Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Size: px
Start display at page:

Download "Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at"

Transcription

1 Annals of Mathematics An Elementary Proof of Dirichlet's Theorem About Primes in an Arithmetic Progression Author(s): Atle Selberg Source: Annals of Mathematics, Second Series, Vol. 50, No. 2 (Apr., 1949), pp Published by: Annals of Mathematics Stable URL: Accessed: :26 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics

2 ANNALS OF MATHMATICS Vol. 50, No. 2, April, 1949 AN ELEMENTARY PROOF OF DIRICHLET'S THEOREM ABOUT PRIMES IN AN ARITHMETIC PROGRESSION By ATLE SELBERG (Received August 18, 1948) 1. A classical theorem by Dirichlet asserts that every arithmetic progressio ky + 1, where the positive integers k and 1 are relatively prime, represents infinitely many primes as y runs over the positive integers. The object of this paper is to give a new and more elementary proof of this theorem. More elementary in the respect that we do not use the complex characters mod k, and also in that we consider only finite sums. More precisely the theorem that is proved in this paper is the following: For every positive integer k, there exist positive numbers Ck and xo depending only on k, such that, when (k, 1) = 1 we have 1o 1 ( 1. 1 ) E log P > Ck log x, f or x > Xo. pe I(k) The value we will obtain for the Ck could easily be improved, but this is of little interest. 2. Notations. We write in the following, supposing the k fixed, (2.1) Si(x) = log p QI(x) = Sl(x) P:!z p log x' PHIT(k) Further li(d) denotes the M6bius function, and (2.2) Xd = Xd,z = t(d) log. We make use of the formulas (2.3) log P - log x + 0(1), and, lr(x) denoting the number of primes < x (2.4) Tr(x) = 0 o x) which are both well known results, w Finally x(n) will always denote a real, 3. In this paragraph we shall prove 1 Here and in the following, p always denote 297

3 298 ATLE SELBERG We start with the expression on = On,: - z Xci din where n is a positive integer and the summation is extended over all divisors d of n. We shall prove that log2 x, for n = 1, (3.1) OR = J log p logx2/p, for n = pa, a > 1, 2log p log q, forn =paq, a > 1, >1, 0, for all other n. This follows immediately when we remark, that it is clearly enough to prove it for quadrat-frei numbers. Writing n = PlP2 *. pi where the primes are different from each other, one has OVlV2*PVitZ = 0P1P2*Vi-1.z - 0PVP2*..Pi. -,/Pi l from which the result follows at once by induction. Hence, for (1, k) = 1 2 O2 = log p lcg -+ lgplog q 2 n5p5 paz; pj pa<z n l k a_ I (A;) VaQ0 (k)i +*O(logz)= x j log p + logp log q + O (log p log ) P:5 X q< p< p (3.2' 1)p (k pqz \I(k) + 0 logx j logp + 0 ( F log p log q + 0(log2 x) j auz J paq$~ < P<a 2 pab c- =2/ \ a22 / a~2 / = i lcg2 p + E log p log q + O(x), p < pq <a p - I (A;) pq --I (k) where the 0-terms are easily estimated by means of (2.4) and (2.3). On the other hand we have on@ = E Xd E 1 = - E -d + O( E I X ) X E I'd + o(x), npx d<s din k d5z d d~x k d<z d n Il(k) (d.k)-l n S x (d.c)=l (d.k)=1 n - I (k) since E I Xd E log? = O(x). d~x d z d 2 We may omit the factor 2 befor

4 DIRICHLET 'S THEOREM ABOUT PRIMES 299 Comparing this with (3.2) we get E log2p? + E log p log p =X X + +0(x). p5z pqcz k d<z d p_- Z(k) p qi- I (k) (d.k)=l By summing over all residues 1 mod. k and observing that for (1, k) > 1 the left-hand side of the above formula is O(x) by (2.4), we get if wp(k) denotes Eulers function, E log2 p + E log p log q P?Z ' pq?z < (3p3) pq-i (k) From this we deduce by partial summation -1 ) E log2 p + E logplogq} + O(x). sp(k) p<p pq<-z E log2 p + E log p log q 1 p5 X, p pq:z Pq V(k) (3r4) p t-_l (k) pq oi (k) _ pg pq J + 0(log x) =l -lg log2 x + 0(log X), the last form being obtained by summing EpZ5 log2 p/p a Eq-<Xp log q/q by means of (2.3). or In the same way we deduce from (3.3) that log' +ogpq= log3x + l0(log2 )o P:5x P pq:!z pq 3pr(k) p2 I (k) Pq Si (k) (3.5) E +2 E log P 3 (k) log3 X + 0(log2 X), P- I (k) pq- I (k) writing now z log p log2 q _ 0 log p log2 q, pqcz pq pcx P qx/f p pq-i(k) prk q Ip(k) q where p is determined by p- 1(k log p log2 q _ () Xl p p - _ log p pq'z pq _(k) p ~x p P P5x p qk) log q log r + O log p log x) qr!-f X/p ( _ ) lg qrrglp(k) gr \P:5? P = -lq oploqlog r + 1 lo3 x + 0(log2 x), Pq r:5z pqr 3p(k) pqr_ I(k) 3 It is possible to estimate this series elementary, one finds it is 2' A/o(k) log x From the resulting formula one can give an elementary proof of the prime-number theorem.

5 300 ATLE SELBERG since one easily deduces from (2.3) that E log P log2$ = log3 x + O(log2 x). pzs P p Inserting the above result in (3.5) one gets (3.6) E -P = 2 E log p log q log r+ O(log2 x). p<z P pqrv_ pqr P-= I k Pqr l (A;) Again from (3.4) we deduce that log2 P?l1 log2x + O(log x), p p =o(k) p I(k) from which we easily find, by partial summation, Now by (3.7) 3 log p 2 logx + O(loglogx). p<sz p fk)~ '" ' p- (k) z logp logq i < logp logqq +2 logp logq pqz $ pq pli XIq1zII q I3<p.X P - q Pqql(k) pq wk(k) I'3< psq p p + O(log log x 5 logp log p log q p<x P P6x1/3 q<sz13 pq pq- I (k) + 9 log2 X + O(log x log log x by (2.3). Inserting this in (3.4) we get log2p > 1 log2 x logp logzq + O(logZ loglogx) p$ p = 9'p(k) pfxl/3 q<=1i3 pq P~~~~ 1(k) ~~~~~~pqa t(k) or, for x> xo logx log P > 1 log - / logplog q pa P~5 p I l~p (k) (k) pq- log x ~13 I (k) q;szlf3 pq from which log x * Sz(x) > log2 x - Sm(x 18)Sm'(X 113) O(p (k) mi_ I W

6 DIRICHLET 'S THEOREM ABOUT PRIMES 301 where the sum is taken over all pairs of residues mod. k with mm' -(k). Dividing by log2 x we get (3.8) Q1(x) > 1 1 Qm(x"')Qm'(zx11), for x > xo. In a similar way, we get from (3.6) that (3.9) Q1(x) E2 - Qm(xl1 )Qmt#(X13)Qmii(X113) 0 ( ) 27 mm'am"_i=(k) log x (3.7) gives (3.10) Qz(x) :?(2 + 0 (log log x) 4. We now proceed to prove the following LEMMA 1. For every real, nonprincipal character x mod k we have log P > 1 log x for x > xo. X (P)-1 We make use of the fact, which can be deduced from the law of reciprocity for the quadratic residue symbols, that to each x there exist an integer D which is not a square and I D I < k2, such that for all primes p we have x(p) = (Dip) where (Dip) is the ordinary quadratic residue symbol.4 What we shall prove then is (4.1) E log p > 1 log x for x > xo. (D/ p)-1 We consider the product (4.2) P= II' _ u?-dvi? I u. I/z12 where the dash HI' indicates that th seen that for x > xo (4.3) log P > logx. Let us estimate the exponent of the highest power of a prime p which divides P. First suppose that (Dip) = 1. We try to estimate how many solutions the congruence 2u U2-2 DyV2 _ (P), 4 See for instance Dirichlet-Dedekind: Vorlesungen uiber Zahlentheorie, the beginning of?135.

7 302 ATLE SELBERG has in the given range for u and then we see that if (u, v) is another we have or one of the congruences (uvp)2 - (up) - 0(p), UVO? UOV B 0(p), must be satisfied. The number of solutions in the given range for u and v of these congruences is easily estimated to be less than 4x px/5+ O (O. Thus at most 8x/(pV/D) + 0(x/p) of the numbers u2 - Dv2 contain the prime p as a factor, and in the same manner, we prove that at most 8x of the u2 - Dv contain less than 8 xoq11f= 8 x+(44). On the other hand if (D/p) = -1, we easily see, that since p has to divide both u and v in order to divide u2 - DV2, the product P will contain p to a power less than OQ( ). Finally if (Dlp) = 0, or p/d, we have that P contains p to a power less than 0 (x). These results give logp 5 8 a E + op 0 E ogp (D/ p)l + + 0(x210 x log P) + O ( (x?log p g: zp\ pid io =8 l + O(x) (DI p)=1 S(U., v.) is assumed to be a nontrivial solution, i.e. (u0, p) - (v.

8 DIRICHLET 'S THEOREM ABOUT PRIMES 303 Comparing this with (4.3) we get (D/p)=l E log P+ 0(1) > log x, or which proves our lemma. E og P > log x for x > xo, P<X P (D/p)=l 5. LEMMA 2. Suppose that we have a set of different residues ml, M2, **m mod k, such that they all are relatively prime to k. Further suppose that h > (o(k)), and that to each real character x mod k, we can find an m in the set with x(m) = 1. Let (1, k) = 1, and suppose that there is a m and m', not necessarily different, belonging to the set for which mm' _(k). Then we can find a triple of residues belonging to the set (m, m', mrn)6 such that or Assume that always mim'm" _(k). Min^m^2i3 1(k), (5.1) milmi2 0 lfnim3(k). Since the left-hand side can assume at least h different7 values and the right-hand side h different values, we see that the lemma is true for h > 1(w(k)). Thus we will assume h = 2(w(k)). Then we see from (5.1) that the product mi1mi2 can assume only h different values. Writing ni = mifm1 the same will be the case with the h residues ni = 1, n2,..., nh. From this we see that these residues form a group with respect to multiplication. We then define a real character x(n) which is 1 for n1, n2, * * *, nh and -1 for the other h residues. For this character we would have for i = 1, 2,...,h x(mi) = x(mi). According to the assumption, there is at least one mi with x(mi) = 1, so th all mi, x(mi) = 1. From this we get x(l) x(m)y(m') = 1 so that both 1 and 1 will be found in the set of mi, since (k), this contradicts (5.1) so our lemma is completely proved. 6. We are now able to prove the theorem stated in section 1. More precisely we will show that (6.1) QjX() > ( (k)) for x > X 6 The m and m' do not necessarily mean the same residues as in the preceding congruence. 7When we say different we mean different mod k.

9 304 ATLE SELBERG Let us assume that (6.2) QI(x) <30p(k)' for some large x. From (3.10) we see that since by (2.3), Ad Qn(x ) = 1 +? (1s)X we can find at least I(po(k)) values m for which Qm(XI1/ ) > 20( (k) for x > xo. Further from Lemma 1, for any real non-principal character Z Qn(Xll') > for x > xo, X(n)=l so that there exist at least one Qm(xl/3) > 2(9%p(k)) with x(m) = 1. Finally from (3.8) and (6.2), E Qn(X"3)Qn1(X"3) > 1 n n'i= 1(k)lok) so that there exists at least one pair of residues m, m' with mm' I(k) and Qm(X113)Qm'(X1/3) > or by (3.10) / / QM(xl/ ) > 31<,o(k) > Thus we can find a set of different residues mod k, min, m m, with h > (((k)) so that Qmj(x1/3) > 20Qp(k))2 for i = 1, 2, * *, h, and that further to each real character x there is a m, with X(m,) = 1, and finally there exist residues m, m' belonging to this set, such that mm' = (k). From Lemma 2 we then conclude that there exist residues m, mt', i" in set with mm'min" 1(k). Then (3.9) gives >2 /~i3 f~13)q 13) - 1 \> 1 Q1(x) > 2 Qt(log )Qn(Zx )Q,,(/ - (I ) > (20)4%p(k))' for x > xo, which proves our theorem. THE INSTITUTE FOR ADVANCED STUDY

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. On Runs of Residues Author(s): D. H. Lehmer and Emma Lehmer Source: Proceedings of the American Mathematical Society, Vol. 13, No. 1 (Feb., 1962), pp. 102-106 Published by: American Mathematical Society

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. On the Bound for a Pair of Consecutive Quartic Residues of a Prime Author(s): R. G. Bierstedt and W. H. Mills Source: Proceedings of the American Mathematical Society, Vol. 14, No. 4 (Aug., 1963), pp.

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The Indices of Torsion-Free Subgroups of Fuchsian Groups Author(s): R. G. Burns and Donald Solitar Source: Proceedings of the American Mathematical Society, Vol. 89, No. 3 (Nov., 1983), pp. 414-418 Published

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Merging of Opinions with Increasing Information Author(s): David Blackwell and Lester Dubins Source: The Annals of Mathematical Statistics, Vol. 33, No. 3 (Sep., 1962), pp. 882-886 Published by: Institute

More information

P. ERDÖS 2. We need several lemmas or the proo o the upper bound in (1). LEMMA 1. { d ( (k)) r 2 < x (log x)c5. This result is due to van der Corput*.

P. ERDÖS 2. We need several lemmas or the proo o the upper bound in (1). LEMMA 1. { d ( (k)) r 2 < x (log x)c5. This result is due to van der Corput*. ON THE SUM E d( (k)). k=i 7 ON THE SUM E d ( (k)) k-, P. ERDÖS*. 1. Let d(n) denote the number o divisors o a positive integer n, and let (k) be an irreducible polynomial o degree l with integral coe icients.

More information

k DIVISOR FUNCTION 177 THEOREM 2. Conjecture B is true. More precisely, let k be fixed, ak = k(21 /k - 1). Then for sufficiently large x, C,(k) x(log

k DIVISOR FUNCTION 177 THEOREM 2. Conjecture B is true. More precisely, let k be fixed, ak = k(21 /k - 1). Then for sufficiently large x, C,(k) x(log Values of the Divisor Function on Short Intervals P. ERDŐS Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary AND R. R. HALL Department of Mathematics, University of York, York

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. 6625 Author(s): Nicholas Strauss, Jeffrey Shallit, Don Zagier Source: The American Mathematical Monthly, Vol. 99, No. 1 (Jan., 1992), pp. 66-69 Published by: Mathematical Association of America Stable

More information

ON THE LEAST PRIMITIVE ROOT MODULO p 2

ON THE LEAST PRIMITIVE ROOT MODULO p 2 ON THE LEAST PRIMITIVE ROOT MODULO p 2 S. D. COHEN, R. W. K. ODONI, AND W. W. STOTHERS Let h(p) be the least positive primitive root modulo p 2. Burgess [1] indicated that his work on character sums yields

More information

Mathematical Association of America

Mathematical Association of America Mathematical Association of America http://www.jstor.org/stable/2975232. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at. http://www.jstor.org/page/info/about/policies/terms.jsp

More information

TOPICS IN NUMBER THEORY - EXERCISE SHEET I. École Polytechnique Fédérale de Lausanne

TOPICS IN NUMBER THEORY - EXERCISE SHEET I. École Polytechnique Fédérale de Lausanne TOPICS IN NUMBER THEORY - EXERCISE SHEET I École Polytechnique Fédérale de Lausanne Exercise Non-vanishing of Dirichlet L-functions on the line Rs) = ) Let q and let χ be a Dirichlet character modulo q.

More information

SOME AMAZING PROPERTIES OF THE FUNCTION f(x) = x 2 * David M. Goldschmidt University of California, Berkeley U.S.A.

SOME AMAZING PROPERTIES OF THE FUNCTION f(x) = x 2 * David M. Goldschmidt University of California, Berkeley U.S.A. SOME AMAZING PROPERTIES OF THE FUNCTION f(x) = x 2 * David M. Goldschmidt University of California, Berkeley U.S.A. 1. Introduction Today we are going to have a look at one of the simplest functions in

More information

Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01

Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01 Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01 Public In this note, which is intended mainly as a technical memo for myself, I give a 'blow-by-blow'

More information

417 P. ERDÖS many positive integers n for which fln) is l-th power free, i.e. fl n) is not divisible by any integral l-th power greater than 1. In fac

417 P. ERDÖS many positive integers n for which fln) is l-th power free, i.e. fl n) is not divisible by any integral l-th power greater than 1. In fac ARITHMETICAL PROPERTIES OF POLYNOMIALS P. ERDÖS*. [Extracted from the Journal of the London Mathematical Society, Vol. 28, 1953.] 1. Throughout this paper f (x) will denote a polynomial whose coefficients

More information

Hilbert s theorem 90, Dirichlet s unit theorem and Diophantine equations

Hilbert s theorem 90, Dirichlet s unit theorem and Diophantine equations Hilbert s theorem 90, Dirichlet s unit theorem and Diophantine equations B. Sury Stat-Math Unit Indian Statistical Institute 8th Mile Mysore Road Bangalore - 560 059 India. sury@isibang.ac.in Introduction

More information

Basic Algebra. Final Version, August, 2006 For Publication by Birkhäuser Boston Along with a Companion Volume Advanced Algebra In the Series

Basic Algebra. Final Version, August, 2006 For Publication by Birkhäuser Boston Along with a Companion Volume Advanced Algebra In the Series Basic Algebra Final Version, August, 2006 For Publication by Birkhäuser Boston Along with a Companion Volume Advanced Algebra In the Series Cornerstones Selected Pages from Chapter I: pp. 1 15 Anthony

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Fermat's Little Theorem: Proofs That Fermat Might Have Used Author(s): Bob Burn Source: The Mathematical Gazette, Vol. 86, No. 507 (Nov., 2002), pp. 415-422 Published by: The Mathematical Association Stable

More information

Primitive roots in algebraic number fields

Primitive roots in algebraic number fields Primitive roots in algebraic number fields Research Thesis Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Joseph Cohen Submitted to the Senate of the Technion

More information

Predictive criteria for the representation of primes by binary quadratic forms

Predictive criteria for the representation of primes by binary quadratic forms ACTA ARITHMETICA LXX3 (1995) Predictive criteria for the representation of primes by binary quadratic forms by Joseph B Muskat (Ramat-Gan), Blair K Spearman (Kelowna, BC) and Kenneth S Williams (Ottawa,

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at A Simple Non-Desarguesian Plane Geometry Author(s): Forest Ray Moulton Source: Transactions of the American Mathematical Society, Vol. 3, No. 2 (Apr., 1902), pp. 192-195 Published by: American Mathematical

More information

The Periodogram and its Optical Analogy.

The Periodogram and its Optical Analogy. The Periodogram and Its Optical Analogy Author(s): Arthur Schuster Reviewed work(s): Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,

More information

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica. On the Optimal Character of the (s, S) Policy in Inventory Theory Author(s): A. Dvoretzky, J. Kiefer, J. Wolfowitz Reviewed work(s): Source: Econometrica, Vol. 21, No. 4 (Oct., 1953), pp. 586-596 Published

More information

P-adic numbers. Rich Schwartz. October 24, 2014

P-adic numbers. Rich Schwartz. October 24, 2014 P-adic numbers Rich Schwartz October 24, 2014 1 The Arithmetic of Remainders In class we have talked a fair amount about doing arithmetic with remainders and now I m going to explain what it means in a

More information

Primes of the Form x 2 + ny 2

Primes of the Form x 2 + ny 2 Primes of the Form x 2 + ny 2 Steven Charlton 28 November 2012 Outline 1 Motivating Examples 2 Quadratic Forms 3 Class Field Theory 4 Hilbert Class Field 5 Narrow Class Field 6 Cubic Forms 7 Modular Forms

More information

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision Author(s): Kenneth O. May Source: Econometrica, Vol. 20, No. 4 (Oct., 1952), pp. 680-684 Published by: The Econometric

More information

Genealogy of Pythagorean triangles

Genealogy of Pythagorean triangles Chapter 0 Genealogy of Pythagorean triangles 0. Two ternary trees of rational numbers Consider the rational numbers in the open interval (0, ). Each of these is uniquely in the form q, for relatively prime

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Uncountably Many Inequivalent Analytic Actions of a Compact Group on Rn Author(s): R. S. Palais and R. W. Richardson, Jr. Source: Proceedings of the American Mathematical Society, Vol. 14, No. 3 (Jun.,

More information

THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES

THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES Abstract. This article reports the occurrence of binary quadratic forms in primitive Pythagorean triangles

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

arxiv: v6 [math.nt] 16 May 2017

arxiv: v6 [math.nt] 16 May 2017 arxiv:5.038v6 [math.nt] 6 May 207 An alternative proof of the Dirichlet prime number theorem Haifeng Xu May 7, 207 Abstract Dirichlet s theorem on arithmetic progressions called as Dirichlet prime number

More information

zzfi») = O - if p = 0 or (Rp < 0,

zzfi») = O - if p = 0 or (Rp < 0, A THEOREM ON MULTIPLICATIVE ARITHMETIC FUNCTIONS HUBERT DELANGE 1. Introduction. The following result is contained in a theorem that we proved in a previous paper:1 Let f be a real or complex valued multiplicative

More information

Prime Numbers and Irrational Numbers

Prime Numbers and Irrational Numbers Chapter 4 Prime Numbers and Irrational Numbers Abstract The question of the existence of prime numbers in intervals is treated using the approximation of cardinal of the primes π(x) given by Lagrange.

More information

Primes, Polynomials, Progressions. B.Sury Indian Statistical Institute Bangalore NISER Bhubaneshwar February 15, 2016

Primes, Polynomials, Progressions. B.Sury Indian Statistical Institute Bangalore NISER Bhubaneshwar February 15, 2016 Indian Statistical Institute Bangalore NISER Bhubaneshwar February 15, 2016 Primes and polynomials It is unknown if there exist infinitely many prime numbers of the form n 2 + 1. Primes and polynomials

More information

Playing Ball with the Largest Prime Factor

Playing Ball with the Largest Prime Factor Playing Ball with the Largest Prime Factor An Introduction to Ruth-Aaron Numbers Madeleine Farris Wellesley College July 30, 2018 The Players The Players Figure: Babe Ruth Home Run Record: 714 The Players

More information

Reciprocals of the Gcd-Sum Functions

Reciprocals of the Gcd-Sum Functions 2 3 47 6 23 Journal of Integer Sequences, Vol. 4 20, Article.8.3 Reciprocals of the Gcd-Sum Functions Shiqin Chen Experimental Center Linyi University Linyi, 276000, Shandong China shiqinchen200@63.com

More information

E-SYMMETRIC NUMBERS (PUBLISHED: COLLOQ. MATH., 103(2005), NO. 1, )

E-SYMMETRIC NUMBERS (PUBLISHED: COLLOQ. MATH., 103(2005), NO. 1, ) E-SYMMETRIC UMBERS PUBLISHED: COLLOQ. MATH., 032005), O., 7 25.) GAG YU Abstract A positive integer n is called E-symmetric if there exists a positive integer m such that m n = φm), φn)). n is called E-asymmetric

More information

Course 2316 Sample Paper 1

Course 2316 Sample Paper 1 Course 2316 Sample Paper 1 Timothy Murphy April 19, 2015 Attempt 5 questions. All carry the same mark. 1. State and prove the Fundamental Theorem of Arithmetic (for N). Prove that there are an infinity

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. On the Probability of Covering the Circle by Rom Arcs Author(s): F. W. Huffer L. A. Shepp Source: Journal of Applied Probability, Vol. 24, No. 2 (Jun., 1987), pp. 422-429 Published by: Applied Probability

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at A Note on the Efficiency of Least-Squares Estimates Author(s): D. R. Cox and D. V. Hinkley Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 30, No. 2 (1968), pp. 284-289

More information

TWO CLASSES OF NUMBER FIELDS WITH A NON-PRINCIPAL EUCLIDEAN IDEAL

TWO CLASSES OF NUMBER FIELDS WITH A NON-PRINCIPAL EUCLIDEAN IDEAL TWO CLASSES OF NUMBER FIELDS WITH A NON-PRINCIPAL EUCLIDEAN IDEAL CATHERINE HSU Abstract. This paper introduces two classes of totally real quartic number fields, one of biquadratic extensions and one

More information

Integers without divisors from a fixed arithmetic progression

Integers without divisors from a fixed arithmetic progression Integers without divisors from a fixed arithmetic progression William D. Banks Department of Mathematics, University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu John B. Friedlander Department

More information

ARKIV FOR MATEMATIK Band 3 nr 24. Communicated 26 October 1955 by T. NAGELL. A theorem concerning the least quadratic residue and.

ARKIV FOR MATEMATIK Band 3 nr 24. Communicated 26 October 1955 by T. NAGELL. A theorem concerning the least quadratic residue and. ARKIV FOR MATEMATIK Band 3 nr 24 Communicated 26 October 1955 by T. NAGELL A theorem concerning the least quadratic residue and non-residue By LARs FJELLSTEDT The purpose of this paper is to prove the

More information

SOME REMARKS ON ARTIN'S CONJECTURE

SOME REMARKS ON ARTIN'S CONJECTURE Canad. Math. Bull. Vol. 30 (1), 1987 SOME REMARKS ON ARTIN'S CONJECTURE BY M. RAM MURTY AND S. SR1NIVASAN ABSTRACT. It is a classical conjecture of E. Artin that any integer a > 1 which is not a perfect

More information

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science. On the Translocation of Masses Author(s): L. Kantorovitch Source: Management Science, Vol. 5, No. 1 (Oct., 1958), pp. 1-4 Published by: INFORMS Stable URL: http://www.jstor.org/stable/2626967. Accessed:

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

S. Lie has thrown much new light on this operation. The assumption

S. Lie has thrown much new light on this operation. The assumption 600 MATHEMATICS: A. E. ROSS PRoc. N. A. S. The operation of finding the limit of an infinite series has been one of the most fruitful operations of all mathematics. While this is not a group operation

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust Robust Regression via Discriminant Analysis Author(s): A. C. Atkinson and D. R. Cox Source: Biometrika, Vol. 64, No. 1 (Apr., 1977), pp. 15-19 Published by: Oxford University Press on

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Modalities in Ackermann's "Rigorous Implication" Author(s): Alan Ross Anderson and Nuel D. Belnap, Jr. Source: The Journal of Symbolic Logic, Vol. 24, No. 2 (Jun., 1959), pp. 107-111 Published by: Association

More information

Disjoint paths in tournaments

Disjoint paths in tournaments Disjoint paths in tournaments Maria Chudnovsky 1 Columbia University, New York, NY 10027, USA Alex Scott Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK Paul Seymour 2

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Regression Analysis when there is Prior Information about Supplementary Variables Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 22, No. 1 (1960),

More information

Journal of Number Theory

Journal of Number Theory Journal of Number Theory 130 (2010) 1737 1749 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt A binary linear recurrence sequence of composite numbers Artūras

More information

arxiv: v2 [math.nt] 15 May 2013

arxiv: v2 [math.nt] 15 May 2013 INFINITE SIDON SEQUENCES JAVIER CILLERUELO arxiv:09036v [mathnt] 5 May 03 Abstract We present a method to construct dense infinite Sidon sequences based on the discrete logarithm We give an explicit construction

More information

Annals of Mathematics

Annals of Mathematics Annals of Mathematics The Clifford-Klein Space Forms of Indefinite Metric Author(s): Joseph A. Wolf Reviewed work(s): Source: The Annals of Mathematics, Second Series, Vol. 75, No. 1 (Jan., 1962), pp.

More information

Proof of Infinite Number of Triplet Primes. Stephen Marshall. 28 May Abstract

Proof of Infinite Number of Triplet Primes. Stephen Marshall. 28 May Abstract Proof of Infinite Number of Triplet Primes Stephen Marshall 28 May 2014 Abstract This paper presents a complete and exhaustive proof that an Infinite Number of Triplet Primes exist. The approach to this

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at A Quincuncial Projection of the Sphere Author(s): C. S. Peirce Source: American Journal of Mathematics, Vol. 2, No. 4 (Dec., 1879), pp. 394-396 Published by: The Johns Hopkins University Press Stable URL:

More information

arxiv:math/ v1 [math.nt] 9 Aug 2004

arxiv:math/ v1 [math.nt] 9 Aug 2004 arxiv:math/0408107v1 [math.nt] 9 Aug 2004 ELEMENTARY RESULTS ON THE BINARY QUADRATIC FORM a 2 + ab + b 2 UMESH P. NAIR Abstract. This paper examines with elementary proofs some interesting properties of

More information

EXPLICIT CONSTANTS IN AVERAGES INVOLVING THE MULTIPLICATIVE ORDER

EXPLICIT CONSTANTS IN AVERAGES INVOLVING THE MULTIPLICATIVE ORDER EXPLICIT CONSTANTS IN AVERAGES INVOLVING THE MULTIPLICATIVE ORDER KIM, SUNGJIN DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA, LOS ANGELES MATH SCIENCE BUILDING 667A E-MAIL: 70707@GMAILCOM Abstract

More information

Explicit Methods in Algebraic Number Theory

Explicit Methods in Algebraic Number Theory Explicit Methods in Algebraic Number Theory Amalia Pizarro Madariaga Instituto de Matemáticas Universidad de Valparaíso, Chile amaliapizarro@uvcl 1 Lecture 1 11 Number fields and ring of integers Algebraic

More information

Partial Sums of Powers of Prime Factors

Partial Sums of Powers of Prime Factors 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 10 (007), Article 07.1.6 Partial Sums of Powers of Prime Factors Jean-Marie De Koninck Département de Mathématiques et de Statistique Université Laval Québec

More information

International Biometric Society is collaborating with JSTOR to digitize, preserve and extend access to Biometrics.

International Biometric Society is collaborating with JSTOR to digitize, preserve and extend access to Biometrics. 400: A Method for Combining Non-Independent, One-Sided Tests of Significance Author(s): Morton B. Brown Reviewed work(s): Source: Biometrics, Vol. 31, No. 4 (Dec., 1975), pp. 987-992 Published by: International

More information

x y z 2x y 2y z 2z x n

x y z 2x y 2y z 2z x n Integer Solutions, Rational solutions of the equations 4 4 4 x y z x y y z z x n 4 4 and x y z xy xz y z n; And Crux Mathematicorum Contest Corner problem CC4 Konstantine Zelator P.O. Box 480 Pittsburgh,

More information

E. DROR, W. G. DWYER AND D. M. KAN

E. DROR, W. G. DWYER AND D. M. KAN Self Homotopy Equivalences of Postnikov Conjugates Author(s): E. Dror, W. G. Dwyer, D. M. Kan Reviewed work(s): Source: Proceedings of the American Mathematical Society, Vol. 74, No. 1 (Apr., 1979), pp.

More information

PRIMITIVE PERIODS OF GENERALIZED FIBONACCI SEQUENCES

PRIMITIVE PERIODS OF GENERALIZED FIBONACCI SEQUENCES PRIMITIVE PERIODS O GENERALIZED IBONACCI SEQUENCES CLAUDIA SMIT and VERWER E. OGGATT, JR. San Jose State University, San Jose, California 95192 1. IWTRODUCTIOW In this paper we are concerned with the primitive

More information

Introduction to Number Theory

Introduction to Number Theory INTRODUCTION Definition: Natural Numbers, Integers Natural numbers: N={0,1,, }. Integers: Z={0,±1,±, }. Definition: Divisor If a Z can be writeen as a=bc where b, c Z, then we say a is divisible by b or,

More information

198 VOLUME 46/47, NUMBER 3

198 VOLUME 46/47, NUMBER 3 LAWRENCE SOMER Abstract. Rotkiewicz has shown that there exist Fibonacci pseudoprimes having the forms p(p + 2), p(2p 1), and p(2p + 3), where all the terms in the products are odd primes. Assuming Dickson

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

CYCLOTOMIC POLYNOMIALS

CYCLOTOMIC POLYNOMIALS CYCLOTOMIC POLYNOMIALS 1. The Derivative and Repeated Factors The usual definition of derivative in calculus involves the nonalgebraic notion of limit that requires a field such as R or C (or others) where

More information

Elementary Number Theory Review. Franz Luef

Elementary Number Theory Review. Franz Luef Elementary Number Theory Review Principle of Induction Principle of Induction Suppose we have a sequence of mathematical statements P(1), P(2),... such that (a) P(1) is true. (b) If P(k) is true, then

More information

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d The Algebraic Method 0.1. Integral Domains. Emmy Noether and others quickly realized that the classical algebraic number theory of Dedekind could be abstracted completely. In particular, rings of integers

More information

Number Theory Proof Portfolio

Number Theory Proof Portfolio Number Theory Proof Portfolio Jordan Rock May 12, 2015 This portfolio is a collection of Number Theory proofs and problems done by Jordan Rock in the Spring of 2014. The problems are organized first by

More information

Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5. Modular arithmetic. 5.1 The modular ring Chapter 5 Modular arithmetic 5.1 The modular ring Definition 5.1. Suppose n N and x, y Z. Then we say that x, y are equivalent modulo n, and we write x y mod n if n x y. It is evident that equivalence

More information

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

Summary: Divisibility and Factorization

Summary: Divisibility and Factorization Summary: Divisibility and Factorization One of the main subjects considered in this chapter is divisibility of integers, and in particular the definition of the greatest common divisor Recall that we have

More information

SOME REMARKS ON NUMBER THEORY BY P. ERDŐS 1. Let ABSTRACT This note contains some disconnected minor remarks on number theory. (1) Iz j I=1, 1<j<co be

SOME REMARKS ON NUMBER THEORY BY P. ERDŐS 1. Let ABSTRACT This note contains some disconnected minor remarks on number theory. (1) Iz j I=1, 1<j<co be SOME REMARKS ON NUMBER THEORY BY P. ERDŐS 1. Let ABSTRACT This note contains some disconnected minor remarks on number theory. (1) Iz j I=1, 1

More information

On the Prime Divisors of Odd Perfect Numbers

On the Prime Divisors of Odd Perfect Numbers On the Prime Divisors of Odd Perfect Numbers Justin Sweeney Department of Mathematics Trinity College Hartford, CT justin.sweeney@trincoll.edu April 27, 2009 1 Contents 1 History of Perfect Numbers 5 2

More information

INFINITE FAMILIES OF STRANGE PARTITION CONGRUENCES FOR BROKEN 2-DIAMONDS

INFINITE FAMILIES OF STRANGE PARTITION CONGRUENCES FOR BROKEN 2-DIAMONDS December 1, 2009 INFINITE FAMILIES OF STRANGE PARTITION CONGRUENCES FOR BROKEN 2-DIAMONDS PETER PAULE AND SILVIU RADU Dedicated to our friend George E. Andrews on the occasion of his 70th birthday Abstract.

More information

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers University of South Carolina Scholar Commons Theses and Dissertations 2017 Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers Wilson Andrew Harvey University of South Carolina

More information

MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x +1 PROBLEM. 1. Introduction The 3x +1iteration is given by the function on the integers for x even 3x+1

MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x +1 PROBLEM. 1. Introduction The 3x +1iteration is given by the function on the integers for x even 3x+1 MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x + PROBLEM ANA CARAIANI Abstract. Recently Lagarias introduced the Wild semigroup, which is intimately connected to the 3x + Conjecture. Applegate and Lagarias

More information

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2000 2013 Contents 9 Introduction to Number Theory 63 9.1 Subgroups

More information

The Jacobi Symbol. q q 1 q 2 q n

The Jacobi Symbol. q q 1 q 2 q n The Jacobi Symbol It s a little inconvenient that the Legendre symbol a is only defined when the bottom is an odd p prime You can extend the definition to allow an odd positive number on the bottom using

More information

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0).

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0). LARGE PRIME NUMBERS 1. Fast Modular Exponentiation Given positive integers a, e, and n, the following algorithm quickly computes the reduced power a e % n. (Here x % n denotes the element of {0,, n 1}

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at American Society for Quality A Note on the Graphical Analysis of Multidimensional Contingency Tables Author(s): D. R. Cox and Elizabeth Lauh Source: Technometrics, Vol. 9, No. 3 (Aug., 1967), pp. 481-488

More information

CYCLOTOMIC POLYNOMIALS

CYCLOTOMIC POLYNOMIALS CYCLOTOMIC POLYNOMIALS 1. The Derivative and Repeated Factors The usual definition of derivative in calculus involves the nonalgebraic notion of limit that requires a field such as R or C (or others) where

More information

A few exercises. 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in

A few exercises. 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in A few exercises 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in F 2 [x]. solution. Since f(x) is a primitive polynomial in Z[x], by Gauss lemma it is enough

More information

New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups

New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups John Polhill Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg,

More information

Arithmetic Properties for a Certain Family of Knot Diagrams

Arithmetic Properties for a Certain Family of Knot Diagrams Arithmetic Properties for a Certain Family of Knot Diagrams Darrin D. Frey Department of Science and Math Cedarville University Cedarville, OH 45314 freyd@cedarville.edu and James A. Sellers Department

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust Some Simple Approximate Tests for Poisson Variates Author(s): D. R. Cox Source: Biometrika, Vol. 40, No. 3/4 (Dec., 1953), pp. 354-360 Published by: Oxford University Press on behalf of

More information

An integer arithmetic method to compute generalized matrix inverse and solve linear equations exactly

An integer arithmetic method to compute generalized matrix inverse and solve linear equations exactly Proc. Indian Aead. Sei., Vol. 87 A (Mathematical Sciences-3), No. 9, September 1978, pp. 161-168, @ printed in India An integer arithmetic method to compute generalized matrix inverse and solve linear

More information

THE EXISTENCE OF A ISTRIBUTION FUNCTION FOR AN ERROR TERM RELATE TO THE EULER FUNCTION PAUL ER OS AN H. N. SHAPIRO 1. Introduction. The average order

THE EXISTENCE OF A ISTRIBUTION FUNCTION FOR AN ERROR TERM RELATE TO THE EULER FUNCTION PAUL ER OS AN H. N. SHAPIRO 1. Introduction. The average order THE EXISTENCE OF A ISTRIBUTION FUNCTION FOR AN ERROR TERM RELATE TO THE EULER FUNCTION PAUL ER OS AN H. N. SHAPIRO 1. Introduction. The average order of the Euler function 0(n), the number of integers

More information

MASTERS EXAMINATION IN MATHEMATICS

MASTERS EXAMINATION IN MATHEMATICS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION FALL 2010 Full points can be obtained for correct answers to 8 questions. Each numbered question (which may have several parts) is worth 20 points.

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS #A40 INTEGERS 16 (2016) POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS Daniel Baczkowski Department of Mathematics, The University of Findlay, Findlay, Ohio

More information

Arithmetic Properties for Ramanujan s φ function

Arithmetic Properties for Ramanujan s φ function Arithmetic Properties for Ramanujan s φ function Ernest X.W. Xia Jiangsu University ernestxwxia@163.com Nankai University Ernest X.W. Xia (Jiangsu University) Arithmetic Properties for Ramanujan s φ function

More information

ON THE AVERAGE RESULTS BY P. J. STEPHENS, S. LI, AND C. POMERANCE

ON THE AVERAGE RESULTS BY P. J. STEPHENS, S. LI, AND C. POMERANCE ON THE AVERAGE RESULTS BY P J STEPHENS, S LI, AND C POMERANCE IM, SUNGJIN Abstract Let a > Denote by l ap the multiplicative order of a modulo p We look for an estimate of sum of lap over primes p on average

More information

MATH 3240Q Introduction to Number Theory Homework 7

MATH 3240Q Introduction to Number Theory Homework 7 As long as algebra and geometry have been searated, their rogress have been slow and their uses limited; but when these two sciences have been united, they have lent each mutual forces, and have marched

More information

ON EXPONENTIAL DIVISORS

ON EXPONENTIAL DIVISORS ON EXPONENTIAL DIVISORS E. G. STRAUS AND M. V. SUBBARAO Let ()(N) denote the sum of the exponential divisors of N, that is, divisors of the form pl b... pbr, b. a, 1, r, when N has the cnonical form pla...,

More information

Part II. Number Theory. Year

Part II. Number Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

More information

Divisibility. 1.1 Foundations

Divisibility. 1.1 Foundations 1 Divisibility 1.1 Foundations The set 1, 2, 3,...of all natural numbers will be denoted by N. There is no need to enter here into philosophical questions concerning the existence of N. It will suffice

More information

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Math. J. Okayama Univ. 45 (2003), 29 36 ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Dedicated to emeritus professor Kazuo Kishimoto on his seventieth birthday Kaoru MOTOSE In this paper, using properties of

More information

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS

Math 430 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS Math 40 Midterm II Review Packet Spring 2018 SOLUTIONS TO PRACTICE PROBLEMS WARNING: Remember, it s best to rely as little as possible on my solutions. Therefore, I urge you to try the problems on your

More information