis David W. Cheung Abstract Location-based social networks such as Foursquare and have gained increasing

More information

Item Recommendation for Emerging Online Businesses

Item Recommendation for Emerging Online Businesses Item Recommendation for Emerging Online Businesses Chun-Ta Lu Sihong Xie Weixiang Shao Lifang He Philip S. Yu University of Illinois at Chicago Presenter: Chun-Ta Lu New Online Businesses Emerge Rapidly

More information

Collaborative Location Recommendation by Integrating Multi-dimensional Contextual Information

Collaborative Location Recommendation by Integrating Multi-dimensional Contextual Information 1 Collaborative Location Recommendation by Integrating Multi-dimensional Contextual Information LINA YAO, University of New South Wales QUAN Z. SHENG, Macquarie University XIANZHI WANG, Singapore Management

More information

Regularity and Conformity: Location Prediction Using Heterogeneous Mobility Data

Regularity and Conformity: Location Prediction Using Heterogeneous Mobility Data Regularity and Conformity: Location Prediction Using Heterogeneous Mobility Data Yingzi Wang 12, Nicholas Jing Yuan 2, Defu Lian 3, Linli Xu 1 Xing Xie 2, Enhong Chen 1, Yong Rui 2 1 University of Science

More information

* Matrix Factorization and Recommendation Systems

* Matrix Factorization and Recommendation Systems Matrix Factorization and Recommendation Systems Originally presented at HLF Workshop on Matrix Factorization with Loren Anderson (University of Minnesota Twin Cities) on 25 th September, 2017 15 th March,

More information

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation Yue Ning 1 Yue Shi 2 Liangjie Hong 2 Huzefa Rangwala 3 Naren Ramakrishnan 1 1 Virginia Tech 2 Yahoo Research. Yue Shi

More information

Understanding the Impact of Weather for POI Recommendations

Understanding the Impact of Weather for POI Recommendations S C I E N C E P A S S I O N T E C H N O L O G Y Understanding the Impact of Weather for POI Recommendations Christoph Trattner, Alex Oberegger, Lukas Eberhard, Denis Parra, Leandro Marinho, Know-Center@Graz

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Jordan Boyd-Graber University of Colorado Boulder LECTURE 3 Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber Boulder Classification:

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems By Yehuda Koren Robert Bell Chris Volinsky Presented by Peng Xu Supervised by Prof. Michel Desmarais 1 Contents 1. Introduction 4. A Basic Matrix

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

Joint user knowledge and matrix factorization for recommender systems

Joint user knowledge and matrix factorization for recommender systems World Wide Web (2018) 21:1141 1163 DOI 10.1007/s11280-017-0476-7 Joint user knowledge and matrix factorization for recommender systems Yonghong Yu 1,2 Yang Gao 2 Hao Wang 2 Ruili Wang 3 Received: 13 February

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems Instructor: Yizhou Sun yzsun@cs.ucla.edu May 17, 2017 Methods Learnt: Last Lecture Classification Clustering Vector Data Text Data Recommender System Decision

More information

Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent

Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent KDD 2011 Rainer Gemulla, Peter J. Haas, Erik Nijkamp and Yannis Sismanis Presenter: Jiawen Yao Dept. CSE, UT Arlington 1 1

More information

Diagnosing New York City s Noises with Ubiquitous Data

Diagnosing New York City s Noises with Ubiquitous Data Diagnosing New York City s Noises with Ubiquitous Data Dr. Yu Zheng yuzheng@microsoft.com Lead Researcher, Microsoft Research Chair Professor at Shanghai Jiao Tong University Background Many cities suffer

More information

Social and Technological Network Analysis. Lecture 11: Spa;al and Social Network Analysis. Dr. Cecilia Mascolo

Social and Technological Network Analysis. Lecture 11: Spa;al and Social Network Analysis. Dr. Cecilia Mascolo Social and Technological Network Analysis Lecture 11: Spa;al and Social Network Analysis Dr. Cecilia Mascolo In This Lecture In this lecture we will study spa;al networks and geo- social networks through

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Alvin Grissom II University of Colorado Boulder Slides adapted from Emily Fox Machine Learning: Alvin Grissom II Boulder Classification:

More information

Ranking-Oriented Evaluation Metrics

Ranking-Oriented Evaluation Metrics Ranking-Oriented Evaluation Metrics Weike Pan College of Computer Science and Software Engineering Shenzhen University W.K. Pan (CSSE, SZU) Ranking-Oriented Evaluation Metrics 1 / 21 Outline 1 Introduction

More information

On Top-k Structural. Similarity Search. Pei Lee, Laks V.S. Lakshmanan University of British Columbia Vancouver, BC, Canada

On Top-k Structural. Similarity Search. Pei Lee, Laks V.S. Lakshmanan University of British Columbia Vancouver, BC, Canada On Top-k Structural 1 Similarity Search Pei Lee, Laks V.S. Lakshmanan University of British Columbia Vancouver, BC, Canada Jeffrey Xu Yu Chinese University of Hong Kong Hong Kong, China 2014/10/14 Pei

More information

Asymmetric Correlation Regularized Matrix Factorization for Web Service Recommendation

Asymmetric Correlation Regularized Matrix Factorization for Web Service Recommendation Asymmetric Correlation Regularized Matrix Factorization for Web Service Recommendation Qi Xie, Shenglin Zhao, Zibin Zheng, Jieming Zhu and Michael R. Lyu School of Computer Science and Technology, Southwest

More information

Term Filtering with Bounded Error

Term Filtering with Bounded Error Term Filtering with Bounded Error Zi Yang, Wei Li, Jie Tang, and Juanzi Li Knowledge Engineering Group Department of Computer Science and Technology Tsinghua University, China {yangzi, tangjie, ljz}@keg.cs.tsinghua.edu.cn

More information

a Short Introduction

a Short Introduction Collaborative Filtering in Recommender Systems: a Short Introduction Norm Matloff Dept. of Computer Science University of California, Davis matloff@cs.ucdavis.edu December 3, 2016 Abstract There is a strong

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland LOGISTIC REGRESSION FROM TEXT Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber UMD Introduction

More information

A Comparative Study of Matrix Factorization and Random Walk with Restart in Recommender Systems

A Comparative Study of Matrix Factorization and Random Walk with Restart in Recommender Systems A Comparative Study of Matrix Factorization and Random Walk with Restart in Recommender Systems Haekyu Park Computer Science and Engineering Seoul National University Seoul, Republic of Korea Email: hkpark627@snu.ac.kr

More information

Click-Through Rate prediction: TOP-5 solution for the Avazu contest

Click-Through Rate prediction: TOP-5 solution for the Avazu contest Click-Through Rate prediction: TOP-5 solution for the Avazu contest Dmitry Efimov Petrovac, Montenegro June 04, 2015 Outline Provided data Likelihood features FTRL-Proximal Batch algorithm Factorization

More information

Nonnegative Matrix Factorization

Nonnegative Matrix Factorization Nonnegative Matrix Factorization Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

What is Happening Right Now... That Interests Me?

What is Happening Right Now... That Interests Me? What is Happening Right Now... That Interests Me? Online Topic Discovery and Recommendation in Twitter Ernesto Diaz-Aviles 1, Lucas Drumond 2, Zeno Gantner 2, Lars Schmidt-Thieme 2, and Wolfgang Nejdl

More information

Manotumruksa, J., Macdonald, C. and Ounis, I. (2018) Contextual Attention Recurrent Architecture for Context-aware Venue Recommendation. In: 41st International ACM SIGIR Conference on Research and Development

More information

CS425: Algorithms for Web Scale Data

CS425: Algorithms for Web Scale Data CS: Algorithms for Web Scale Data Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS. The original slides can be accessed at: www.mmds.org J. Leskovec,

More information

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering Matrix Factorization Techniques For Recommender Systems Collaborative Filtering Markus Freitag, Jan-Felix Schwarz 28 April 2011 Agenda 2 1. Paper Backgrounds 2. Latent Factor Models 3. Overfitting & Regularization

More information

Recommender systems, matrix factorization, variable selection and social graph data

Recommender systems, matrix factorization, variable selection and social graph data Recommender systems, matrix factorization, variable selection and social graph data Julien Delporte & Stéphane Canu stephane.canu@litislab.eu StatLearn, april 205, Grenoble Road map Model selection for

More information

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine CS 277: Data Mining Mining Web Link Structure Class Presentations In-class, Tuesday and Thursday next week 2-person teams: 6 minutes, up to 6 slides, 3 minutes/slides each person 1-person teams 4 minutes,

More information

SQL-Rank: A Listwise Approach to Collaborative Ranking

SQL-Rank: A Listwise Approach to Collaborative Ranking SQL-Rank: A Listwise Approach to Collaborative Ranking Liwei Wu Depts of Statistics and Computer Science UC Davis ICML 18, Stockholm, Sweden July 10-15, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation

GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, Yong Rui University of Science and Technology

More information

Probabilistic Matrix Factorization

Probabilistic Matrix Factorization Probabilistic Matrix Factorization David M. Blei Columbia University November 25, 2015 1 Dyadic data One important type of modern data is dyadic data. Dyadic data are measurements on pairs. The idea is

More information

Integrated Anchor and Social Link Predictions across Social Networks

Integrated Anchor and Social Link Predictions across Social Networks Proceedings of the TwentyFourth International Joint Conference on Artificial Intelligence IJCAI 2015) Integrated Anchor and Social Link Predictions across Social Networks Jiawei Zhang and Philip S. Yu

More information

Context-aware Ensemble of Multifaceted Factorization Models for Recommendation Prediction in Social Networks

Context-aware Ensemble of Multifaceted Factorization Models for Recommendation Prediction in Social Networks Context-aware Ensemble of Multifaceted Factorization Models for Recommendation Prediction in Social Networks Yunwen Chen kddchen@gmail.com Yingwei Xin xinyingwei@gmail.com Lu Yao luyao.2013@gmail.com Zuotao

More information

Rating Prediction with Topic Gradient Descent Method for Matrix Factorization in Recommendation

Rating Prediction with Topic Gradient Descent Method for Matrix Factorization in Recommendation Rating Prediction with Topic Gradient Descent Method for Matrix Factorization in Recommendation Guan-Shen Fang, Sayaka Kamei, Satoshi Fujita Department of Information Engineering Hiroshima University Hiroshima,

More information

Discerning individual interests and shared interests for social user profiling

Discerning individual interests and shared interests for social user profiling World Wide Web (2017) 20:417 435 DOI 10.1007/s11280-016-0397-x Discerning individual interests and shared interests for social user profiling Enhong Chen 1 Guangxiang Zeng 1 Ping Luo 2 Hengshu Zhu 3 Jilei

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Popularity Recommendation Systems Predicting user responses to options Offering news articles based on users interests Offering suggestions on what the user might like to buy/consume

More information

A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks

A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks ABSTRACT Mohsen Jamali School of Computing Science Simon Fraser University Burnaby, BC, Canada mohsen_jamali@cs.sfu.ca

More information

A Tunable Mechanism for Identifying Trusted Nodes in Large Scale Distributed Networks

A Tunable Mechanism for Identifying Trusted Nodes in Large Scale Distributed Networks A Tunable Mechanism for Identifying Trusted Nodes in Large Scale Distributed Networks Joydeep Chandra 1, Ingo Scholtes 2, Niloy Ganguly 1, Frank Schweitzer 2 1 - Dept. of Computer Science and Engineering,

More information

Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts

Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence AAAI-16 Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts Qiang Liu, Shu Wu, Liang Wang, Tieniu

More information

Facebook Friends! and Matrix Functions

Facebook Friends! and Matrix Functions Facebook Friends! and Matrix Functions! Graduate Research Day Joint with David F. Gleich, (Purdue), supported by" NSF CAREER 1149756-CCF Kyle Kloster! Purdue University! Network Analysis Use linear algebra

More information

Matrix and Tensor Factorization from a Machine Learning Perspective

Matrix and Tensor Factorization from a Machine Learning Perspective Matrix and Tensor Factorization from a Machine Learning Perspective Christoph Freudenthaler Information Systems and Machine Learning Lab, University of Hildesheim Research Seminar, Vienna University of

More information

Methodological issues in the development of accessibility measures to services: challenges and possible solutions in the Canadian context

Methodological issues in the development of accessibility measures to services: challenges and possible solutions in the Canadian context Methodological issues in the development of accessibility measures to services: challenges and possible solutions in the Canadian context Alessandro Alasia 1, Frédéric Bédard 2, and Julie Bélanger 1 (1)

More information

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Author: Jaewon Yang, Jure Leskovec 1 1 Venue: WSDM 2013 Presenter: Yupeng Gu 1 Stanford University 1 Background Community

More information

Personalized POI Recommendation on Location-Based Social Networks. Huiji Gao

Personalized POI Recommendation on Location-Based Social Networks. Huiji Gao Personalized POI Recommendation on Location-Based Social Networks by Huiji Gao A Dissertation Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy Approved November 2014

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Ranking and Filtering

Ranking and Filtering 2018 CS420, Machine Learning, Lecture 7 Ranking and Filtering Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Content of This Course Another ML

More information

Modeling Users Adoption Behaviors with Social Selection and Influence

Modeling Users Adoption Behaviors with Social Selection and Influence Modeling Users Adoption Behaviors with Social Selection and Influence Ziqi Liu Fei Wang Qinghua Zheng Abstract Massive users online adoption behaviors were recorded thans to the various emerging web services

More information

Spatio-semantic user profiles in location-based social networks

Spatio-semantic user profiles in location-based social networks Int J Data Sci Anal (2017) 4:127 142 DOI 10.1007/s41060-017-0059-9 REGULAR PAPER Spatio-semantic user profiles in location-based social networks Soha Mohamed 1 Alia I. Abdelmoty 1 Received: 17 December

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Recommender System for Yelp Dataset CS6220 Data Mining Northeastern University

Recommender System for Yelp Dataset CS6220 Data Mining Northeastern University Recommender System for Yelp Dataset CS6220 Data Mining Northeastern University Clara De Paolis Kaluza Fall 2016 1 Problem Statement and Motivation The goal of this work is to construct a personalized recommender

More information

Algorithms for Collaborative Filtering

Algorithms for Collaborative Filtering Algorithms for Collaborative Filtering or How to Get Half Way to Winning $1million from Netflix Todd Lipcon Advisor: Prof. Philip Klein The Real-World Problem E-commerce sites would like to make personalized

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

CoSoLoRec: Joint Factor Model with Content, Social, Location for Heterogeneous Point-of-Interest Recommendation

CoSoLoRec: Joint Factor Model with Content, Social, Location for Heterogeneous Point-of-Interest Recommendation CoSoLoRec: Joint Factor Model with Content, Social, Location for Heterogeneous Point-of-Interest Recommendation Hao Guo 1,XinLi 3,MingHe 1, Xiangyu Zhao 1, Guiquan Liu 1(B), and Guandong Xu 2 1 University

More information

Decoupled Collaborative Ranking

Decoupled Collaborative Ranking Decoupled Collaborative Ranking Jun Hu, Ping Li April 24, 2017 Jun Hu, Ping Li WWW2017 April 24, 2017 1 / 36 Recommender Systems Recommendation system is an information filtering technique, which provides

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

Sequential Recommender Systems

Sequential Recommender Systems Recommender Stammtisch, Zalando, 26/6/14 Sequential Recommender Systems! Knowledge Mining & Assessment brefeld@kma.informatik.tu-darmstadt.de Collaborative Filtering Prof. Dr. 2 Collaborative Filtering

More information

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning)

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Linear Regression Regression Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Example: Height, Gender, Weight Shoe Size Audio features

More information

NCDREC: A Decomposability Inspired Framework for Top-N Recommendation

NCDREC: A Decomposability Inspired Framework for Top-N Recommendation NCDREC: A Decomposability Inspired Framework for Top-N Recommendation Athanasios N. Nikolakopoulos,2 John D. Garofalakis,2 Computer Engineering and Informatics Department, University of Patras, Greece

More information

K-Nearest Neighbor Temporal Aggregate Queries

K-Nearest Neighbor Temporal Aggregate Queries Experiments and Conclusion K-Nearest Neighbor Temporal Aggregate Queries Yu Sun Jianzhong Qi Yu Zheng Rui Zhang Department of Computing and Information Systems University of Melbourne Microsoft Research,

More information

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning)

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Linear Regression Regression Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Example: Height, Gender, Weight Shoe Size Audio features

More information

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties Prof. James She james.she@ust.hk 1 Last lecture 2 Selected works from Tutorial

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6:00pm 8:50pm Mon. and Wed. Location: SL105 Spring 2016 Reading assignments We will increase the bar a little bit Please

More information

Matrix Factorization and Factorization Machines for Recommender Systems

Matrix Factorization and Factorization Machines for Recommender Systems Talk at SDM workshop on Machine Learning Methods on Recommender Systems, May 2, 215 Chih-Jen Lin (National Taiwan Univ.) 1 / 54 Matrix Factorization and Factorization Machines for Recommender Systems Chih-Jen

More information

ImWalkMF: Joint Matrix Factorization and Implicit Walk Integrative Learning for Recommendation

ImWalkMF: Joint Matrix Factorization and Implicit Walk Integrative Learning for Recommendation 2017 IEEE International Conference on Big Data (BIGDATA) ImWalkMF: Joint Matrix Factorization and Implicit Walk Integrative Learning for Recommendation Chuxu Zhang,LuYu, Xiangliang Zhang and Nitesh Chawla

More information

Mixed Membership Matrix Factorization

Mixed Membership Matrix Factorization Mixed Membership Matrix Factorization Lester Mackey 1 David Weiss 2 Michael I. Jordan 1 1 University of California, Berkeley 2 University of Pennsylvania International Conference on Machine Learning, 2010

More information

Learning Theory Continued

Learning Theory Continued Learning Theory Continued Machine Learning CSE446 Carlos Guestrin University of Washington May 13, 2013 1 A simple setting n Classification N data points Finite number of possible hypothesis (e.g., dec.

More information

On the Foundations of Diverse Information Retrieval. Scott Sanner, Kar Wai Lim, Shengbo Guo, Thore Graepel, Sarvnaz Karimi, Sadegh Kharazmi

On the Foundations of Diverse Information Retrieval. Scott Sanner, Kar Wai Lim, Shengbo Guo, Thore Graepel, Sarvnaz Karimi, Sadegh Kharazmi On the Foundations of Diverse Information Retrieval Scott Sanner, Kar Wai Lim, Shengbo Guo, Thore Graepel, Sarvnaz Karimi, Sadegh Kharazmi 1 Outline Need for diversity The answer: MMR But what was the

More information

Cost and Preference in Recommender Systems Junhua Chen LESS IS MORE

Cost and Preference in Recommender Systems Junhua Chen LESS IS MORE Cost and Preference in Recommender Systems Junhua Chen, Big Data Research Center, UESTC Email:junmshao@uestc.edu.cn http://staff.uestc.edu.cn/shaojunming Abstract In many recommender systems (RS), user

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information