= qe cos(kz ωt). ω sin(αt) This is further averaged over the distribution of initial ( ) α + ω. = 2m k P g(α) sin(αt) g(α) = g(0) + αg (0) + α2 2 g +

Size: px
Start display at page:

Download "= qe cos(kz ωt). ω sin(αt) This is further averaged over the distribution of initial ( ) α + ω. = 2m k P g(α) sin(αt) g(α) = g(0) + αg (0) + α2 2 g +"

Transcription

1 6 Landau Damping 61 Physical Picture of Landau Damping Consider a 1-dimensional electrostatic (longitudinal) wave with k E in the absence of magnetic field Taking v = ẑv and E = ẑe cos(kz ωt), the singleparticle equation of motion can be written as m dv = qe cos(kz ωt) The th order solution (for E = ) z = v t + z can be substituted into the 1st order equation to give m dv 1 = qe cos(kz + kv t ωt) This equation is solved as an initial value problem with the initial condition v 1 = at t = The solution is given by v 1 = qe m sin(kz + kv t ωt) sin(kz ) kv ω The time rate of change of the kinetic energy, averaged over initial positions z is d mv = z q E [ ω sin(αt) ] ωt cos(αt) m α + t cos(αt) + α where α = kv ω velocities v to give d mv Expanding in the vicinity of α = gives d This is further averaged over the distribution of initial ( ) α + ω f(v ) = f = g(α) k = z, ωq E m k P g(α) sin(αt) dα v α g(α) = g() + αg () + α g + mv z, πωq E [ ] df(v ) mk k dv v v = ω k This expression signifies that resonant particles with velocity close to the wave phase velocity determine absorption of wave power by particles 6 A Simple Kinetic Model Consider a 1-dimensional oscillation along the magnetic field (or in the absence of magnetic field) Vlasov equation can be written as f t + v f z + q E(z, t) f m v =

2 The first order equation is df 1 = f 1 t + v f 1 z = q m E(z, t)df (v) dv The left hand side is called the convective derivative, and signifies time derivative along the particle trajectory Taking E(z, t) = R[E 1 exp(ikz iωt)], the solution can be expressed as [ iqe1 f 1 (z, v, t) = g 1 (z vt, v) R m df (v) dv 1 eikz iωt ei(ω kv)(t t) ω kv where g 1 (z vt, v) is the homogeneous solution (solution for E = ), and is chosen to satisfy the initial condition The last term ], is shown in Fig 1 F (u) = 1 ei(u u)τ u u = 1 ei(ω kv)(t t ) ω kv Fg 1 Real and imaginary parts of the resonance term F (u) It was pointed out in Chap 3 that to satisfy causality the integration contour on the complex ω plane must be taken above the singularity that exists on the real ω axis This is mathematically equivalent to shifting the singularity slightly to the negative imaginary side of the real axis This can be accomplished by introducing randomization by collisions The probability of not suffering collisions since t = t is given by exp[ ν(t t )], where ν is the collision frequency Multiplying this probability and averaging over all particles reaching z and v at time t, [ ] iqe1 df (v) 1 f 1 (z, v, t) = R m dv eikz iωt ω kv + iν For a nearly Maxwellian distribution function, df /dv has a velocity wih of order v th, whereas 1/(ω kv + iν) has a wih of ν/k, as illustrated in Fig 3

3 Fg The functions df dv and 1 ω kv + iν 63 Validity Conditions for Landau Damping The bottom of a sinusoidal potential well can be approximated as qϕ [1 cos(kx)] qϕ k x A charged particle oscillates harmonically in this potential with period τ osc = 1 m = ω osc qke The following conditions must be satisfied for valid Landau damping 1 ω i τ osc > 1 Significant growth (or damping) must occur before v changes substantially (which occurs in an oscillation time in the potential well, τ osc ), since linear theory assumes v = const ν coll τ osc > 1 The collision time τ coll must be shorter than τ osc to ensure the assumption v = const 3 k λ mfp > 1 (v th > ν coll /k ) Mean free path must be longer than a wavelength for particles to recognize the presence of a wave The valid range of collision frequency is shown in Fig 3 Fg 3 The valid range of collision frequency for Landau damping 4

4 64 ES Waves in a Maxwellian Unmagnetized Plasma Assume a drifting Maxwellian plasma, given by f s (v) = n s exp [ (v V s) ], πvths v ths where v ths = T s/m s For real k, Iω > and defining τ = t t f 1 (ω, k, v) = nqe(ω, k) πmvth d dv (v V ) dτe i(ω kv)τ e v th It is useful to define v p moments of the distribution function, Z p (ω, v th, k, V, nω) = ik π In particular, for p = where and dv v p Z (ζ n ) = i π sgn(k )e ζ n S(ζn ) ζ n = ω k V nω k v th ζ S(ζ) = e ζ dz e z = S( ζ) dτ e i(ω nω k v)τ e (v V ) v th The functions S(ζ) and ( π/) exp( ζ ) are illustrated in Fig 4 π Fg 4 The functions S(x) and e x parts of the plasma dispersion function which describe the real and imaginary The dispersion relation for a 1-D electrostatic wave in the absence of magnetic field can be derived from Poisson s equation ike(ω, k) = s q s ϵ f s1 (v, ω, k)dv 5

5 as k = s 1 λ ds Z (ζ (s) ) where and λ ds = n sq s ϵ T s Z (ζ) = [1 + ζz (ζ)] A closely related function is called the plasma dispersion function, which is defined as ) Z(ζ) = i dz exp (iζz z 4 The functions Z and Z are related to each other as { Z(ζ) for k > Z (ζ) = Z( ζ) for k < 6

Fundamentals of wave kinetic theory

Fundamentals of wave kinetic theory Fundamentals of wave kinetic theory Introduction to the subject Perturbation theory of electrostatic fluctuations Landau damping - mathematics Physics of Landau damping Unmagnetized plasma waves The plasma

More information

Lectures on basic plasma physics: Kinetic approach

Lectures on basic plasma physics: Kinetic approach Lectures on basic plasma physics: Kinetic approach Department of applied physics, Aalto University April 30, 2014 Motivation Layout 1 Motivation 2 Boltzmann equation (a nasty bastard) 3 Vlasov equation

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Solution for Problem Set 19-20

Solution for Problem Set 19-20 Solution for Problem Set 19-0 compiled by Dan Grin and Nate Bode) April 16, 009 A 19.4 Ion Acoustic Waves [by Xinkai Wu 00] a) The derivation of these equations is trivial, so we omit it here. b) Write

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Influence of Generalized (r, q) Distribution Function on Electrostatic Waves

Influence of Generalized (r, q) Distribution Function on Electrostatic Waves Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 550 554 c International Academic Publishers Vol. 45, No. 3, March 15, 2006 Influence of Generalized (r, q) istribution Function on Electrostatic Waves

More information

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves Integration of Fokker Planck calculation in full wave FEM simulation of LH waves O. Meneghini S. Shiraiwa R. Parker 51 st DPP APS, Atlanta November 4, 29 L H E A F * Work supported by USDOE awards DE-FC2-99ER54512

More information

Macroscopic dielectric theory

Macroscopic dielectric theory Macroscopic dielectric theory Maxwellʼs equations E = 1 c E =4πρ B t B = 4π c J + 1 c B = E t In a medium it is convenient to explicitly introduce induced charges and currents E = 1 B c t D =4πρ H = 4π

More information

EXAMINATION QUESTION PAPER

EXAMINATION QUESTION PAPER Faculty of Science and Technology EXAMINATION QUESTION PAPER Exam in: Fys-2009 Introduction to Plasma Physics Date: 20161202 Time: 09.00-13.00 Place: Åsgårdvegen 9 Approved aids: Karl Rottmann: Matematisk

More information

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE Abhay K. Ram Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139. U.S.A. Joan Decker

More information

13.1 Ion Acoustic Soliton and Shock Wave

13.1 Ion Acoustic Soliton and Shock Wave 13 Nonlinear Waves In linear theory, the wave amplitude is assumed to be sufficiently small to ignore contributions of terms of second order and higher (ie, nonlinear terms) in wave amplitude In such a

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

Landau and Van Kampen Spectra in Discrete Kinetic Plasma Systems

Landau and Van Kampen Spectra in Discrete Kinetic Plasma Systems Landau and Van Kampen Spectra in Discrete Kinetic Plasma Systems Vasil Bratanov Master Thesis Physics Department LMU Munich Scientific Advisor: Prof. Dr. Frank Jenko Advisor at the LMU: Prof. Dr. Hartmut

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Methods of plasma description Particle motion in external fields

Methods of plasma description Particle motion in external fields Methods of plasma description (suggested reading D.R. Nicholson, chap., Chen chap., 8.4) Charged particle motion in eternal electromagnetic (elmg) fields Charged particle motion in self-consistent elmg

More information

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations 1856-30 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 The particle-in-cell M. E. Dieckmann Institut fuer Theoretische Physik IV, Ruhr-Universitaet, Bochum, Germany The particle-in-cell

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

9 The conservation theorems: Lecture 23

9 The conservation theorems: Lecture 23 9 The conservation theorems: Lecture 23 9.1 Energy Conservation (a) For energy to be conserved we expect that the total energy density (energy per volume ) u tot to obey a conservation law t u tot + i

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Vlasov-Maxwell Equations and Cold Plasma Waves

Vlasov-Maxwell Equations and Cold Plasma Waves Astronomy 53 Spring 016) uening Bai Mar.,, 016 Vlasov-Maxwell Equations and Cold Plasma Waves The Vlasov-Maxwell equations Consider a plasma as a collection of N charged particles, each particle i has

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

2.2 Schrödinger s wave equation

2.2 Schrödinger s wave equation 2.2 Schrödinger s wave equation Slides: Video 2.2.1 Schrödinger wave equation introduction Text reference: Quantum Mechanics for Scientists and Engineers Section Chapter 2 introduction Schrödinger s wave

More information

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D)

More information

MHD WAVES AND GLOBAL ALFVÉN EIGENMODES

MHD WAVES AND GLOBAL ALFVÉN EIGENMODES MHD WVES ND GLOBL LFVÉN EIGENMODES S.E. Sharapov Euratom/CCFE Fusion ssociation, Culham Science Centre, bingdon, Oxfordshire OX14 3DB, UK S.E.Sharapov, Lecture 3, ustralian National University, Canberra,

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Error functions. Nikolai G. Lehtinen. April 23, erf x = 2 x. e t2 dt (1) π. erf ( ) = 1, erf (+ ) = 1 erf (x ) = [erf (x)]

Error functions. Nikolai G. Lehtinen. April 23, erf x = 2 x. e t2 dt (1) π. erf ( ) = 1, erf (+ ) = 1 erf (x ) = [erf (x)] Error functions Nikolai G. Lehtinen April 3, 1 1 Error function erf x and complementary error function erfc x Gauss) error function is and has properties erf x = x e t dt 1) π erf ) = 1, erf + ) = 1 erf

More information

The interaction of light and matter

The interaction of light and matter Outline The interaction of light and matter Denise Krol (Atom Optics) Photon physics 014 Lecture February 14, 014 1 / 3 Elementary processes Elementary processes 1 Elementary processes Einstein relations

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Observations on the ponderomotive force

Observations on the ponderomotive force Observations on the ponderomotive force D.A. Burton a, R.A. Cairns b, B. Ersfeld c, A. Noble c, S. Yoffe c, and D.A. Jaroszynski c a University of Lancaster, Physics Department, Lancaster LA1 4YB, UK b

More information

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016 Hamiltonian versus Newtonian mechanics Newtonian mechanics:

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Kinetic theory of Jeans instability

Kinetic theory of Jeans instability PHYSICAL REVIEW E 69, 066403 (2004) Kinetic theory of Jeans instability S. A. Trigger, 1, * A. I. Ershkovich, 2 G. J. F. van Heijst, 3 and P. P. J. M. Schram 3 1 Joint Institute for High Temperatures,

More information

Lectures on basic plasma physics: Introduction

Lectures on basic plasma physics: Introduction Lectures on basic plasma physics: Introduction Department of applied physics, Aalto University Compiled: January 13, 2016 Definition of a plasma Layout 1 Definition of a plasma 2 Basic plasma parameters

More information

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018)

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018) AST 553. Plasma Waves and Instabilities Course Outline (Dated: December 4, 2018) I. INTRODUCTION Basic concepts Waves in plasmas as EM field oscillations Maxwell s equations, Gauss s laws as initial conditions

More information

Wave Phenomena Physics 15c. Lecture 17 EM Waves in Matter

Wave Phenomena Physics 15c. Lecture 17 EM Waves in Matter Wave Phenomena Physics 15c Lecture 17 EM Waves in Matter What We Did Last Time Reviewed reflection and refraction Total internal reflection is more subtle than it looks Imaginary waves extend a few beyond

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9 WiSe 202 20.2.202 Prof. Dr. A-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Matthias Saba am Lehrstuhl für Theoretische Physik I Department für Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Kinetic, Fluid & MHD Theories

Kinetic, Fluid & MHD Theories Lecture 2 Kinetic, Fluid & MHD Theories The Vlasov equations are introduced as a starting point for both kinetic theory and fluid theory in a plasma. The equations of fluid theory are derived by taking

More information

The Equipartition Theorem

The Equipartition Theorem Chapter 8 The Equipartition Theorem Topics Equipartition and kinetic energy. The one-dimensional harmonic oscillator. Degrees of freedom and the equipartition theorem. Rotating particles in thermal equilibrium.

More information

Kinetic Theory of the Presheath and the Bohm Criterion

Kinetic Theory of the Presheath and the Bohm Criterion UW-CPTC 10-3 Kinetic Theory of the Presheath and the Bohm Criterion S D Baalrud and C C Hegna Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706,

More information

ELECTROMAGNETISM SUMMARY

ELECTROMAGNETISM SUMMARY Review of E and B ELECTROMAGNETISM SUMMARY (Rees Chapters 2 and 3) The electric field E is a vector function. E q o q If we place a second test charged q o in the electric field of the charge q, the two

More information

Relativistic description of electron Bernstein waves

Relativistic description of electron Bernstein waves PSFC/JA-6-7 Relativistic description of electron Bernstein waves J. Decker and A.K. Ram October 6 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 39 USA This work was

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Landau Damping Simulation Models

Landau Damping Simulation Models Landau Damping Simulation Models Hua-sheng XIE (u) huashengxie@gmail.com) Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, P.R.China Oct. 9, 2013

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Kinetic Theory of Warm Plasmas

Kinetic Theory of Warm Plasmas Contents 22 Kinetic Theory of Warm Plasmas 1 22.1 Overview...................................... 1 22.2 Basic Concepts of Kinetic Theory and its Relationship to Two-Fluid Theory 3 22.2.1 Distribution Function

More information

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions Lecture 8 1 Introduction Solutions to Laplace s equation can be obtained using separation of variables in Cartesian and

More information

3 Constitutive Relations: Macroscopic Properties of Matter

3 Constitutive Relations: Macroscopic Properties of Matter EECS 53 Lecture 3 c Kamal Sarabandi Fall 21 All rights reserved 3 Constitutive Relations: Macroscopic Properties of Matter As shown previously, out of the four Maxwell s equations only the Faraday s and

More information

EFFECTIVE ELECTROSTATIC PLASMA LENS FOR FOCUSSING OF HIGH-CURRENT ION BEAMS

EFFECTIVE ELECTROSTATIC PLASMA LENS FOR FOCUSSING OF HIGH-CURRENT ION BEAMS EFFECTIVE ELECTROSTATIC PLASMA LENS FOR FOCUSSING OF HIGH-CURRENT ION BEAMS V.I.Maslov, A.A.Goncharov*, Yu.V.Melentsov**, I.N.Onishchenko, D.A.Sytnykov**, V.N.Tretyakov** NSC Kharkov Institute of Physics

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Light in Matter (Hecht Ch. 3)

Light in Matter (Hecht Ch. 3) Phys 531 Lecture 3 9 September 2004 Light in Matter (Hecht Ch. 3) Last time, talked about light in vacuum: Maxwell equations wave equation Light = EM wave 1 Today: What happens inside material? typical

More information

The Interaction of Light and Matter: α and n

The Interaction of Light and Matter: α and n The Interaction of Light and Matter: α and n The interaction of light and matter is what makes life interesting. Everything we see is the result of this interaction. Why is light absorbed or transmitted

More information

Spontaneous Emission, Stimulated Emission, and Absorption

Spontaneous Emission, Stimulated Emission, and Absorption Chapter Six Spontaneous Emission, Stimulated Emission, and Absorption In this chapter, we review the general principles governing absorption and emission of radiation by absorbers with quantized energy

More information

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR 1 ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR R. L. Merlino Department of Physics and Astronomy University of Iowa Iowa City, IA 52242 December 21, 2001 ABSTRACT Using a fluid treatment,

More information

Waves in plasmas. S.M.Lea

Waves in plasmas. S.M.Lea Waves in plasmas S.M.Lea 17 1 Plasma as an example of a dispersive medium We shall now discuss the propagation of electromagnetic waves through a hydrogen plasm an electrically neutral fluid of protons

More information

Electron-Acoustic Wave in a Plasma

Electron-Acoustic Wave in a Plasma Electron-Acoustic Wave in a Plasma 0 (uniform ion distribution) For small fluctuations, n ~ e /n 0

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

Scattering of Electromagnetic Radiation. References:

Scattering of Electromagnetic Radiation. References: Scattering of Electromagnetic Radiation References: Plasma Diagnostics: Chapter by Kunze Methods of experimental physics, 9a, chapter by Alan Desilva and George Goldenbaum, Edited by Loveberg and Griem.

More information

Cyclotron Damping in Magnetized Plasmas

Cyclotron Damping in Magnetized Plasmas Master of Science Thesis in Physics Cyclotron Damping in Magnetized Plasmas ROLANDO AYLLON SALINAS Supervisor: Gert Brodin, Department of Physics, Umeå University. Examiner: Jens Zamanian, Department of

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Massachusetts Institute of Technology Department of Physics Physics 87 Fall 25 Problem Set 1 Solutions Problem 1: EM Waves in a Plasma a Transverse electromagnetic waves have, by definition, E = Taking

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

Landau damping in space plasmas with generalized r, q distribution function

Landau damping in space plasmas with generalized r, q distribution function PHYSICS OF PLASMAS 12, 122902 2005 Landau damping in space plasmas with generalized r, q distribution function M. N. S. Qureshi Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing

More information

The Impact of Information Technology Architecture on Supply Chain Performance. Ken Dozier and David Chang USC Engineering Technology Transfer Center

The Impact of Information Technology Architecture on Supply Chain Performance. Ken Dozier and David Chang USC Engineering Technology Transfer Center 1 The Impact of Information Technology Architecture on Supply Chain Performance Ken Dozier and David Chang USC Engineering Technology Transfer Center September 4, 006 Abstract Supply chain oscillations

More information

6. Molecular structure and spectroscopy I

6. Molecular structure and spectroscopy I 6. Molecular structure and spectroscopy I 1 6. Molecular structure and spectroscopy I 1 molecular spectroscopy introduction 2 light-matter interaction 6.1 molecular spectroscopy introduction 2 Molecular

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

Longitudinal Beam Dynamics

Longitudinal Beam Dynamics Longitudinal Beam Dynamics Shahin Sanaye Hajari School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran IPM Linac workshop, Bahman 28-30, 1396 Contents 1.

More information

Kinetic Theory of Warm Plasmas

Kinetic Theory of Warm Plasmas Contents 22 Kinetic Theory of Warm Plasmas 1 22.1 Overview...................................... 1 22.2 Basic Concepts of Kinetic Theory and its Relationship to Two-FluidTheory 3 22.2.1 Distribution Function

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves MHD Waves Robertus vfs Robertus@sheffield.ac.uk SP RC, School of Mathematics & Statistics, The (UK) What are MHD waves? How do we communicate in MHD? MHD is kind! MHD waves are propagating perturbations

More information

The ideal Maxwellian plasma

The ideal Maxwellian plasma The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a

More information

Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh

Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh SOLITARY AND SHOCK WAVES IN DUSTY PLASMAS Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh OUTLINE Introduction Static Dust: DIA Waves DIA Solitary Waves DIA Shock Waves Mobile

More information

Theory of Ship Waves (Wave-Body Interaction Theory) Quiz No. 2, April 25, 2018

Theory of Ship Waves (Wave-Body Interaction Theory) Quiz No. 2, April 25, 2018 Quiz No. 2, April 25, 2018 (1) viscous effects (2) shear stress (3) normal pressure (4) pursue (5) bear in mind (6) be denoted by (7) variation (8) adjacent surfaces (9) be composed of (10) integrand (11)

More information

Zangwill 17.22: A Photonic Band Gap Material Zangwill 18.14: Energy Flow in the Lorentz Model

Zangwill 17.22: A Photonic Band Gap Material Zangwill 18.14: Energy Flow in the Lorentz Model Problem. Drude Model of Metals The Drude model describes the interactions of n electrons per volume with the electric field by the drag model m dv dt + mv = ee(t) () τ c We estimated previously that plasma

More information

Basics of electromagnetic response of materials

Basics of electromagnetic response of materials Basics of electromagnetic response of materials Microscopic electric and magnetic field Let s point charge q moving with velocity v in fields e and b Force on q: F e F qeqvb F m Lorenz force Microscopic

More information

Plasma waves in the fluid picture I

Plasma waves in the fluid picture I Plasma waves in the fluid picture I Langmuir oscillations and waves Ion-acoustic waves Debye length Ordinary electromagnetic waves General wave equation General dispersion equation Dielectric response

More information

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation Radiation Damping Lecture 18 1 Introduction to the Abraham-Lorentz equation Classically, a charged particle radiates energy if it is accelerated. We have previously obtained the Larmor expression for the

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Mitglied der Helmholtz-Gemeinschaft Introduction to Plasma Physics CERN School on Plasma Wave Acceleration 24-29 November 2014 Paul Gibbon Outline Lecture 1: Introduction Definitions and Concepts Lecture

More information

Classwork IV The Wave Equation in 3D

Classwork IV The Wave Equation in 3D Electromagnetism II 20th February 2012 Classwork IV The Wave Equation in 3D So far, we have resolved the components of Maxwell s equations to be able to determine wave solutions. Here, we practise using

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Chapter 10. Past exam papers

Chapter 10. Past exam papers Chapter 10 Past exam papers 184 Plasma Physics C17 1993: Final Examination Attempt four questions. All six are of equal value. The best four marks will be considered, but candidates are discouraged from

More information

Wave-particle interactions in dispersive shear Alfvèn waves

Wave-particle interactions in dispersive shear Alfvèn waves Wave-particle interactions in dispersive shear Alfvèn waves R. Rankin and C. E. J. Watt Department of Physics, University of Alberta, Edmonton, Canada. Outline Auroral electron acceleration in short parallel

More information

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Tom Elsden 1 Andrew Wright 1 1 Dept Maths & Stats, University of St Andrews DAMTP Seminar - 8th May 2017 Outline Introduction Coordinates

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info Light and Matter Thursday, 8/31/2006 Physics 158 Peter Beyersdorf Document info 3. 1 1 Class Outline Common materials used in optics Index of refraction absorption Classical model of light absorption Light

More information

Step Response Analysis. Frequency Response, Relation Between Model Descriptions

Step Response Analysis. Frequency Response, Relation Between Model Descriptions Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 November 9, 27 Lund University, Department of Automatic Control Content. Step

More information

RF cavities (Lecture 25)

RF cavities (Lecture 25) RF cavities (Lecture 25 February 2, 2016 319/441 Lecture outline A good conductor has a property to guide and trap electromagnetic field in a confined region. In this lecture we will consider an example

More information

The Angular Momentum Controversy: Resolution of a Conflict Between Laser and Particle Physics. Elliot Leader. Imperial College London

The Angular Momentum Controversy: Resolution of a Conflict Between Laser and Particle Physics. Elliot Leader. Imperial College London The Angular Momentum Controversy: Resolution of a Conflict Between Laser and Particle Physics Elliot Leader Imperial College London 1 WHAT S IT ALL ABOUT? THE CONCEPTS INVOLVED THE PARTICLE PHYSICS CONTRO-

More information

Vlasov simulations of wave-particle interactions and turbulence in magnetized plasma

Vlasov simulations of wave-particle interactions and turbulence in magnetized plasma Vlasov simulations of wave-particle interactions and turbulence in magnetized plasma IRF-U, Uppsala, 16 November 2016 Bengt Eliasson ABP Group, Physics Department, SUPA Strathclyde University, UK Collaborators:

More information

A.G. PEETERS UNIVERSITY OF BAYREUTH

A.G. PEETERS UNIVERSITY OF BAYREUTH IN MEMORIAM GRIGORY PEREVERZEV A.G. PEETERS UNIVERSITY OF BAYREUTH ESF Workshop (Garching 2013) Research areas Grigory Pereverzev. Current drive in magnetized plasmas Transport (ASTRA transport code) Wave

More information

Quantum Light-Matter Interactions

Quantum Light-Matter Interactions Quantum Light-Matter Interactions QIC 895: Theory of Quantum Optics David Layden June 8, 2015 Outline Background Review Jaynes-Cummings Model Vacuum Rabi Oscillations, Collapse & Revival Spontaneous Emission

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

Traveling Harmonic Waves

Traveling Harmonic Waves Traveling Harmonic Waves 6 January 2016 PHYC 1290 Department of Physics and Atmospheric Science Functional Form for Traveling Waves We can show that traveling waves whose shape does not change with time

More information

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17 Plasma Effects p.1/17 Plasma Effects Massimo Ricotti ricotti@astro.umd.edu University of Maryland Plasma Effects p.2/17 Wave propagation in plasma E = 4πρ e E = 1 c B t B = 0 B = 4πJ e c (Faraday law of

More information

NON-LINEAR DYNAMICS OF NON-NEUTRAL PLASMAS

NON-LINEAR DYNAMICS OF NON-NEUTRAL PLASMAS Plasma Physics and Controlled Fusion, Vol. 32. KO. 13. pp. 1209 to 1219, 1990 Printed in Great Britain. 0741-3335 90 $3 00+ 00 IOP Publishing Lid and Pergamon Press plc NON-LINEAR DYNAMICS OF NON-NEUTRAL

More information

Magnetohydrodynamic waves in a plasma

Magnetohydrodynamic waves in a plasma Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.

More information