CYCLOTOMIC POLYNOMIALS

Size: px
Start display at page:

Download "CYCLOTOMIC POLYNOMIALS"

Transcription

1 CYCLOTOMIC POLYNOMIALS 1. The Derivative and Repeated Factors The usual definition of derivative in calculus involves the nonalgebraic notion of limit that requires a field such as R or C (or others) where limits are sensible for analytic reasons. However, polynomial differentiation is an algebraic notion over any field. One can simply define the polynomial derivative to be as it is from calculus, ( n ) n 1 D a i X i = (i + 1)a i+1 X i. i=0 Alternatively (and working a bit casually here), one can introduce a second indeterminate T and observe that the polynomial i=0 f(x + T ) f(x) k[x][t ] is satisfied by T = 0, and so it takes the form f(x + T ) f(x) = T g(x)(t ), g k[x][t ]. The derivative of f is then defined as the T -constant term of g(x)(t ), f (X) = g(x)(0) k[x]. The familiar facts that the derivative is linear, i.e., (f + cg) = f + cg, and that the derivative satisfies the product rule, i.e., (fg) = fg + f g, can be rederived from this purely algebraic definition of the derivative. In fact, yet a third approach is to define X = 1 and then stipulate that differentiation is the unique extension of this rule that is linear and satisfies the product rule. (For example, 1 = X = (X 1) = X 1 + X 1 = X 1 + 1, so 1 = 0.) Proposition 1.1. Let k be a field, and let f k[x] be a polynomial. Then: If gcd(f, f ) = 1 then f has no repeated factors. Proof. To establish the contrapositive, suppose that f = g 2 h in k[x]. The product rule gives f = 2gg h + g 2 h = g(2g h + gh ). Thus g f, and so g gcd(f, f ), and so gcd(f, f ) Definition of the Cyclotomic Polynomials Working in Z[X] we want to define cyclotomic polynomials Provisionally, define Φ n, n Z 1. Φ n (X) = Xn 1 Φ d (X), n 1. d<n 1

2 2 CYCLOTOMIC POLYNOMIALS Here it is understood that for n = 1 the denominator is the empty product, i.e., Φ 1 (X) = X 1. Certainly each Φ n lies in the quotient field Z(X) of Z[X] but we will show considerably more. In fact, always Φ n lies in Z[X] and is irreducible. For example, repeatedly using the identity X n 1 = Φ d(x) in various ways, Φ 2 (X) = X2 1 X 1 = X + 1 = Φ 1( X), Φ p (X) = Xp 1 X 1 = Xp X + 1, p prime, Φ p e(x) = Xpe 1 X pe 1 1 = Φ p(x p e 1 ), p prime, X 2dp 1 Φ 2d p(x) = (X 2d 1 p 1)Φ 2 d(x) = X2 + 1 X 2d = Φ p( X 2 d 1 ), p > 2 prime, Φ 2 d p e(x) = X 2d p e 1 (X 2d 1 p e 1)Φ 2 d(x)φ 2d p(x) Φ 2d p e 1(X) = X 2d 1 p e + 1 Φ 1 ( X 2d 1 )Φ p ( X 2d 1 ) Φ p e 1( X 2d 1 ) X2d 1 p e + 1 = X 2d 1 p e = Φ p( X 2 d 1 p e 1 ), (X 15 1) Φ 15 (X) = (X 5 1)Φ 3 (X) = X10 + X X 2 + X + 1 = X 8 X 7 + X 5 X 4 + X 3 X + 1, Φ 2m (X) = Φ m ( X), Φ 21 (X) = X 21 1 (X 7 1)Φ 3 (X) = X14 + X X 2 + X + 1 = X 12 X 11 + X 9 X 8 + X 6 X 4 + X 3 X + 1. (induction on e) p > 2 prime, m odd, These identities give Φ n for all n 32. We begin with two observations about the polynomial X n 1 where n Z 1. X n 1 has no repeated factors in Z[X] for any n Z 1. Indeed, working in the larger ring Q[X] we have (X n 1) (1/n)X (X n 1) = (X n 1) (1/n)X nx n 1 = 1 Q, so that gcd(x n 1, (X n 1) ) = 1. As explained above, X n 1 therefore has no repeated factors in Q[X], much less in Z[X]. (For future reference, we note that this argument also works in (Z/pZ)[X] where p is prime, so long as p n.) For any n, m Z 1, gcd(x n 1, X m 1) = X gcd(n,m) 1. Indeed, taking n > m, the calculation X n 1 X n m (X m 1) = X n m 1

3 CYCLOTOMIC POLYNOMIALS 3 shows that X n 1, X m 1 = X n m 1, X m 1, and, letting n = qm + r where 0 r < n and repeating the calculation q times, X n 1, X m 1 = X r 1, X m 1. That is, carrying out the Euclidean algorithm on X n 1 and X m 1 in Q(X) slowly carries out the Euclidean algorithm on n and m in Z. (If the Euclidean algorithm on n and m takes k division-steps, with quotients q 1 through q k, then the Euclidean algorithm on X n 1 and X m 1 takes q q k steps.) The result follows. Recall the definition Note that Φ n (X) = Xn 1 Φ d (X), n 1. d<n Φ 1 Z[X], and (vacuously) no Φ k and Φ m for distinct k, m < 1 share a factor. The two bullets are the base case of an induction argument. Fix some n > 1 and assume that all Φ m for m n lie in Z[X], and no Φ k and Φ m for distinct k, m < n share a factor. Let m < n, and let k = gcd(m, n) m < n. Any common factor of Φ m and Φ n is a common factor of X m 1 and X n 1, hence a factor of X k 1. However, the calculation Φ n (X) = Xn 1 X n 1 d<n Φ d (X) d k Φ d (X) = Xn 1 X k 1 shows that no factor of Φ n is a factor of X k 1. In sum, the strict inequality in the second bullet weakens: no Φ k and Φ m for distinct k, m n share a factor. Equivalently, no Φ k and Φ m for distinct k, m < n + 1 share a factor. Now, for each proper divisor d of n + 1, each factor of Φ d is a factor of X d 1, hence a factor of X n+1 1. And the product +1 d<n+1 Φ d (X) contains no repeat factors of X n+1 1. Thus Φ n+1 Z[X]. In sum, all Φ m for m n + 1 lie in Z[X], and no Φ k and Φ m for distinct k, m < n + 1 share a factor. By induction, Φ n Z[X] for all n Z 1, and no two Φ n share a factor. The totient function identity ϕ(d) = n quickly combines with the formula Φ d(x) = X n 1 and a little induction to show that the degree of the cyclotomic polynomial is the totient function of its index, deg(φ n ) = ϕ(n), n 1.

4 4 CYCLOTOMIC POLYNOMIALS Substitute X = 0 in the identity X n 1 = Φ d (X) to see that the constant d n coefficient of Φ d for all divisors d of n is ±1. In particular, the constant coefficient of Φ n is ±1. If we view the integers Z as a subring of the complex number field C then the nth cyclotomic polynomial factors as Φ n (X) = (X ζn), e where ζ n = e 2πi/n. 0 e<n gcd(e,n)=1 Indeed, the formula produces the monic polynomial in C[X] whose roots are the complex numbers z such that z n = 1 but z m 1 for all 1 m < n. This polynomial s constant term is ( 1) ϕ(n) 0 e<n ζn, e and for n = 1 this is ( 1) 1 = gcd(e,n)=1 1, for n = 2 it is ( 1) ( 1) = 1, and for n 3 it is 1 1 = 1. That is the constant coefficient of Φ n is 1 for n = 1 but is 1 for all n 2. The previous paragraph notwithstanding, we do not want to think of the cyclotomic polynomials innately in complex terms (even though the word cyclotomic literally refers to dividing the circle), because the integers are also compatible with other algebraic structures that are incompatible with the complex numbers in turn. Rather, we want to think of the roots of Φ n as the elements having order exactly n in whatever environment is suitable. In the next example, the environment is Z/pZ where p is a prime that does not divide n. Earlier we observed that our arguments apply here as well. 3. Application: An Infinite Congruence Class of Primes Theorem 3.1. Let n > 1 be a positive integer. There exist infinitely many primes p such that p = 1 mod n. Proof. Suppose that the only primes equal to 1 mod n are p 1,, p t. The idea is to find some other prime p and some integer a such that Φ n (a) = 0 mod p and p n. Granting the display, it says that the multiplicative order of a modulo p is exactly n. Since (Z/pZ) is cyclic of order p 1, we thus have n p 1, i.e., p = 1 mod n. So the original list of such primes was not exhaustive after all, and hence there is no such finite list. To carry out the idea, define for any positive integer l, Then a = a l = l n p 1 p t. Φ n (a l ) > 1 for all large enough l. Take such l, and with l chosen, omit it as a subscript of a. Consider any prime divisor p of Φ n (a). Since Φ n (a) = ±1 mod a, we have p a. That is, since n a, Φ n (a) = 0 mod p and p n. Thus the proof is complete, as explained in the previous paragraph,

5 CYCLOTOMIC POLYNOMIALS 5 4. Application: Wedderburn s Theorem The cyclotomic polynomials combine with the counting formulas of group actions to provide a lovely proof of the following result. Theorem 4.1. Let D be a finite division ring, i.e., a field except that multiplication might not commute. Then D is a field. Proof. The center of D is a finite field k; let q denote its order. Since D is a vector space over k, the order of D is therefore q n for some n. We want to show that n = 1. For any x D, the centralizer D x = {y D : yx = xy} is again a division ring containing k, and its multiplicative group D x is a subgroup of D. Hence D x = q nx where q nx 1 divides q n 1, so that n x divides n. And if x / k then the divisibilities are proper. Let D act on D by conjugation. The class formula gives D = k + x D / D x where the sum adds the sizes of the nontrivial orbits, or q n = q + x q n 1 q nx 1 summing over representatives of nontrivial orbits. Recall that each n x arising from the sum is a proper divisor of n. The formulas Φ n (q) Φ d (q) = q n 1, Φ n (q) d n x Φ d (q) = qn 1 q nx 1, (in which all Φ (q)-values are integers) show that Φ n (q) divides the left side and each term of the sum in the formula q n 1 = q 1 + x q n 1 q nx 1. Consequently Φ n (q) divides q 1. But viewing Z as a subring of the complex number system C lets us show that Φ n (q) can not divide q 1 unless n = 1, Φ n (q) 2 ( = (q cos(2πk/n)) 2 + (sin(2πk/n)) 2) 0 k<n gcd(k,n)=1 If n > 1 then each term of the product is greater than (q 1) 2, and so Φ n (q) > q 1. This completes the proof.

6 6 CYCLOTOMIC POLYNOMIALS 5. Irreducibility of Prime-Power Cyclotomic Polynomials The irreducibility of prime-power cyclotomic polynomials Φ p e(x) in Z[X] (and hence in Q[X]) can be established by an argument set entirely in Z[X] and its quotient-structures. To avoid interrupting the pending argument, we establish a small preliminary result. Lemma 5.1. Let p be prime. For all ε Z 0, (X 1) pε = X pε 1 Proof. The result is immediate if ε = 0. in (Z/pZ)[X], (X 1) pε+1 = ((X 1) pε ) p = (X pε 1) p = And for the induction step, working p i=0 ( ) p X ipε ( 1) p i = X pε+1 1, i because the binomial coefficients for 1 i p 1 vanish modulo p and because ( 1) p = 1 mod p for all p, including p = 2. Again let p be prime, and let e 1. We show that the cyclotomic polynomial Φ p e is irreducible in Z[X], thereby making it irreducible in Q[X] by Gauss s Lemma. Recall that Φ p e(x) = Φ p (X pe 1 ) = Xpe 1 X pe 1 1 That is, (X pe 1 1)Φ p e(x) = X pe 1 in Z[X], and so reducing the coefficients modulo p gives and then by the lemma, and therefore Also, (X pe 1 1)Φ p e(x) = X pe 1 in (Z/pZ)[X], (X 1) pe 1 Φ p e(x) = (X 1) pe in (Z/pZ)[X], Φ p e(x) = (X 1) pe 1 (p 1) Φ p e(1) = Φ p (1 e ) = Φ p (1) = p 0 in Z/p 2 Z. The previous two displays show precisely that Φ p e(x) is irreducible in Z[X] by Schönemann s Criterion and hence is irreducible in Q[X] by Gauss s Lemma. 6. Irreducibility of General Cyclotomic Polynomials In contrast to the previous section, quickly showing the irreducibility of the general cyclotomic polynomial Φ n (X) in Z[X] (and hence in Q[X]) requires an argument that extends beyond Z and Q. Again we establish a preliminary result. Lemma 6.1. Let n > 1 be an integer and let p n be prime. Then the cyclotomic polynomial Φ n (X) has no repeated factors modulo p. Proof. Indeed, Φ n (X) divides X n 1, which is coprime to its derivative nx n 1 modulo p because p n. Hence X n 1 has no repeated factors modulo p, and hence neither does Φ n (X).

7 CYCLOTOMIC POLYNOMIALS 7 Let n > 1. Let ζ n = e 2πi/n. The complex roots of Φ n (X) are {ζ e n : gcd(e, n) = 1}. Any root of Φ n (X) can be obtained starting from ζ n and repeatedly raising to various primes p n. Suppose that Φ n (X) = g(x)h(x) in Z[X]. We may assume that g(ζ n ) = 0. To show that all roots of Φ n are roots of g it suffices to show that: For any root ρ of g and for any prime p n, also ρ p is a root of g. To establish the displayed statement, let ρ be a root of g and let p n be prime. We need to show that h(ρ p ) 0. If instead h(ρ p ) = 0 then work modulo p and compute (h(ρ)) p = h(ρ p ) = 0 mod p and so h(ρ) = 0 mod p. Also, certainly g(ρ) = 0 mod p. It follows that g(x) and h(x) share a factor k(x) in (Z/pZ)[X]; indeed, a relation G(X)g(X) + H(X)h(X) = 1 would yield the impossibility 0 = 1 upon substituting ρ for X. Thus Φ n (X) = g(x)h(x) has a repeated factor k(x) 2 This contradicts the lemma. And so, h(ρ p ) 0, forcing g(ρ p ) = 0, and the argument is complete. 7. Reducibility of Cyclotomic Polynomials Modulo p Proposition 7.1. Let p be prime, let e 1, and let m 1 with gcd(p, m) = 1. Then Φ p e m(x) = Φ m (X) ϕ(pe ) Here ϕ is Euler s totient function, so that ϕ(p e ) = p e (1 1/p). Proof. Working modulo p, pre-compute X pem 1 X pe 1 m 1 = (Xm 1) p e = (X m 1) ϕ(p e ) (X m 1) pe 1 Now, breaking the proper divisors of p e m into two groups gives X pem 1 Φ p e m(x) = (X pe 1 m 1) d m = (Xm 1) ϕ(pe ) d m Φ p e d(x) Φ pe d(x) If m = 1 then the product in the denominator is 1, and we have shown Φ p e(x) = (X 1) ϕ(pe) = Φ 1 (X) ϕ(pe ) If m > 1 then by induction on m, the product in the denominator is Φ p e d(x) = Φ d (X) ϕ(pe ) in (Z/pZ)[X], d m d m and so overall, Φ p e m(x) = (Xm 1) ϕ(pe ) Φ d (X) = Φ ϕ(pe ) m(x) ϕ(p d m e )

8 8 CYCLOTOMIC POLYNOMIALS Now the question is how Φ m (X) factors in (Z/pZ)[X] where p m. Let e be the order of p modulo m, i.e., p e = 1 mod m and e is the smallest such positive integer. Then Φ m (X) factors into ϕ(m) linear terms over the field of p e elements, and these gather as ϕ(m)/e terms of degree e over Z/pZ. Here we are using basic facts about finite fields, and their consequences, without complete explanation: Up to isomorphism, for each prime-power q = p f, a unique field F q of that order exists, and its multiplicative group F q is cyclic of order q 1. Again with q = p f, the group of automorphisms of F q that fix F p pointwise is cyclic of order f, generated by the automorphism σ : x x p. For each divisor d of f, the subfield of F q fixed by σ d is the field F p d over F p. For example, taking m = 20, Φ 20 (X) = 1 X 2 + X 4 X 6 + X 8. of degree d For p = 5, we first have Φ 20 (X) = φ 4 (X) 4 mod 5, and then φ 4 (X) = X factors into linear terms modulo 5 because 5 1 = 1 mod 4. Similarly Φ 20 (X) factors into quartic terms modulo 7 because 7 4 = 2401 = 1 mod 20, and 4 is the lowest such exponent of 7. Computer algebra confirms these factorizations and others, Φ 20 (X) = (1 + X + X 2 + X 3 + X 4 ) 2 mod 2, Φ 20 (X) = (1 + 2X + X 3 + X 4 )(1 + X + 2X 3 + X 4 ) mod 3, Φ 20 (X) = (2 + X) 4 (3 + X) 4 mod 5, Φ 20 (X) = (1 + 4X + 4X 2 + 3X 3 + X 4 )(1 + 3X + 4X 2 + 4X 3 + X 4 ) mod 7, Φ 20 (X) = (3 + X 2 )(4 + X 2 )(5 + X 2 )(9 + X 2 ) mod 11, Φ 20 (X) = (1 + 8X + 12X 2 + 5X 3 + X 4 )(1 + 5X + 12X 2 + 8X 3 + X 4 ) mod 13, Φ 20 (X) = (1 + 13X + 16X 2 + 4X 3 + X 4 )(1 + 4X + 16X X 3 + X 4 ) mod 17, Φ 20 (X) = (1 + 6X + X 2 )(1 + 8X + X 2 )(1 + 11X + X 2 )(1 + 13X + X 2 ) mod 19, Φ 20 (X) = (1 + 15X + 20X 2 + 8X 3 + X 4 )(1 + 8X + 20X X 3 + X 4 ) mod 23.

CYCLOTOMIC POLYNOMIALS

CYCLOTOMIC POLYNOMIALS CYCLOTOMIC POLYNOMIALS 1. The Derivative and Repeated Factors The usual definition of derivative in calculus involves the nonalgebraic notion of limit that requires a field such as R or C (or others) where

More information

18. Cyclotomic polynomials II

18. Cyclotomic polynomials II 18. Cyclotomic polynomials II 18.1 Cyclotomic polynomials over Z 18.2 Worked examples Now that we have Gauss lemma in hand we can look at cyclotomic polynomials again, not as polynomials with coefficients

More information

Factorization in Integral Domains II

Factorization in Integral Domains II Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

More information

(January 14, 2009) q n 1 q d 1. D = q n = q + d

(January 14, 2009) q n 1 q d 1. D = q n = q + d (January 14, 2009) [10.1] Prove that a finite division ring D (a not-necessarily commutative ring with 1 in which any non-zero element has a multiplicative inverse) is commutative. (This is due to Wedderburn.)

More information

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION 1. Polynomial rings (review) Definition 1. A polynomial f(x) with coefficients in a ring R is n f(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n i=0

More information

A connection between number theory and linear algebra

A connection between number theory and linear algebra A connection between number theory and linear algebra Mark Steinberger Contents 1. Some basics 1 2. Rational canonical form 2 3. Prime factorization in F[x] 4 4. Units and order 5 5. Finite fields 7 6.

More information

Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Polynomial Rings. i=0. i=0. n+m. i=0. k=0 Polynomial Rings 1. Definitions and Basic Properties For convenience, the ring will always be a commutative ring with identity. Basic Properties The polynomial ring R[x] in the indeterminate x with coefficients

More information

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series. 6 Polynomial Rings We introduce a class of rings called the polynomial rings, describing computation, factorization and divisibility in such rings For the case where the coefficients come from an integral

More information

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3... Algebra Exam Fall 2006 Alexander J. Wertheim Last Updated: October 26, 2017 Contents 1 Groups 2 1.1 Problem 1..................................... 2 1.2 Problem 2..................................... 2

More information

GALOIS THEORY. Contents

GALOIS THEORY. Contents GALOIS THEORY MARIUS VAN DER PUT & JAAP TOP Contents 1. Basic definitions 1 1.1. Exercises 2 2. Solving polynomial equations 2 2.1. Exercises 4 3. Galois extensions and examples 4 3.1. Exercises. 6 4.

More information

Section IV.23. Factorizations of Polynomials over a Field

Section IV.23. Factorizations of Polynomials over a Field IV.23 Factorizations of Polynomials 1 Section IV.23. Factorizations of Polynomials over a Field Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent

More information

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions.

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions. D-MAH Algebra II FS18 Prof. Marc Burger Solution 26 Cyclotomic extensions. In the following, ϕ : Z 1 Z 0 is the Euler function ϕ(n = card ((Z/nZ. For each integer n 1, we consider the n-th cyclotomic polynomial

More information

but no smaller power is equal to one. polynomial is defined to be

but no smaller power is equal to one. polynomial is defined to be 13. Radical and Cyclic Extensions The main purpose of this section is to look at the Galois groups of x n a. The first case to consider is a = 1. Definition 13.1. Let K be a field. An element ω K is said

More information

Section III.6. Factorization in Polynomial Rings

Section III.6. Factorization in Polynomial Rings III.6. Factorization in Polynomial Rings 1 Section III.6. Factorization in Polynomial Rings Note. We push several of the results in Section III.3 (such as divisibility, irreducibility, and unique factorization)

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

φ(xy) = (xy) n = x n y n = φ(x)φ(y) Groups 1. (Algebra Comp S03) Let A, B and C be normal subgroups of a group G with A B. If A C = B C and AC = BC then prove that A = B. Let b B. Since b = b1 BC = AC, there are a A and c C such that b =

More information

Quasi-reducible Polynomials

Quasi-reducible Polynomials Quasi-reducible Polynomials Jacques Willekens 06-Dec-2008 Abstract In this article, we investigate polynomials that are irreducible over Q, but are reducible modulo any prime number. 1 Introduction Let

More information

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0).

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0). LARGE PRIME NUMBERS 1. Fast Modular Exponentiation Given positive integers a, e, and n, the following algorithm quickly computes the reduced power a e % n. (Here x % n denotes the element of {0,, n 1}

More information

MASTERS EXAMINATION IN MATHEMATICS

MASTERS EXAMINATION IN MATHEMATICS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION FALL 2007 Full points can be obtained for correct answers to 8 questions. Each numbered question (which may have several parts) is worth the same

More information

Finite fields Michel Waldschmidt

Finite fields Michel Waldschmidt Finite fields Michel Waldschmidt http://www.imj-prg.fr/~michel.waldschmidt//pdf/finitefields.pdf Updated: 03/07/2018 Contents 1 Background: Arithmetic 1.1 Cyclic groups If G is a finite multiplicative

More information

CYCLICITY OF (Z/(p))

CYCLICITY OF (Z/(p)) CYCLICITY OF (Z/(p)) KEITH CONRAD 1. Introduction For each prime p, the group (Z/(p)) is cyclic. We will give seven proofs of this fundamental result. A common feature of the proofs that (Z/(p)) is cyclic

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

Course 311: Abstract Algebra Academic year

Course 311: Abstract Algebra Academic year Course 311: Abstract Algebra Academic year 2007-08 D. R. Wilkins Copyright c David R. Wilkins 1997 2007 Contents 3 Introduction to Galois Theory 41 3.1 Field Extensions and the Tower Law..............

More information

Math 120 HW 9 Solutions

Math 120 HW 9 Solutions Math 120 HW 9 Solutions June 8, 2018 Question 1 Write down a ring homomorphism (no proof required) f from R = Z[ 11] = {a + b 11 a, b Z} to S = Z/35Z. The main difficulty is to find an element x Z/35Z

More information

Algebra Review. Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor. June 15, 2001

Algebra Review. Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor. June 15, 2001 Algebra Review Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor June 15, 2001 1 Groups Definition 1.1 A semigroup (G, ) is a set G with a binary operation such that: Axiom 1 ( a,

More information

TC10 / 3. Finite fields S. Xambó

TC10 / 3. Finite fields S. Xambó TC10 / 3. Finite fields S. Xambó The ring Construction of finite fields The Frobenius automorphism Splitting field of a polynomial Structure of the multiplicative group of a finite field Structure of the

More information

A Generalization of Wilson s Theorem

A Generalization of Wilson s Theorem A Generalization of Wilson s Theorem R. Andrew Ohana June 3, 2009 Contents 1 Introduction 2 2 Background Algebra 2 2.1 Groups................................. 2 2.2 Rings.................................

More information

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

More information

Algebra SEP Solutions

Algebra SEP Solutions Algebra SEP Solutions 17 July 2017 1. (January 2017 problem 1) For example: (a) G = Z/4Z, N = Z/2Z. More generally, G = Z/p n Z, N = Z/pZ, p any prime number, n 2. Also G = Z, N = nz for any n 2, since

More information

Gauss s Theorem. Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R.

Gauss s Theorem. Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R. Gauss s Theorem Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R. Proposition: Suppose R is a U.F.D. and that π is an irreducible element

More information

where c R and the content of f is one. 1

where c R and the content of f is one. 1 9. Gauss Lemma Obviously it would be nice to have some more general methods of proving that a given polynomial is irreducible. The first is rather beautiful and due to Gauss. The basic idea is as follows.

More information

Homework 10 M 373K by Mark Lindberg (mal4549)

Homework 10 M 373K by Mark Lindberg (mal4549) Homework 10 M 373K by Mark Lindberg (mal4549) 1. Artin, Chapter 11, Exercise 1.1. Prove that 7 + 3 2 and 3 + 5 are algebraic numbers. To do this, we must provide a polynomial with integer coefficients

More information

Congruences and Residue Class Rings

Congruences and Residue Class Rings Congruences and Residue Class Rings (Chapter 2 of J. A. Buchmann, Introduction to Cryptography, 2nd Ed., 2004) Shoichi Hirose Faculty of Engineering, University of Fukui S. Hirose (U. Fukui) Congruences

More information

FIELD THEORY. Contents

FIELD THEORY. Contents FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions

More information

Polynomials. Chapter 4

Polynomials. Chapter 4 Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

More information

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory D. R. Wilkins Copyright c David R. Wilkins 1997 2006 Contents 4 Introduction to Galois Theory 2 4.1 Polynomial Rings.........................

More information

Section X.55. Cyclotomic Extensions

Section X.55. Cyclotomic Extensions X.55 Cyclotomic Extensions 1 Section X.55. Cyclotomic Extensions Note. In this section we return to a consideration of roots of unity and consider again the cyclic group of roots of unity as encountered

More information

MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

More information

Elementary Properties of Cyclotomic Polynomials

Elementary Properties of Cyclotomic Polynomials Elementary Properties of Cyclotomic Polynomials Yimin Ge Abstract Elementary properties of cyclotomic polynomials is a topic that has become very popular in Olympiad mathematics. The purpose of this article

More information

MATH 361: NUMBER THEORY TENTH LECTURE

MATH 361: NUMBER THEORY TENTH LECTURE MATH 361: NUMBER THEORY TENTH LECTURE The subject of this lecture is finite fields. 1. Root Fields Let k be any field, and let f(x) k[x] be irreducible and have positive degree. We want to construct a

More information

Abstract Algebra: Chapters 16 and 17

Abstract Algebra: Chapters 16 and 17 Study polynomials, their factorization, and the construction of fields. Chapter 16 Polynomial Rings Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is the set

More information

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and CHAPTER I Rings 1.1 Definitions and Examples Definition 1.1.1. A ring R is a set with two binary operations, addition + and multiplication satisfying the following conditions for all a, b, c in R : (i)

More information

x 3 2x = (x 2) (x 2 2x + 1) + (x 2) x 2 2x + 1 = (x 4) (x + 2) + 9 (x + 2) = ( 1 9 x ) (9) + 0

x 3 2x = (x 2) (x 2 2x + 1) + (x 2) x 2 2x + 1 = (x 4) (x + 2) + 9 (x + 2) = ( 1 9 x ) (9) + 0 1. (a) i. State and prove Wilson's Theorem. ii. Show that, if p is a prime number congruent to 1 modulo 4, then there exists a solution to the congruence x 2 1 mod p. (b) i. Let p(x), q(x) be polynomials

More information

The group (Z/nZ) February 17, In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer.

The group (Z/nZ) February 17, In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer. The group (Z/nZ) February 17, 2016 1 Introduction In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer. If we factor n = p e 1 1 pe, where the p i s are distinct

More information

MTH310 EXAM 2 REVIEW

MTH310 EXAM 2 REVIEW MTH310 EXAM 2 REVIEW SA LI 4.1 Polynomial Arithmetic and the Division Algorithm A. Polynomial Arithmetic *Polynomial Rings If R is a ring, then there exists a ring T containing an element x that is not

More information

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d The Algebraic Method 0.1. Integral Domains. Emmy Noether and others quickly realized that the classical algebraic number theory of Dedekind could be abstracted completely. In particular, rings of integers

More information

CDM. Finite Fields. Klaus Sutner Carnegie Mellon University. Fall 2018

CDM. Finite Fields. Klaus Sutner Carnegie Mellon University. Fall 2018 CDM Finite Fields Klaus Sutner Carnegie Mellon University Fall 2018 1 Ideals The Structure theorem Where Are We? 3 We know that every finite field carries two apparently separate structures: additive and

More information

LECTURE NOTES IN CRYPTOGRAPHY

LECTURE NOTES IN CRYPTOGRAPHY 1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

More information

Roots of Unity, Cyclotomic Polynomials and Applications

Roots of Unity, Cyclotomic Polynomials and Applications Swiss Mathematical Olympiad smo osm Roots of Unity, Cyclotomic Polynomials and Applications The task to be done here is to give an introduction to the topics in the title. This paper is neither complete

More information

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u. 5. Fields 5.1. Field extensions. Let F E be a subfield of the field E. We also describe this situation by saying that E is an extension field of F, and we write E/F to express this fact. If E/F is a field

More information

Part II. Number Theory. Year

Part II. Number Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Chapter 2: Mathematical Concepts Divisibility Congruence Quadratic Residues

More information

CSIR - Algebra Problems

CSIR - Algebra Problems CSIR - Algebra Problems N. Annamalai DST - INSPIRE Fellow (SRF) Department of Mathematics Bharathidasan University Tiruchirappalli -620024 E-mail: algebra.annamalai@gmail.com Website: https://annamalaimaths.wordpress.com

More information

IRREDUCIBILITY TESTS IN Q[T ]

IRREDUCIBILITY TESTS IN Q[T ] IRREDUCIBILITY TESTS IN Q[T ] KEITH CONRAD 1. Introduction For a general field F there is no simple way to determine if an arbitrary polynomial in F [T ] is irreducible. Here we will focus on the case

More information

9. Integral Ring Extensions

9. Integral Ring Extensions 80 Andreas Gathmann 9. Integral ing Extensions In this chapter we want to discuss a concept in commutative algebra that has its original motivation in algebra, but turns out to have surprisingly many applications

More information

Solutions of exercise sheet 11

Solutions of exercise sheet 11 D-MATH Algebra I HS 14 Prof Emmanuel Kowalski Solutions of exercise sheet 11 The content of the marked exercises (*) should be known for the exam 1 For the following values of α C, find the minimal polynomial

More information

Factorization of integer-valued polynomials with square-free denominator

Factorization of integer-valued polynomials with square-free denominator accepted by Comm. Algebra (2013) Factorization of integer-valued polynomials with square-free denominator Giulio Peruginelli September 9, 2013 Dedicated to Marco Fontana on the occasion of his 65th birthday

More information

Ohio State University Department of Mathematics Algebra Qualifier Exam Solutions. Timothy All Michael Belfanti

Ohio State University Department of Mathematics Algebra Qualifier Exam Solutions. Timothy All Michael Belfanti Ohio State University Department of Mathematics Algebra Qualifier Exam Solutions Timothy All Michael Belfanti July 22, 2013 Contents Spring 2012 1 1. Let G be a finite group and H a non-normal subgroup

More information

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015 Galois Theory TCU Graduate Student Seminar George Gilbert October 201 The coefficients of a polynomial are symmetric functions of the roots {α i }: fx) = x n s 1 x n 1 + s 2 x n 2 + + 1) n s n, where s

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem Chapter 5 The Chinese Remainder Theorem 5.1 Coprime moduli Theorem 5.1. Suppose m, n N, and gcd(m, n) = 1. Given any remainders r mod m and s mod n we can find N such that N r mod m and N s mod n. Moreover,

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - FALL SESSION ADVANCED ALGEBRA I.

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - FALL SESSION ADVANCED ALGEBRA I. THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - FALL SESSION 2006 110.401 - ADVANCED ALGEBRA I. Examiner: Professor C. Consani Duration: take home final. No calculators allowed.

More information

Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5. Modular arithmetic. 5.1 The modular ring Chapter 5 Modular arithmetic 5.1 The modular ring Definition 5.1. Suppose n N and x, y Z. Then we say that x, y are equivalent modulo n, and we write x y mod n if n x y. It is evident that equivalence

More information

Finite Fields. Sophie Huczynska. Semester 2, Academic Year

Finite Fields. Sophie Huczynska. Semester 2, Academic Year Finite Fields Sophie Huczynska Semester 2, Academic Year 2005-06 2 Chapter 1. Introduction Finite fields is a branch of mathematics which has come to the fore in the last 50 years due to its numerous applications,

More information

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G.

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G. 1. Galois Theory 1.1. A homomorphism of fields F F is simply a homomorphism of rings. Such a homomorphism is always injective, because its kernel is a proper ideal (it doesnt contain 1), which must therefore

More information

Introduction to finite fields

Introduction to finite fields Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

More information

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. Fields and Galois Theory Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. This should be a reasonably logical ordering, so that a result here should

More information

MT5836 Galois Theory MRQ

MT5836 Galois Theory MRQ MT5836 Galois Theory MRQ May 3, 2017 Contents Introduction 3 Structure of the lecture course............................... 4 Recommended texts..................................... 4 1 Rings, Fields and

More information

9. Finite fields. 1. Uniqueness

9. Finite fields. 1. Uniqueness 9. Finite fields 9.1 Uniqueness 9.2 Frobenius automorphisms 9.3 Counting irreducibles 1. Uniqueness Among other things, the following result justifies speaking of the field with p n elements (for prime

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Math. J. Okayama Univ. 45 (2003), 29 36 ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Dedicated to emeritus professor Kazuo Kishimoto on his seventieth birthday Kaoru MOTOSE In this paper, using properties of

More information

2. THE EUCLIDEAN ALGORITHM More ring essentials

2. THE EUCLIDEAN ALGORITHM More ring essentials 2. THE EUCLIDEAN ALGORITHM More ring essentials In this chapter: rings R commutative with 1. An element b R divides a R, or b is a divisor of a, or a is divisible by b, or a is a multiple of b, if there

More information

2 (17) Find non-trivial left and right ideals of the ring of 22 matrices over R. Show that there are no nontrivial two sided ideals. (18) State and pr

2 (17) Find non-trivial left and right ideals of the ring of 22 matrices over R. Show that there are no nontrivial two sided ideals. (18) State and pr MATHEMATICS Introduction to Modern Algebra II Review. (1) Give an example of a non-commutative ring; a ring without unit; a division ring which is not a eld and a ring which is not a domain. (2) Show that

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Quizzes for Math 401

Quizzes for Math 401 Quizzes for Math 401 QUIZ 1. a) Let a,b be integers such that λa+µb = 1 for some inetegrs λ,µ. Prove that gcd(a,b) = 1. b) Use Euclid s algorithm to compute gcd(803, 154) and find integers λ,µ such that

More information

Solutions for Field Theory Problem Set 1

Solutions for Field Theory Problem Set 1 Solutions for Field Theory Problem Set 1 FROM THE TEXT: Page 355, 2a. ThefieldisK = Q( 3, 6). NotethatK containsqand 3and 6 3 1 = 2. Thus, K contains the field Q( 2, 3). In fact, those two fields are the

More information

Zsigmondy s Theorem. Lola Thompson. August 11, Dartmouth College. Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, / 1

Zsigmondy s Theorem. Lola Thompson. August 11, Dartmouth College. Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, / 1 Zsigmondy s Theorem Lola Thompson Dartmouth College August 11, 2009 Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, 2009 1 / 1 Introduction Definition o(a modp) := the multiplicative order

More information

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II.

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II. THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION 2006 110.402 - ADVANCED ALGEBRA II. Examiner: Professor C. Consani Duration: 3 HOURS (9am-12:00pm), May 15, 2006. No

More information

Algebra Qualifying Exam August 2001 Do all 5 problems. 1. Let G be afinite group of order 504 = 23 32 7. a. Show that G cannot be isomorphic to a subgroup of the alternating group Alt 7. (5 points) b.

More information

Lecture 7: Polynomial rings

Lecture 7: Polynomial rings Lecture 7: Polynomial rings Rajat Mittal IIT Kanpur You have seen polynomials many a times till now. The purpose of this lecture is to give a formal treatment to constructing polynomials and the rules

More information

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS STEVEN H. WEINTRAUB ABSTRACT. We present a number of classical proofs of the irreducibility of the n-th cyclotomic polynomial Φ n (x).

More information

CYCLOTOMIC EXTENSIONS

CYCLOTOMIC EXTENSIONS CYCLOTOMIC EXTENSIONS KEITH CONRAD 1. Introduction For a positive integer n, an nth root of unity in a field is a solution to z n = 1, or equivalently is a root of T n 1. There are at most n different

More information

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under

More information

Polynomial Rings. (Last Updated: December 8, 2017)

Polynomial Rings. (Last Updated: December 8, 2017) Polynomial Rings (Last Updated: December 8, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from Chapters

More information

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

An Introduction to Galois Theory. Andrew Baker

An Introduction to Galois Theory. Andrew Baker An Introduction to Galois Theory Andrew Baker [7/0/019] School of Mathematics & Statistics, University of Glasgow. Email address: a.baker@maths.gla.ac.uk URL: http://www.maths.gla.ac.uk/ ajb Q( 3, ζ 3

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials Outline MSRI-UP 2009 Coding Theory Seminar, Week 2 John B. Little Department of Mathematics and Computer Science College of the Holy Cross Cyclic Codes Polynomial Algebra More on cyclic codes Finite fields

More information

Notes for 4H Galois Theory Andrew Baker

Notes for 4H Galois Theory Andrew Baker Notes for 4H Galois Theory 003 4 Andrew Baker [9/05/004] Department of Mathematics, University of Glasgow. E-mail address: a.baker@maths.gla.ac.uk URL: http://www.maths.gla.ac.uk/ ajb Introduction: What

More information

Homework 6 Solution. Math 113 Summer 2016.

Homework 6 Solution. Math 113 Summer 2016. Homework 6 Solution. Math 113 Summer 2016. 1. For each of the following ideals, say whether they are prime, maximal (hence also prime), or neither (a) (x 4 + 2x 2 + 1) C[x] (b) (x 5 + 24x 3 54x 2 + 6x

More information

Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

More information

Solutions 13 Paul Garrett garrett/

Solutions 13 Paul Garrett   garrett/ (March 1, 005) Solutions 13 Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [13.1] Determine the degree of Q( 65 + 56i) over Q, where i = 1. We show that 65 + 56i is not a suare in

More information

(January 14, 2009) a primitive fifth root of unity, so have order divisible by 5.) Recall the isomorphisms

(January 14, 2009) a primitive fifth root of unity, so have order divisible by 5.) Recall the isomorphisms (January 14, 009) [1.1] Prove that a prime p such that p = 1 mod 3 factors properly as p = ab in Z[ω], where ω is a primitive cube root of unity. (Hint: If p were prime in Z[ω], then Z[ω]/p would be a

More information

55 Separable Extensions

55 Separable Extensions 55 Separable Extensions In 54, we established the foundations of Galois theory, but we have no handy criterion for determining whether a given field extension is Galois or not. Even in the quite simple

More information

Dirichlet Characters. Chapter 4

Dirichlet Characters. Chapter 4 Chapter 4 Dirichlet Characters In this chapter we develop a systematic theory for computing with Dirichlet characters, which are extremely important to computations with modular forms for (at least) two

More information

ϕ : Z F : ϕ(t) = t 1 =

ϕ : Z F : ϕ(t) = t 1 = 1. Finite Fields The first examples of finite fields are quotient fields of the ring of integers Z: let t > 1 and define Z /t = Z/(tZ) to be the ring of congruence classes of integers modulo t: in practical

More information