Calorimeter Options for Large Acceptance PVDIS Setup

Size: px
Start display at page:

Download "Calorimeter Options for Large Acceptance PVDIS Setup"

Transcription

1 Outline.Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 1 Calorimeter Options for Large Acceptance PVDIS Setup.Chudakov 1 1 Hall A, JLab Calorimeter Workshop, JLab, Oct 2008

2 Outline.Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 2 Outline 1 Motivation 2 Apparatus Requirements and options Solenoidal Large Intensity Device (SoLID) 3 Calorimeter Options

3 Outline.Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 2 Outline 1 Motivation 2 Apparatus Requirements and options Solenoidal Large Intensity Device (SoLID) 3 Calorimeter Options

4 Outline.Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 2 Outline 1 Motivation 2 Apparatus Requirements and options Solenoidal Large Intensity Device (SoLID) 3 Calorimeter Options

5 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 3 Parity Violation in lectron Scattering at Q 2 M 2 Z e e Polarized beam on Unpolarized target σ A γ + A weak 2 A γ 2 + 2A γ A weak +... γ Z f f A RL = σ R σ L σ R σ L A weak A γ G F Q 2 4πα g g = g e A GT V ± ge V GT A, depend on sin2 θ W, kinem. for f l ± g (1 4 sin 2 θ W ) < 0.05 Observable A , sensitive to: lectroweak coupling: CM tests Magnification: sin 2 θ W 0.23 δ(sin 2 θ W ) 0.02 δ(a) A Target structure unusual FF, PDF combinations

6 PV DIS Asymmetry L ehadron = G F 2 i (C 1i ja e ji V +C 2i jv e ji A ) where i are partons (quarks) C 1q = 2g e A gi V = C 1q t 3iL + 2Q ei s 2 W C 2q = 2g e V gi A = +C 2q t 3iL (1 4s 2 W ) Cahn,Gilman 1978 A Parton model: PV = G F Q 2 2 [a(x) + Y (y) b(x)] 2πα Y (y) = 1 (1 y)2 1+(1 y) 2, y = ν, x = x Bj a(x) = i f i(x)c 1i Q ei / i f i(x)q 2 ei Isoscaler target Deuterium:f (x) largely cancel q ± q ± q in proton a(x) = 3 10 (2C 1u C 1d ) (1 + R s (x)) b(x) = 3 10 (2C 2u C 2d ) (1 R a (x)) } 2s R s (x) = + large x 0 R a (x) = u + +d + u+d u + +d + A PV (x, Q 2 )/Q 2 large x A(y) b(x) = i f i(x)c 2i Q ei / i f i(x)q 2 ei f i (x) - quark distribution functions Corrections from: s-quarks, sea-quarks target mass higher twists Prescott 1979 sw 2 = 0.22 ± 0.02 using SM.Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 4

7 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 5 Measurements of the weak charges C 1q, C 2q xisting measurements: Planned measurements: PV-elastic in e p, d, Be, C at Bates, Mainz, JLab PV-DIS in e d, µ ± C at SLAC, CRN Atomic PV experiments PV-DIS in e d at Jlab 6 GeV (Hall A) x 0.3 FIG. 2: The effective couplings C1u, C1d (left), C2u and C2d (right). The future Qweak experiment (purple band), combined with the APV-Cs result (red band), will provide the most precise PV-DIS in e d at Jlab 12 GeV (Hall C) x 0.3 data and the best Standard Model test on C1u and C1d. The SAMPL result for C2u C2d at Q 2 = 0.1 (GeV/c) 2 and the projected results from the 6 GeV PVDIS experiment (05-007, Phase Remember NUTV! I+II) [13] are shown. Assuming the SM prediction of 2C1u C1d, the value of 2C2u C2d can be determined from the proposed measurement Credit to P.Reimer to (2C2u etc2d) al = (red band). p. 5

8 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 6 Program of PV DIS Study Strategy Study hadronic physics first Use the hadronic results to measure the axial couplings Required precise kinematics and broad range Two beam energies: 11, 8.8 GeV Measure A D in narrow bins of x, Q 2 with 1% precision Study the A D (Q 2 ) at 0.3 < x < 0.6 to constrain HT Search for CSV with A D (x) in 0.5 < x < 0.7 Use x > 0.4, high Q 2, Y data to measure C 2q Requires: A large acceptance and high rate magnetic spectrometer

9 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 7 DIS Parity Violation at X > 0.6 at 12 GeV, GeV <θ<35 o X Bj > 0.55 W 2 > 4 GeV 2 Q 2 > 6 GeV 2 Motivation: CSV, d/u, high twists A 10 4 Q Rate= 35.8 khz at L= 540 pb -1 s -1 4 W 2 = 4 x Bj = o W 2 = 8. x Bj = 0.75 x Bj = 0.55 Q 2 = x Bj = 35 Q 2 = o Q 2 = θ, deg

10 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 7 DIS Parity Violation at X > 0.6 at 12 GeV, GeV o W 2 = 4 W 2 = 8. 22<θ<35 o X Bj > 0.55 W 2 > 4 GeV 2 Rate= Q 2 > 6 GeV khz at L= 540 pb -1 s -1 x Bj = 0.95 x Bj = 0.75 x Bj = 0.55 Q 2 = 10. x Bj = 35 Q 2 = o Q 2 = θ, deg Motivation: CSV, d/u, high twists A 10 4 Q Kinematics and Rates 22 < θ < 35, W 2 > 4 50 µa, 40 cm LH 0.54fb 1 s 1 Rate 34kHz X > 0.55 Rate 8.7kHz X > 0.65 acceptance = 100%, eff=50% 1% stat events X > 0.55: X > 0.65: 13 days 40 days

11 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 8 Other Potential xperiments xperiments considered at 12 GeV SIDIS: transversity, etc. 2 paricles to detect γp J/Ψp photoproduction close to threshold DVCS e p e γp, e l + l p,?

12 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 9 Requirements Acceptance Working at L 0.54fb 1 s 1 > 1.5 GeV to remove low energy e, π < no line of sight, to remove γ σ / < 2% energy resolution Ω > 0.3str solid angle PID e/π 10 5 Trigger rate <20 khz/daq If it were easy - would have been done somewhere

13 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 10 Options Several options have been considered: Large solenoidal spectrometer a magnet leased from BaBar/CLO/CDF... Double-todoid spectrometer Others - much lower acceptance...

14 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 11 Solenoidal Large Intensity Detector (SoLID) Y, cm Solenoidal detector for PVDIS at high x LH target Yoke Coil Z, cm 35 o 22 o BeBar magnet Altered yoke Calorimeter >200 krad/year 50% 15 m 2 = 7 m 2 pre/shower Magnetic field 0.01 T Y, cm X,cm det 9

15 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 12 M calorimeters with optical readout Density X 0 R M λ I Refr. τ Peak Light Material g/cm 3 cm cm cm index ns λ nm yield Crystals NaI(Tl) %/ 1/4 CsI %/ 1/2 CsI(Tl) %/ 1/2 BGO %/ 1/2 PbWO /39% %/ 1/2 15/60% /01% LSO %/ 1/2 PbF Cher Cher %/ 1/2 Lead glass TF Cher Cher %/ 1/2 SF Cher Cher %/ 1/2 SF Cher Cher %/ 1/2 Sampling: lead/scintillator SPACAL %/ 1/2 Shashlik %/ 1/2 - hygroscopic Np.e. GeV rad σ

16 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 13 nergy resolution Fluctuations of the track length (M): σ c t, where t is the layer Sampling fluctuations (M): σ thickness 0.1 t in X 0 (B.Rossi), for lead absorber (t > 0.2) > 0.05 Statistics of the observed signal (M): σ > 0.01 Noise, pedestal fluctuations σ < 0.01 Calibration drifts σ 0.01 for a large detector Ideally, a large sampling calorimeter may have σ

17 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 14 SpaCal (CRN, Frascatti, Hall D) scintillating fibers / lead matrix CRN - original R&D KLO (DAFN) PMTs KLO σ/ 5.7%/ 1/2 KLO στ 50/ 1/ ps Volume: Fiber/Pb/glue 48%/42%/10% X = 1.2 cm 5 g/cm 3 Critical for this resolution: uniformity fibers collected to the Ph.Det. Ph.Det. surface: 50% PMTs only? Mag. field?

18 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 15 Shashlyk Calorimeter Pb + scintillator sandwitch WLS fibers to the Ph.Det. Ph.Det. surface 1% Pb Sc Pb Sc Pb Sc Pb Sc Pb Sc WLS fibers PMT HRA-B: PMTs σ 0.12 KOPIO: APDs σ 0.03

19 Motivation Apparatus Calorimeter Options HRA-B Calorimeter ARTICL IN PRSS ARTICL IN PRSS ARTICL IN PRSS G. Avoni et al. / Nuclear Instruments and Methods in Physics Research A 580 (2007) NIMA 580, 1209 (2007) G. Avoni et al. / Nuclear Instruments and Methods in Physics Research A 580 (2007) et al. / Nuclear Instruments and Methods in Physics Research A 580 (2007) G. Avoni Table 1 HRA-B CAL parameters Channels Cell size Absorber Radiation length ðx 0 Þ quiv. Molie re rad. Depth Volume ratio WLS Light yield (p.e./gev) PM type LD (wavelength, nm) Max. radiation dose (kgy/year) at shower-max INNRMOST/INNR MIDDL OUTR cm W Ni Fe alloy cm 1.24 cm 13 cm (23X 0 ) W:Sc ¼ 2:2 : 1 Kuraray Y R-5600/FU68 Marl (450) 50/ cm lead (Pb) cm 4.15 cm 34 cm (20X 0 ) Pb:Sc ¼ 1 : 2 BCF-91A 800 FU-84-3 L934SRCB (660) cm lead (Pb cm 4.15 cm 34 cm (2 Pb:Sc ¼ BCF-91A 1300 FU-84L934SRC 1 Fig. 2. The HRA-B electromagnetic calorimeter structure. Fig. 2. The HRA-B electromagnetic calorimeter structure. Fig. 3. INNR CAL module structure..chudakov Oct 31, 2008 Fig. 4. MIDDL CAL module structure. Calorimeter for Large Acceptance PVDIS 16

20 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 17 HRA-B Calorimeter (continue) Parameter Inner Middle Outer Channels Cell size 2.23 cm 5.59 cm cm Absorber W-Ni-Fe Pb Pb X cm cm cm Moliere 1.24 cm 4.15 cm 4.15 cm Depth in X Volume Abs/Sc 2.2:1 1:2 1:2 WLS Kuraray Y-11 BCF-91A BCF-91A p.e./gev krad/year σ σx, Y cm

21 KOPIO Calorimeter ARTICL IN PRSS G.S. Atoian et al. / Nuclear Instruments and Methods in Physics Research A 584 (2008) Photodetector APD Installation mount APD screw cap Fiber's squeeze collar 294 ARTICL IN P NIMA 584, 291 (2008) G.S. Atoian et al. / Nuclear Instruments and Methods i Monitoring fiber Rear light-tight cover Wire tensioners Rear clamp-plate of sandwich Lead/scintillator sandwich WLS fiber Lead tile "LGO" lock Scintillator tile Sandwich compression wire Front clamp-plate of sandwich Fig. tile simu mat Front light-tight cover Fig. 2. The Shashlyk modules at different stages of assembly..chudakov Fig. 1. The Shashlyk module design. Oct 31, 2008 Calorimeter for Table Large 1 Acceptance PVDIS 18

22 .Chudakov Oct 31, 2008 Calorimeter for Large Acceptance PVDIS 19 KOPIO Calorimeter (continue) Cell size 11 cm Absorber Pb mm 300 Scintillator BASF mm Hole 1.3 mm Fiber 1.0 mm Y MS Fibers/module m Fibers bunch OD 1.4 cm X 3.49 cm Moliere 5.98 cm Density 2.75 g/cm 3 Depth in X 16 Total depth 65 cm krad 100 APD API OD=16 mm Q=94% p.e./gev σ σt, ps 72 14

Large Acceptance High Luminosity Detector at 12 GeV

Large Acceptance High Luminosity Detector at 12 GeV Outline Large Acceptance High Luminosity Detector at 12 GeV E.Chudakov 1 1 Hall A, JLab For June 2006 Hall A Meeting Outline Outline 1 Motivation for a Large Acceptance at High Luminosity DIS Parity Violation

More information

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering Paul E. Reimer Argonne National Laboratory 10 January 2003 Introduction: Weinberg-Salam Model and sin 2

More information

Fundamental Symmetries in Hall A at 11 GeV

Fundamental Symmetries in Hall A at 11 GeV Outline E.Chudakov December 13, 2007 Symmetries at 11 GeV 1 Fundamental Symmetries in Hall A at 11 GeV E.Chudakov 1 1 Hall A, JLab Hall A collaboration meeting, JLab, Dec 2007 Outline E.Chudakov December

More information

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12 A Forward Photon Tagging Facility for CLAS12 M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy 1) From CEBAF at 6 GeV 2) From CEBAF at 6 GeV to CEBAF at 12 GeV add Hall D (and beam line)

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation Arthur Mkrtchyan CUA Outline Physics case and motivation Experimental setup Simulation results

More information

K + Physics at J-PARC

K + Physics at J-PARC Takeshi K. Komatsubara (KEK-IPNS) 1 K + Physics at J-PARC K + Physics at J-PARC Takeshi K. Komatsubara (KEK-IPNS) 2005.May.26 K - RARE Meeting at INFN, Frascati Takeshi K. Komatsubara (KEK-IPNS) 2 K +

More information

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation JLab 1/19/2017 Outline Physics case and motivation Experimental setup Simulation results Latest

More information

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues An Experiments Krishna Kumar Stony Brook University The Electroweak Box Workshop at

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Measurement Using Polarized e + /e Beams

Measurement Using Polarized e + /e Beams C 3q Measurement Using Polarized e + /e Beams Xiaochao Zheng Univ. of Virginia March 7, 009 Introduction Standard Model of Electroweak Interaction Neutral Weak Coupling Constants Test of the Standard Model

More information

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University Parity Violating Electron Scattering at Jefferson Lab Rakitha S. Beminiwattha Syracuse University 1 Outline Parity Violating Electron Scattering (PVES) overview Testing the Standard Model (SM) with PVES

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

Update on Experiments using SoLID Spectrometer

Update on Experiments using SoLID Spectrometer Update on Experiments using SoLID Spectrometer Yi Qiang for SoLID Collaboration Hall A Collaboration Meeting Dec 16, 2011 Overview SoLID: Solenoidal Large Intensity Device High rate capability: allow for

More information

Recent results and future direction of the parity-violating electron scattering program in Hall A at Jefferson Lab

Recent results and future direction of the parity-violating electron scattering program in Hall A at Jefferson Lab Recent results and future direction of the parity-violating electron scattering program in Hall A at Jefferson Lab, University of Virginia For the HAPPEX, PREX, PVDIS, MOLLER and SOLID Collaborations SPIN,

More information

The Electromagnetic Calorimeter of the HERA-B Experiment

The Electromagnetic Calorimeter of the HERA-B Experiment 1 The Electromagnetic Calorimeter of the HERA-B Experiment B.Giacobbe a a I.N.F.N Bologna, Via Irnerio 46, 40127 Bologna, Italy At the end of the HERA-B data taking, an overview of the experiment s Electromagnetic

More information

Wide-Angle Compton Scattering up to 10 GeV

Wide-Angle Compton Scattering up to 10 GeV γp -> γp Wide-Angle Compton Scattering up to 10 GeV B. Wojtsekhowski Outline WACS physics WACS method and results Next WACS measurements Proposed measurements with NPD/HMS JLab, January 24, 2013 WACS in

More information

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4. Hall C - 12 GeV pcdr Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.4 msr Momentum Acceptance 40% Target Length Acceptance

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Upgrade of the CMS Forward Calorimetry

Upgrade of the CMS Forward Calorimetry Upgrade of the CMS Forward Calorimetry Riccardo Paramatti Cern & INFN Roma IPMLHC2013 Tehran 9 th October Credits to Francesca Cavallari and Pawel de Barbaro Outline Radiation damage at HL-LHC ECAL and

More information

LHCb Calorimetry Impact

LHCb Calorimetry Impact LHCb Calorimetry Impact Preema Pais! On behalf of the LHCb Collaboration! Workshop on the physics of HL-LHC, and perspectives at HE-LHC! November 1, 2017! THE LHCb DETECTOR Calorimetry! Located ~12.5 m

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan presented by Volker Burkert and Sebastian Kuhn Outline: Introduction Deeply Virtual Exclusive Processes and GPDs Structure Functions & Semi-Inclusive Processes Equipment

More information

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration Meson spectroscopy at CLAS and CLAS12: the present and the future Raffaella De Vita INFN Genova for the CLAS Collaboration Why hadron spectroscopy? QCD is responsible for most of the visible mass in the

More information

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Today s Lecture: 1) Electromagnetic and hadronic showers 2) Calorimeter design Absorber Incident particle Detector Reconstructing

More information

PoS(BORMIO2016)013. PANDA Forward Spectrometer Calorimeter. P.A. Semenov IHEP NRC KI S.I. Bukreeva IHEP NRC KI ITEP NRC KI

PoS(BORMIO2016)013. PANDA Forward Spectrometer Calorimeter. P.A. Semenov IHEP NRC KI   S.I. Bukreeva IHEP NRC KI ITEP NRC KI PANDA Forward Spectrometer Calorimeter E-mail: psemenov@ihep.ru S.I. Bukreeva ITEP NRC KI S.K. Chernichenko A.V. Sukhih S. Diehl University of Giessen V. Dormenev University of Giessen R. Novotny University

More information

Electroweak Physics at the Tevatron

Electroweak Physics at the Tevatron Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004 Outline Importance Methodology Single Boson Measurements

More information

Calorimetry I Electromagnetic Calorimeters

Calorimetry I Electromagnetic Calorimeters Calorimetry I Electromagnetic Calorimeters Introduction Calorimeter: Detector for energy measurement via total absorption of particles... Also: most calorimeters are position sensitive to measure energy

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

Studies of Hadron Calorimeter

Studies of Hadron Calorimeter Studies of Hadron Calorimeter Zhigang Wang Institute of High Energy Physics 2012.10.17 in IHEP Outline 1,The Dark Matter Calorimeter 2,The Hadron Calorimeter(HCAL) 3, Summary 1,Dark Matter Calorimeter

More information

Simulation study of scintillatorbased

Simulation study of scintillatorbased Simulation study of scintillatorbased calorimeter Hiroyuki Matsunaga (Tsukuba) For GLD-CAL & ACFA-SIM-J groups Main contributors: M. C. Chang, K. Fujii, T. Takeshita, S. Yamauchi, A. Nagano, S. Kim Simulation

More information

Parity Violation Experiments & Beam Requirements

Parity Violation Experiments & Beam Requirements Parity Violation Experiments & Beam Requirements Riad Suleiman Center for Injectors and Sources MCC Ops Training August 05, 2009 Outline Fundamental Interactions and Conservation Rules Parity Reversal

More information

Measurement of Nucleon Strange Form Factors at High Q 2

Measurement of Nucleon Strange Form Factors at High Q 2 Measurement of Nucleon Strange Form Factors at High Q 2 (HAPPEX III Collaboration) Rupesh Silwal 22 March, 2011 At very low Q2, GsE/M relates to the strange matrix elements of the nucleon (strange radius

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

Cascade Spectroscopy at CLAS

Cascade Spectroscopy at CLAS Cascade Spectroscopy at CLAS D.P. Weygand Thomas Jefferson National Accelerator Facility 12/1/2005 D.P. Weygand Cascade Workshop 1 Outline: Ξ* Resonances at CLAS Ghosts of Ξ s Past Ξ(1620), High Mass Ξ*

More information

Project P2 - The weak charge of the proton

Project P2 - The weak charge of the proton Institute for Nuclear Physics, University of Mainz E-mail: beckerd@kph.uni-mainz.de K. Gerz, S. Baunack, K. S. Kumar, F. E. Maas The goal of Project P2 is to determine the electroweak mixing angle sin

More information

P.M. King Ohio University for the MOLLER Collaboration

P.M. King Ohio University for the MOLLER Collaboration Parity violating electron scattering at JLab: the MOLLER experiment P.M. King Ohio University for the MOLLER Collaboration SESAPS, 10 November 2016; University of Virginia, Charlottesville, VA The Standard

More information

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Valuable particles at hadron colliders are the electron e ± for W ±! e ± & Z

More information

Calorimetry From basic principles to particle flow an overview. Burkhard Schmidt, CERN PH-DT

Calorimetry From basic principles to particle flow an overview. Burkhard Schmidt, CERN PH-DT Calorimetry From basic principles to particle flow an overview Burkhard Schmidt, CRN PH-DT Outline Introduction lectromagnetic calorimetry lectromagnetic shower properties nergy resolution Main techniques

More information

4. LHC experiments Marcello Barisonzi LHC experiments August

4. LHC experiments Marcello Barisonzi LHC experiments August 4. LHC experiments 1 Summary from yesterday: Hadron colliders play an important role in particle physics discory but also precision measurements LHC will open up TeV energy range new particles with 3-5

More information

Impact of SoLID Experiment on TMDs

Impact of SoLID Experiment on TMDs Impact of SoLID Experiment on TMDs QCD Evolution 2017 @ Jefferson Lab, Newport News May 22-26 th 2017 Tianbo Liu Duke University and Duke Kunshan University In collaboration with: N. Sato, A. Prokudin,

More information

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl Introduction - Purpose of CPV: veto Kl decay modes with a real or apparent π and a pair of charged particles - Examples of background modes: (i) K l π π + π (ii) K l π π ± eν there are always (iii) K l

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II L. J. Kaufman University of Massachusetts The HAPPEX Collaboration Thomas Jefferson National Accelerator Facility

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

Measurement of F L at HERA. S. Glazov, DESY, Ringberg 2008

Measurement of F L at HERA. S. Glazov, DESY, Ringberg 2008 Measurement of F L at HERA S. Glazov, DESY, Ringberg 8 DIS kinematics Kinematics of inclusive scattering is determined by and Bjorken x. In x scale parameter / - equal sharing among quarks. Proton structure

More information

Building a Tracking Detector for the P2 Experiment

Building a Tracking Detector for the P2 Experiment Building a Tracking Detector for the P Experiment DPG Frühjahrstagung, Hamburg 016 Marco Zimmermann Institute for Nuclear Physics March 3, 016 The P Experiment: Overview The Idea Precision measurement

More information

Physics with Jets at the LHC

Physics with Jets at the LHC XXXIV Int. Symp. on Multiparticle Dynamics, Sonoma County, July 29, 2004 ISMD Rohlf p.1/50 Physics with Jets at the LHC Jim Rohlf Boston University Outline Introduction Detectors and expected performance

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

A4 Laser Compton polarimetry

A4 Laser Compton polarimetry A4 Laser Compton polarimetry progress since PAVI06 J. Diefenbach Workshop on Parity Violation 2009, Bar Harbor, Maine - 24.06.2009 Outline Principles of Laser Compton polarimetry Experimental Setup Data

More information

Hall-D Update. Eric Pooser. Joint Hall A/C Summer Collaboration Meeting 07/18/2015

Hall-D Update. Eric Pooser. Joint Hall A/C Summer Collaboration Meeting 07/18/2015 1 Hall-D Update Joint Hall A/C Summer Collaboration Meeting 07/18/2015 Current Hall-D Physics Program 2 Slide Courtesy of E. Chudakov Hybrid & Exotic Hybrid Mesons 3 Conventional light mesons (π, K, η,

More information

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France)

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France) Neutron DVCS Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Next generation of nuclear physics with JLab12 and EIC Florida International University February 10 13, 2016 Carlos Muñoz Camacho (IPN-Orsay)

More information

Di-muon electroproduction with CLAS12

Di-muon electroproduction with CLAS12 Di-muon electroproduction with CLAS1 S. Stepanyan (JLAB) CLAS collaboration meeting, June 16-18, 016 Ø Physics motivation for LOI: Double DVCS J/ψ-electroproduction Ø Detector configuration Background

More information

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering DESY Summer Students Program 8: Exclusive π + Production in Deep Inelastic Scattering Falk Töppel date: September 6, 8 Supervisors: Rebecca Lamb, Andreas Mussgiller II CONTENTS Contents Abstract Introduction.

More information

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001 Status of the LHCb Experiment Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001 1 P b b P Number of pp inelastic interactions in one bunch crossing (σ inelastic = 80 mb): b b correlation

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

Beyond the Born Approximation

Beyond the Born Approximation Beyond the Born Approximation Measuring the Two Photon Exchange Correction in Hall D Robert Paul Bennett Old Dominion University D. Adikaram, D. Rimal, P. Khetharpal, B. Raue, L. Weinstein Hall D PWG Newport

More information

E05-009:HAPPEx-III Status Report. Dustin McNulty UMass December 5, 2008

E05-009:HAPPEx-III Status Report. Dustin McNulty UMass December 5, 2008 E05-009:HAPPEx-III Status Report Dustin McNulty UMass mcnulty@jlab.org December 5, 2008 E05-009:HAPPEx-III Status Report Outline Quick Review: Parity Violation and Strange FFs Worldwide Experimental Programs

More information

Impact of the PXD on the Vertex Reconstruction of π 0 particles

Impact of the PXD on the Vertex Reconstruction of π 0 particles Impact of the PXD on the Vertex Reconstruction of π particles Fernando Abudinén 14. May, 216 1 Why CP-V. Sensitivity to B π π? 2 -Conversions and π e + e 3 Improvement of B Vertex Reco. 4 Summary and Outlook

More information

Time Structure in Dual Readout Calorimeters. Michele Cascella (UCL) for the RD52 Collaboration 1

Time Structure in Dual Readout Calorimeters. Michele Cascella (UCL) for the RD52 Collaboration 1 Time Structure in Dual Readout Calorimeters Michele Cascella (UCL) for the RD52 Collaboration m.cascella@ucl.ac.uk 1 Motivation Sehwook should have convinced you that dual readout is a good idea You need

More information

Search for Gluonic Excitations with GlueX at Jefferson Lab

Search for Gluonic Excitations with GlueX at Jefferson Lab Search for Gluonic Excitations with GlueX at Jefferson Lab Volker Credé Florida State University Tallahassee, FL The Structure and Dynamics of Hadrons Hirschegg, 01/19/2007 Outline 1 2 3 4 Outline 1 2

More information

Dual-Readout Calorimetry Simulations

Dual-Readout Calorimetry Simulations Dual-Readout Calorimetry Simulations Roberto Ferrari INFN Sezione di Pavia CepC Workshop May 25th, 2018 dual-readout calorimetry What? Don t spoil em resolution to get e/h = 1 (i.e. keep e/h > 1) BUT measure

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit N. 9 The NA48 ECAL example (LKR) Roberta Arcidiacono R. Arcidiacono Calorimetry 1 Lecture overview The requirements Detector layout & construction Readout

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

MINOS. Physics Program and Construction Status. Karol Lang The University of Texas at Austin. YITP: Neutrinos and Implications for Physics Beyond

MINOS. Physics Program and Construction Status. Karol Lang The University of Texas at Austin. YITP: Neutrinos and Implications for Physics Beyond MINOS Physics Program and Construction Status Karol Lang The University of Texas at Austin YITP: Neutrinos and Implications for Physics Beyond YITP Conference: Neutrinos and Implications The Standard for

More information

Exclusive Physics with the HERMES Recoil Detector

Exclusive Physics with the HERMES Recoil Detector Exclusive Physics with the HERMES Recoil Detector Erik Etzelmüller on behalf of the HERMES Collaboration!!! workshop on! Exploring Hadron Structure with Tagged Structure Functions! Thomas Jefferson National

More information

Measurements of e + e hadrons at VEPP-2M

Measurements of e + e hadrons at VEPP-2M Measurements of e + e hadrons at VEPP-2M B.Khazin Budker Institute of Nuclear Physics Novosibirsk Centerville, Cape Cod, MA 19-22 June 2006 Cross-section section e + e - hadrons VEPP-2M energy range :

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

CLAS12 at Jefferson Lab

CLAS12 at Jefferson Lab CLAS12 at Jefferson Lab Daria Sokhan University of Glasgow, UK IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK 19 April 2017 Jefferson Lab 6 GeV era Jefferson Lab CEBAF: Continuous

More information

The LHC Experiments. TASI Lecture 2 John Conway

The LHC Experiments. TASI Lecture 2 John Conway The LHC Experiments TASI 2006 - Lecture 2 John Conway Outline A. Interactions of Particles With Matter B. Tracking Detectors C. Calorimetry D. CMS and ATLAS Design E. The Mystery of Triggering F. Physics

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

Deep Exclusive π " Production with transversely polarized He3 using SoLID

Deep Exclusive π  Production with transversely polarized He3 using SoLID Deep Exclusive π " Production with transversely polarized He3 using SoLID A run-group proposal with E12-10-006 Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, from Univ.

More information

Identification of Central Production in the π + π π + π Channel at COMPASS

Identification of Central Production in the π + π π + π Channel at COMPASS Identification of Central Production in the π + π π + π Channel at COMPASS ASI-Spin-Praha-009 Johannes Bernhard for the COMPASS collaboration Institut für Kernphysik Mainz July 8 th Outline 1 Introduction

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

2 ATLAS operations and data taking

2 ATLAS operations and data taking The ATLAS experiment: status report and recent results Ludovico Pontecorvo INFN - Roma and CERN on behalf of the ATLAS Collaboration 1 Introduction The ATLAS experiment was designed to explore a broad

More information

G Ep /G Mp with an 11 GeV Electron Beam in Hall C

G Ep /G Mp with an 11 GeV Electron Beam in Hall C G Ep /G Mp with an 11 GeV Electron Beam in Hall C E.J. Brash, M.K. Jones, C.F. Perdrisat, V. Punjabi, A. Puckett, M. Khandaker and the GEp-IV Collaboration (Update to E12-09-101) Elastic EM Form Factors

More information

Aspects of The Standard Model and Beyond

Aspects of The Standard Model and Beyond Aspects of The Standard Model and Beyond Hadronic Physics Town Meeting at DNP2012 October 25, 2012 Mark Pitt Virginia Tech Parity violating electron scattering at JLab Proton s weak charge: Qweak Electron

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

GENERALIZED PARTON DISTRIBUTIONS

GENERALIZED PARTON DISTRIBUTIONS Exploring fundamental questions of NUCLEON STRUCTURE with GENERALIZED PARTON DISTRIBUTIONS Florian Herrmann 16.9.2012 Corfu Summer School LHC COMPASS SPS Versatile facility for hadron structure studies

More information

arxiv: v1 [physics.ins-det] 1 Sep 2009

arxiv: v1 [physics.ins-det] 1 Sep 2009 The MEG Spectrometer at PSI Paolo Walter Cattaneo on behalf of the MEG collaboration INFN Pavia, Via Bassi 6, Pavia, I-27100, Italy arxiv:0909.0199v1 [physics.ins-det] 1 Sep 2009 The MEG experiment is

More information

DIS and SIDIS measurements with BigBite & Super Bigbite Spectrometer and 11 GeV beam in Hall A

DIS and SIDIS measurements with BigBite & Super Bigbite Spectrometer and 11 GeV beam in Hall A DIS and SIDIS measurements with BigBite & Super Bigbite Spectrometer and 11 GeV beam in Hall A B. Wojtsekhowski, JLab 23 Sep 2009 B. Wojtsekhowski INT 12 GeV JLab 1 One- and Two-Arm experiments (O&TA)

More information

Super Bigbite Spectrometer (SBS) Status

Super Bigbite Spectrometer (SBS) Status Super Bigbite Spectrometer (SBS) Status Mark Jones SBS Program manager 1/18/2017 Hall A Jan 2017 Meeting 1 Outline Status of SBS project Overview of experiments Status of SBS equipment SBS equipment covered

More information

Spacal alignment and calibration

Spacal alignment and calibration Spacal alignment and calibration Sebastian Piec AGH University of Science and Technology Al. Mickiewicza 3, Cracow, Poland Email: sepiec@poczta.onet.pl The main purpose of my work was alignment and calibration

More information

H Parity Violating Deep Inelastic Scattering at CEBAF 6 GeV

H Parity Violating Deep Inelastic Scattering at CEBAF 6 GeV (Letter Of Intent to Jefferson Lab PAC-24) H Parity Violating Deep Inelastic Scattering at CEBAF 6 GeV May 22, 2003 J. Arrington, K. Hafidi, R. Holt, D. Potterveld, P. Reimer, X. Zheng 1 Argonne National

More information

Hadron Calorimetry at the LHC

Hadron Calorimetry at the LHC Hadron Calorimetry at the LHC 1 One of My Hats These Guys are Good 2 Hadron Calorimeters are ESSENTIAL to Measure Jets AND Jets are ESSENTIAL for Much of the LHC Physics Program Top Mass Compositeness/SUSY

More information

The MOLLER experiment - testing the Standard Model at Jefferson Lab

The MOLLER experiment - testing the Standard Model at Jefferson Lab The MOLLER experiment - testing the Standard Model at Jefferson Lab Dustin McNulty Idaho State University mcnulty@jlab.org for the May 30, 2012 The MOLLER experiment - testing the Standard Model at Jefferson

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

Updated results of the OPERA long baseline neutrino experiment

Updated results of the OPERA long baseline neutrino experiment Updated results of the OPERA long baseline neutrino experiment On behalf of the OPERA Collaboration S.Dusini INFN Padova EPS- HEP 2011 - Grenoble S.Dusini - INFN Padova 1 OPERA experiment The aim of OPERA

More information

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration Recent CMS results on heavy quarks and hadrons Alice Bean Univ. of Kansas for the CMS Collaboration July 25, 2013 Outline CMS at the Large Hadron Collider Cross section measurements Search for state decaying

More information

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration LCS2014 International Workshop LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration Outline Overview of the LEPS&LEPS2 beamlines Recent results from LEPS Search

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan Volker D. Burkert Jefferson Lab Introduction The Equipment Plan The 12 GeV Physics Program Conclusions PAC23 Meeting on the 12 GeV Upgrade, January 20, 2003 Physics

More information

E (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2. Thir Gautam Hampton University

E (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2. Thir Gautam Hampton University E12-07-108 (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2 Thir Gautam Hampton University On behalf of the GMp Collaboration Hall A Collaboration Meeting January 18, 2017 GMp

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams

Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams Tamar Zakareishvili (HEPI TSU, Georgia) 8 th Georgian-German School and Workshop in Basic Science (GGSWBS) Tbilisi, Georgia, August

More information

Study of Baryon Form factor and Collins effect at BESIII

Study of Baryon Form factor and Collins effect at BESIII Study of Baryon Form factor and Collins effect at BESIII Wenbiao Yan On behalf of BESIII Collaboration INT Program INT-17-3 Hadron imaging at Jefferson Lab and at a future EIC 1 Bird s View of BEPCII &

More information

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere Richard WIGMANS Department of Physics, Texas Tech University, Lubbock TX 79409-1051, USA (wigmans@ttu.edu) Abstract Cosmic ray experiments

More information

e e Collisions at ELIC

e e Collisions at ELIC Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion

More information

The neutron skin in neutronrich nuclei at Jefferson Lab

The neutron skin in neutronrich nuclei at Jefferson Lab The neutron skin in neutronrich nuclei at Jefferson Lab Mark Dalton, University of Virginia For the PREX and CREX Collaborations Low Energy Workshop Boston 15 March 2013 1 Weak Charge Distribution of Heavy

More information

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Outline Nucleon Structure Nucleon spin structure Flavor decomposition

More information