ON THE LEAST PRIMITIVE ROOT MODULO p 2

Size: px
Start display at page:

Download "ON THE LEAST PRIMITIVE ROOT MODULO p 2"

Transcription

1 ON THE LEAST PRIMITIVE ROOT MODULO p 2 S. D. COHEN, R. W. K. ODONI, AND W. W. STOTHERS Let h(p) be the least positive primitive root modulo p 2. Burgess [1] indicated that his work on character sums yields the estimate h(p) = In 1, we show that this can be improved to for sufficiently large p. h(p)<p i+b (1) In 2, we adapt the method of Burgess and Elliott [3] to obtain the estimate n{xy l I h{p) 4 (log X) 2 (log log X)* (2) where, as usual, Tr(A') denotes the number of primes up to X. This improves the result of Burgess [1; p. 263], who obtained {logxf (log log A") 6 on the right. Finally, in 3, we give estimates, valid except on a thin set of primes, for the number of small primes which are primitive roots modulo p 2. These follow from the analogous expressions for primitive roots modulo p, given by Elliott [4]. All our results depend on the following argument. Suppose that JC and y are positive integers less than p 2. If they are p-th powers modulo p 2, and are congruent modulo p, then x = x p = y" = y (mod. p 2 ). Since x,y < p 2, we must have x y. 1. Bad primitive roots A primitive root modulo p is bad if it is not primitive modulo p 2. Write d(k, n) for the number of ways of expressing the integer n as the product of k integers, order being important. LEMMA 1. For each positive e, and each positive integer k, there exists a constant M{k, B) such that, if N ^ M(k, e) and n^n, then d(k y n) < N*. Proof. Clearly, d(2, n) is the number of divisors of n, so that the existence of M(2, e) is well known. Received 15 June, 1973; revised 28 July, [BULL. LONDON MATH. SOC, 6 (1974), 42-46]

2 ON THE LEAST PRIMITIVE ROOT MODULO p 2 43 For k > 2, it is enough to observe that, for any n, Let T(p) be the set of integers less than p which are p-th power residues modulo p 2. THEOREM 1. For each positive e, there exists a constant P(e) such that, if p > P(e), then card(t(p)) < p* +e. Proof. If card (T(p)) 5* p* +, there are at least p 1+2e ordered pairs of elements of T(p). The products of these pairs are less than p 2, and at least p 2e of these products coincide modulo p. By the above argument, the products, being p-th power residues modulo p 2, must be equal when they coincide modulo p. Thus, we have an integer less than p 2 with d(2, n) ^ p 2e. If p is sufficiently large, this contradicts the lemma. Now we observe that a primitive root modulo p is bad if and only if it belongs to T(p). An application of the last result bounds the number of bad primitive roots, viz. p i+e COROLLARY. With P(e) as in the theorem, if p > P(e), then there are less than bad primitive roots. THEOREM 2. For each positive e, there exists a constant Q(e) such that, if p > Q(e), then h(p) < p i+e. Proof. Burgess [2] has shown that, for sufficiently large p, there are at least p i primitive roots less than p i+e. It suffices, therefore, to show that less than p* are bad. Without loss of generality, we assume that e < 3/20. If we can find at least p* bad primitive roots in the range [2,p i+e ], then we can form at least p* ordered 5-tuples of them. By our restriction on e, the product of any 5 is less than p 2. Noting that at least p* coincide modulo p, we see that there must be an integer n less than p 2 with Again, an application of Lemma 1 gives a contradiction. 2. The average of h(p) To obtain (2), we use the method of Burgess and Elliott [3], with suitable modifications. The essential differences consist in replacing the estimate g(p) = O(p i+e ), used on p. 45 of [3], by (1) (or even the weaker estimate h(p) = O(p i+b )), and also in replacing their Lemma 4 by the following result.

3 44 S. D. COHEN, R. W. K. ODONI, AND W. W. STOTHERS LEMMA 2. Suppose that the hypotheses of [3; Lemma 4] are satisfied, and that, in addition, (20P/(f>(P)) 2 (\ogp) 2 <H<p* (3) Then, if p and H are sufficiently large, h'(p) ^ H, where h'(p) is the least prime primitive root modulo p 2. Proof Let S = S(H, p) be the set of all prime primitive roots modulo p lying in [l,h]. Then, following exactly the proof of Lemma 4 of [3], we have s = card (S) > ($n(h) -1) 4>{F)IP > 0(P) H/5P log H (4) for sufficiently large H (absolute). Assume that Lemma 2 is false, so that all members of S are bad. r = [2 \ogpf\ogh], and consider Let Since all members of S are primes, there are at least a = s r /r\ distinct integers in S r. Since H r ^ p 2, these are distinct modulo p 2 ; indeed, since T(p) contains S r, the basic argument shows that the integers in S r are distinct modulo p. Thus, a ^ p. However, a ^ (s/r) r so that, by (3), (4) and the definition of r, a> p for large enough p and H. The contradiction proves the lemma. LEMMA 3. // S{2) = {p ^ X :d{2,p-l)h'(p) < {logxf}, then, for B as in [3; Lemma 5], h{p) 4 X/(log X) 2 S(2) Proof. In following the proof of [3; Lemma 5], we need only show that, for all but 0{X*), say, of values of p < X, the condition (3) is satisfied. For sufficiently large X, (log*) 54 ^ H = max{r?(logx) 3 } 18 ^ X*, i = l, 2 and P/</>(P) <^ log log X. Hence, for large X, and p > X*, ((20P/<KP))) 2 (logp) 2 < (log log X) 2. (log X) 2 < H ^ p* In place of [3; Lemma 6], we use: LEMMA 4. In the notation of [3; Lemma 6], let V - (log log X) 2 S(5) = S(2)n{p < X : h'(p) < D^logX) 2 [{p (1) (p) + p (2) (p)(p-l)/0(p-l)} 4 where D y is an absolute constant, to be chosen later. Then, h(p)<x/(log X) 2. S(S) and + (log log log X) 2 ]

4 ON THE LEAST PRIMITIVE ROOT MODULO p 2 45 Proof. In this case, P/</>(P) <^ log log log X, so that (20PAKP)) 2 (log/?) 2 ^ ^(log*) 2 Oog log logx) 2, say, Instead of the H used in [3; Lemma 6], we put H = E 2 (\ogx) 2.max{X 1 4 R l \X 2 "R 2 \ (log log log X) 2 } where E 2 = max {E, x }, and E is defined on p. 47 of [3]. Thus, (3) will again be satisfied for all but O(X*) values of p. Since our S(7) is a subset of the S 7 used by Burgess and Elliott, we obtain, in place of [3; eqn. (28)], h'(p) < X/(\ogX) 2, while, if p S(2)\S(7), then h'(p) ^H, and we take D x = 2 16 E 2 to complete the proof of the lemma. To prove (2), it remains to estimate Z OogX)V 1) (p) 4 + Z pes(s) pes(5) + Z (log X) 2 (log log log X) 2 pes(5) The estimates of Burgess and Elliott for the sums corresponding to the first two sums remain valid. Clearly, the third sum is <^ X log X. (log log log-y) 2. This completes the proof of (2). 3. Elliott's results For our extension of Elliott's results, we can replace the first lemma by the following simple observation: an integer n can be written as a product of k primes in at most k\ ways. As a trivial corollary, we see that the number of prime p-th. power residues modulo p 2 in [l,p 1] is less than (2/?)*. The case of prime primitive roots modulo p 2 is more interesting. Let N(H,p) denote the number of primes less than H which are primitive modulo p 2. Using the results of Elliott [4], together with the above technique to bound the number of bad primes, we can obtain a useful estimate. THEOREM 3. For positive constants e, B, there exist constants F = F(e, B) and G = G(e, B) such that N(H,p) = (i) when H $s exp(f(loglogp)(log log logp)), except on a set of primes, E, with E(x) = (ii) when H ^ p e, except on a set of primes E', with E'(x) = O((logx) G ). (A(x) denotes the number of integers in A which are less than x.)

5 46 ON THE LEAST PRIMITIVE ROOT MODULO p We have replaced Elliott's 0(j>-l)/(p-l) with the expression appropriate to the situation; the effect is negligible. The proof is like that of Theorem 2, but with the idea of the second paragraph of Lemma 2 in place of Lemma 1. References 1. D. A. Burgess, " The average of the least primitive root modulo/? 2 ", Acta Arithmetica, 18 (1971), , " On character sums and primitive roots ", Proc. London Math. Soc, 12 (1962), and P. D. T. A. Elliott," The average of the least primitive root modulo/? ", Mathematika, 15 (1968), P. D. T. A. Elliott, " The distribution of primitive roots ", Canadian Math. /., 21 (1969), Department of Mathematics, University Gardens, Glasgow, G12 8QW.

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

SOME REMARKS ON ARTIN'S CONJECTURE

SOME REMARKS ON ARTIN'S CONJECTURE Canad. Math. Bull. Vol. 30 (1), 1987 SOME REMARKS ON ARTIN'S CONJECTURE BY M. RAM MURTY AND S. SR1NIVASAN ABSTRACT. It is a classical conjecture of E. Artin that any integer a > 1 which is not a perfect

More information

Math 324, Fall 2011 Assignment 7 Solutions. 1 (ab) γ = a γ b γ mod n.

Math 324, Fall 2011 Assignment 7 Solutions. 1 (ab) γ = a γ b γ mod n. Math 324, Fall 2011 Assignment 7 Solutions Exercise 1. (a) Suppose a and b are both relatively prime to the positive integer n. If gcd(ord n a, ord n b) = 1, show ord n (ab) = ord n a ord n b. (b) Let

More information

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime J. Cilleruelo and M. Z. Garaev Abstract We obtain a sharp upper bound estimate of the form Hp o(1)

More information

Fermat numbers and integers of the form a k + a l + p α

Fermat numbers and integers of the form a k + a l + p α ACTA ARITHMETICA * (200*) Fermat numbers and integers of the form a k + a l + p α by Yong-Gao Chen (Nanjing), Rui Feng (Nanjing) and Nicolas Templier (Montpellier) 1. Introduction. In 1849, A. de Polignac

More information

Part V. Chapter 19. Congruence of integers

Part V. Chapter 19. Congruence of integers Part V. Chapter 19. Congruence of integers Congruence modulo m Let m be a positive integer. Definition. Integers a and b are congruent modulo m if and only if a b is divisible by m. For example, 1. 277

More information

Products of Factorials Modulo p

Products of Factorials Modulo p Products of Factorials Modulo p Florian Luca and Pantelimon Stănică IMATE, UNAM, Ap. Postal 6-3 Xangari, CP. 58 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx Auburn University Montgomery,

More information

Subset sums modulo a prime

Subset sums modulo a prime ACTA ARITHMETICA 131.4 (2008) Subset sums modulo a prime by Hoi H. Nguyen, Endre Szemerédi and Van H. Vu (Piscataway, NJ) 1. Introduction. Let G be an additive group and A be a subset of G. We denote by

More information

Predictive criteria for the representation of primes by binary quadratic forms

Predictive criteria for the representation of primes by binary quadratic forms ACTA ARITHMETICA LXX3 (1995) Predictive criteria for the representation of primes by binary quadratic forms by Joseph B Muskat (Ramat-Gan), Blair K Spearman (Kelowna, BC) and Kenneth S Williams (Ottawa,

More information

Groups Subgroups Normal subgroups Quotient groups Homomorphisms Cyclic groups Permutation groups Cayley s theorem Class equations Sylow theorems

Groups Subgroups Normal subgroups Quotient groups Homomorphisms Cyclic groups Permutation groups Cayley s theorem Class equations Sylow theorems Group Theory Groups Subgroups Normal subgroups Quotient groups Homomorphisms Cyclic groups Permutation groups Cayley s theorem Class equations Sylow theorems Groups Definition : A non-empty set ( G,*)

More information

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have Exercise 13. Consider positive integers a, b, and c. (a) Suppose gcd(a, b) = 1. (i) Show that if a divides the product bc, then a must divide c. I give two proofs here, to illustrate the different methods.

More information

On the second smallest prime non-residue

On the second smallest prime non-residue On the second smallest prime non-residue Kevin J. McGown 1 Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 Abstract Let χ be a non-principal Dirichlet

More information

Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin

Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin mcadam@math.utexas.edu Abstract: We offer a proof of quadratic reciprocity that arises

More information

Math 3013 Problem Set 4

Math 3013 Problem Set 4 (e) W = {x, 3x, 4x 3, 5x 4 x i R} in R 4 Math 33 Problem Set 4 Problems from.6 (pgs. 99- of text):,3,5,7,9,,7,9,,35,37,38. (Problems,3,4,7,9 in text). Determine whether the indicated subset is a subspace

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Math. J. Okayama Univ. 45 (2003), 29 36 ON VALUES OF CYCLOTOMIC POLYNOMIALS. V Dedicated to emeritus professor Kazuo Kishimoto on his seventieth birthday Kaoru MOTOSE In this paper, using properties of

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

Wilson s Theorem and Fermat s Little Theorem

Wilson s Theorem and Fermat s Little Theorem Wilson s Theorem and Fermat s Little Theorem Wilson stheorem THEOREM 1 (Wilson s Theorem): (p 1)! 1 (mod p) if and only if p is prime. EXAMPLE: We have (2 1)!+1 = 2 (3 1)!+1 = 3 (4 1)!+1 = 7 (5 1)!+1 =

More information

Math 314 Course Notes: Brief description

Math 314 Course Notes: Brief description Brief description These are notes for Math 34, an introductory course in elementary number theory Students are advised to go through all sections in detail and attempt all problems These notes will be

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

ON THE RESIDUALITY A FINITE p-group OF HN N-EXTENSIONS

ON THE RESIDUALITY A FINITE p-group OF HN N-EXTENSIONS 1 ON THE RESIDUALITY A FINITE p-group OF HN N-EXTENSIONS D. I. Moldavanskii arxiv:math/0701498v1 [math.gr] 18 Jan 2007 A criterion for the HNN-extension of a finite p-group to be residually a finite p-group

More information

Constructions of digital nets using global function fields

Constructions of digital nets using global function fields ACTA ARITHMETICA 105.3 (2002) Constructions of digital nets using global function fields by Harald Niederreiter (Singapore) and Ferruh Özbudak (Ankara) 1. Introduction. The theory of (t, m, s)-nets and

More information

Odd multiperfect numbers of abundancy four

Odd multiperfect numbers of abundancy four Odd multiperfect numbers of abundancy four Kevin A. Broughan and Qizhi Zhou University of Waikato, Hamilton, New Zealand Version: th December 006 E-mail: kab@waikato.ac.nz MSC000: A05, A5, N99. Key words:

More information

Math Homework # 4

Math Homework # 4 Math 446 - Homework # 4 1. Are the following statements true or false? (a) 3 5(mod 2) Solution: 3 5 = 2 = 2 ( 1) is divisible by 2. Hence 2 5(mod 2). (b) 11 5(mod 5) Solution: 11 ( 5) = 16 is NOT divisible

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

SUM-PRODUCT ESTIMATES APPLIED TO WARING S PROBLEM MOD P

SUM-PRODUCT ESTIMATES APPLIED TO WARING S PROBLEM MOD P SUM-PRODUCT ESTIMATES APPLIED TO WARING S PROBLEM MOD P TODD COCHRANE AND CHRISTOPHER PINNER Abstract. Let γ(k, p) denote Waring s number (mod p) and δ(k, p) denote the ± Waring s number (mod p). We use

More information

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers:

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers: WORKSHEET MATH 215, FALL 15, WHYTE We begin our course with the natural numbers: N = {1, 2, 3,...} which are a subset of the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } We will assume familiarity with their

More information

3.2 Solving linear congruences. v3

3.2 Solving linear congruences. v3 3.2 Solving linear congruences. v3 Solving equations of the form ax b (mod m), where x is an unknown integer. Example (i) Find an integer x for which 56x 1 mod 93. Solution We have already solved this

More information

LECTURES 11-13: CAUCHY S THEOREM AND THE SYLOW THEOREMS

LECTURES 11-13: CAUCHY S THEOREM AND THE SYLOW THEOREMS LECTURES 11-13: CAUCHY S THEOREM AND THE SYLOW THEOREMS Recall Lagrange s theorem says that for any finite group G, if H G, then H divides G. In these lectures we will be interested in establishing certain

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

Congruence of Integers

Congruence of Integers Congruence of Integers November 14, 2013 Week 11-12 1 Congruence of Integers Definition 1. Let m be a positive integer. For integers a and b, if m divides b a, we say that a is congruent to b modulo m,

More information

On the Distribution of Multiplicative Translates of Sets of Residues (mod p)

On the Distribution of Multiplicative Translates of Sets of Residues (mod p) On the Distribution of Multiplicative Translates of Sets of Residues (mod p) J. Ha stad Royal Institute of Technology Stockholm, Sweden J. C. Lagarias A. M. Odlyzko AT&T Bell Laboratories Murray Hill,

More information

#A42 INTEGERS 10 (2010), ON THE ITERATION OF A FUNCTION RELATED TO EULER S

#A42 INTEGERS 10 (2010), ON THE ITERATION OF A FUNCTION RELATED TO EULER S #A42 INTEGERS 10 (2010), 497-515 ON THE ITERATION OF A FUNCTION RELATED TO EULER S φ-function Joshua Harrington Department of Mathematics, University of South Carolina, Columbia, SC 29208 jh3293@yahoo.com

More information

The inverse Goldbach problem

The inverse Goldbach problem 1 The inverse Goldbach roblem by Christian Elsholtz Submission Setember 7, 2000 (this version includes galley corrections). Aeared in Mathematika 2001. Abstract We imrove the uer and lower bounds of the

More information

EXPLICIT EVALUATIONS OF SOME WEIL SUMS. 1. Introduction In this article we will explicitly evaluate exponential sums of the form

EXPLICIT EVALUATIONS OF SOME WEIL SUMS. 1. Introduction In this article we will explicitly evaluate exponential sums of the form EXPLICIT EVALUATIONS OF SOME WEIL SUMS ROBERT S. COULTER 1. Introduction In this article we will explicitly evaluate exponential sums of the form χax p α +1 ) where χ is a non-trivial additive character

More information

ON THE LIMIT POINTS OF THE FRACTIONAL PARTS OF POWERS OF PISOT NUMBERS

ON THE LIMIT POINTS OF THE FRACTIONAL PARTS OF POWERS OF PISOT NUMBERS ARCHIVUM MATHEMATICUM (BRNO) Tomus 42 (2006), 151 158 ON THE LIMIT POINTS OF THE FRACTIONAL PARTS OF POWERS OF PISOT NUMBERS ARTŪRAS DUBICKAS Abstract. We consider the sequence of fractional parts {ξα

More information

Recitation 7: Existence Proofs and Mathematical Induction

Recitation 7: Existence Proofs and Mathematical Induction Math 299 Recitation 7: Existence Proofs and Mathematical Induction Existence proofs: To prove a statement of the form x S, P (x), we give either a constructive or a non-contructive proof. In a constructive

More information

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C p-stability OF DEGENERATE SECOND-ORDER RECURRENCES Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C. 20064 Walter Carlip Department of Mathematics and Computer

More information

The Diophantine equation x n = Dy 2 + 1

The Diophantine equation x n = Dy 2 + 1 ACTA ARITHMETICA 106.1 (2003) The Diophantine equation x n Dy 2 + 1 by J. H. E. Cohn (London) 1. Introduction. In [4] the complete set of positive integer solutions to the equation of the title is described

More information

MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x +1 PROBLEM. 1. Introduction The 3x +1iteration is given by the function on the integers for x even 3x+1

MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x +1 PROBLEM. 1. Introduction The 3x +1iteration is given by the function on the integers for x even 3x+1 MULTIPLICATIVE SEMIGROUPS RELATED TO THE 3x + PROBLEM ANA CARAIANI Abstract. Recently Lagarias introduced the Wild semigroup, which is intimately connected to the 3x + Conjecture. Applegate and Lagarias

More information

Character sums with Beatty sequences on Burgess-type intervals

Character sums with Beatty sequences on Burgess-type intervals Character sums with Beatty sequences on Burgess-type intervals William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu Igor E. Shparlinski Department

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

Fadwa S. Abu Muriefah. ON THE DIOPHANTINE EQUATION x fc = y n

Fadwa S. Abu Muriefah. ON THE DIOPHANTINE EQUATION x fc = y n DEMONSTRATIO MATHEMATICA Vol. XXXIX No 2 2006 Fadwa S. Abu Muriefah ON THE DIOPHANTINE EQUATION x 2 + 5 2fc = y n Abstract. In this paper we prove that the title equation where k > 0 and n > 3, may have

More information

Rational tetrahedra with edges in geometric progression

Rational tetrahedra with edges in geometric progression Journal of Number Theory 128 (2008) 251 262 www.elsevier.com/locate/jnt Rational tetrahedra with edges in geometric progression C. Chisholm, J.A. MacDougall School of Mathematical and Physical Sciences,

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

34 th United States of America Mathematical Olympiad

34 th United States of America Mathematical Olympiad 34 th United States of America Mathematical Olympiad 1. Determine all composite positive integers n for which it is possible to arrange all divisors of n that are greater than 1 in a circle so that no

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics ON THE DIOPHANTINE EQUATION xn 1 x 1 = y Yann Bugeaud, Maurice Mignotte, and Yves Roy Volume 193 No. 2 April 2000 PACIFIC JOURNAL OF MATHEMATICS Vol. 193, No. 2, 2000 ON

More information

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x.

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x. Colloq. Math. 145(016), no. 1, 149-155. ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS FAN GE AND ZHI-WEI SUN Abstract. For m = 3, 4,... those p m (x) = (m )x(x 1)/ + x with x Z are called generalized

More information

Definition For a set F, a polynomial over F with variable x is of the form

Definition For a set F, a polynomial over F with variable x is of the form *6. Polynomials Definition For a set F, a polynomial over F with variable x is of the form a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 1 x + a 0, where a n, a n 1,..., a 1, a 0 F. The a i, 0 i n are the

More information

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions MATH 11/CSCI 11, Discrete Structures I Winter 007 Toby Kenney Homework Sheet 5 Hints & Model Solutions Sheet 4 5 Define the repeat of a positive integer as the number obtained by writing it twice in a

More information

arxiv: v2 [math.nt] 14 Aug 2013

arxiv: v2 [math.nt] 14 Aug 2013 ON MULLIN S SECOND SEQUENCE OF PRIMES ANDREW R. BOOKER arxiv:07.338v2 [math.nt] 4 Aug 203 Abstract. We consider the second of Mullin s sequences of prime numbers related to Euclid s proof that there are

More information

A NOTE ON PRIMITIVE SUBGROUPS OF FINITE SOLVABLE GROUPS

A NOTE ON PRIMITIVE SUBGROUPS OF FINITE SOLVABLE GROUPS Commun. Korean Math. Soc. 28 (2013), No. 1, pp. 55 62 http://dx.doi.org/10.4134/ckms.2013.28.1.055 A NOTE ON PRIMITIVE SUBGROUPS OF FINITE SOLVABLE GROUPS Xuanli He, Shouhong Qiao, and Yanming Wang Abstract.

More information

Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1

Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1 Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1 R.A. Mollin Abstract We look at the simple continued

More information

On Character Sums of Binary Quadratic Forms 1 2. Mei-Chu Chang 3. Abstract. We establish character sum bounds of the form.

On Character Sums of Binary Quadratic Forms 1 2. Mei-Chu Chang 3. Abstract. We establish character sum bounds of the form. On Character Sums of Binary Quadratic Forms 2 Mei-Chu Chang 3 Abstract. We establish character sum bounds of the form χ(x 2 + ky 2 ) < τ H 2, a x a+h b y b+h where χ is a nontrivial character (mod ), 4

More information

New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups

New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups John Polhill Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg,

More information

ON THE CONSTANT IN BURGESS BOUND FOR THE NUMBER OF CONSECUTIVE RESIDUES OR NON-RESIDUES Kevin J. McGown

ON THE CONSTANT IN BURGESS BOUND FOR THE NUMBER OF CONSECUTIVE RESIDUES OR NON-RESIDUES Kevin J. McGown Functiones et Approximatio 462 (2012), 273 284 doi: 107169/facm/201246210 ON THE CONSTANT IN BURGESS BOUND FOR THE NUMBER OF CONSECUTIVE RESIDUES OR NON-RESIDUES Kevin J McGown Abstract: We give an explicit

More information

Some examples of two-dimensional regular rings

Some examples of two-dimensional regular rings Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 3, 2014, 271 277 Some examples of two-dimensional regular rings by 1 Tiberiu Dumitrescu and 2 Cristodor Ionescu Abstract Let B be a ring and A = B[X,

More information

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1 2 3 style total Math 415 Examination 3 Please print your name: Answer Key 1 True/false Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1. The rings

More information

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang BURGESS INEQUALITY IN F p 2 Mei-Chu Chang Abstract. Let be a nontrivial multiplicative character of F p 2. We obtain the following results.. Given ε > 0, there is δ > 0 such that if ω F p 2\F p and I,

More information

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 1. Arithmetic, Zorn s Lemma.

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 1. Arithmetic, Zorn s Lemma. D-MATH Algebra I HS18 Prof. Rahul Pandharipande Solution 1 Arithmetic, Zorn s Lemma. 1. (a) Using the Euclidean division, determine gcd(160, 399). (b) Find m 0, n 0 Z such that gcd(160, 399) = 160m 0 +

More information

The number of solutions of linear equations in roots of unity

The number of solutions of linear equations in roots of unity ACTA ARITHMETICA LXXXIX.1 (1999) The number of solutions of linear equations in roots of unity by Jan-Hendrik Evertse (Leiden) 1. Introduction. We deal with equations (1.1) a 1 ζ 1 +... + a n ζ n = 1 in

More information

ON STRUCTURE AND COMMUTATIVITY OF NEAR - RINGS

ON STRUCTURE AND COMMUTATIVITY OF NEAR - RINGS Proyecciones Vol. 19, N o 2, pp. 113-124, August 2000 Universidad Católica del Norte Antofagasta - Chile ON STRUCTURE AND COMMUTATIVITY OF NEAR - RINGS H. A. S. ABUJABAL, M. A. OBAID and M. A. KHAN King

More information

Algebraic integers of small discriminant

Algebraic integers of small discriminant ACTA ARITHMETICA LXXV.4 (1996) Algebraic integers of small discriminant by Jeffrey Lin Thunder and John Wolfskill (DeKalb, Ill.) Introduction. For an algebraic integer α generating a number field K = Q(α),

More information

DIHEDRAL GROUPS II KEITH CONRAD

DIHEDRAL GROUPS II KEITH CONRAD DIHEDRAL GROUPS II KEITH CONRAD We will characterize dihedral groups in terms of generators and relations, and describe the subgroups of D n, including the normal subgroups. We will also introduce an infinite

More information

4 Powers of an Element; Cyclic Groups

4 Powers of an Element; Cyclic Groups 4 Powers of an Element; Cyclic Groups Notation When considering an abstract group (G, ), we will often simplify notation as follows x y will be expressed as xy (x y) z will be expressed as xyz x (y z)

More information

BURGESS BOUND FOR CHARACTER SUMS. 1. Introduction Here we give a survey on the bounds for character sums of D. A. Burgess [1].

BURGESS BOUND FOR CHARACTER SUMS. 1. Introduction Here we give a survey on the bounds for character sums of D. A. Burgess [1]. BURGESS BOUND FOR CHARACTER SUMS LIANGYI ZHAO 1. Introduction Here we give a survey on the bounds for character sums of D. A. Burgess [1]. We henceforth set (1.1) S χ (N) = χ(n), M

More information

Resolving Grosswald s conjecture on GRH

Resolving Grosswald s conjecture on GRH Resolving Grosswald s conjecture on GRH Kevin McGown Department of Mathematics and Statistics California State University, Chico, CA, USA kmcgown@csuchico.edu Enrique Treviño Department of Mathematics

More information

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China J. Number Theory 16(016), 190 11. A RESULT SIMILAR TO LAGRANGE S THEOREM Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing 10093, People s Republic of China zwsun@nju.edu.cn http://math.nju.edu.cn/

More information

A Collection of MTA ELTE GAC manuscripts

A Collection of MTA ELTE GAC manuscripts A Collection of MTA ELTE GAC manuscripts Katalin Gyarmati, András Sárközy On reducible and primitive subsets of F p, I 014 MTA ELTE Geometric and Algebraic Combinatorics Research Group Hungarian Academy

More information

ARTIN S CONJECTURE AND SYSTEMS OF DIAGONAL EQUATIONS

ARTIN S CONJECTURE AND SYSTEMS OF DIAGONAL EQUATIONS ARTIN S CONJECTURE AND SYSTEMS OF DIAGONAL EQUATIONS TREVOR D. WOOLEY Abstract. We show that Artin s conjecture concerning p-adic solubility of Diophantine equations fails for infinitely many systems of

More information

On the Fractional Parts of a n /n

On the Fractional Parts of a n /n On the Fractional Parts of a n /n Javier Cilleruelo Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Universidad Autónoma de Madrid 28049-Madrid, Spain franciscojavier.cilleruelo@uam.es Angel Kumchev

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

ON THE p-adic VALUE OF JACOBI SUMS OVER F p

ON THE p-adic VALUE OF JACOBI SUMS OVER F p Kyushu J. Math. 68 (014), 3 38 doi:10.06/kyushujm.68.3 ON THE p-adic VALUE OF JACOBI SUMS OVER F p 3 Takahiro NAKAGAWA (Received 9 November 01 and revised 3 April 014) Abstract. Let p be a prime and q

More information

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes.

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. INTEGERS PETER MAYR (MATH 2001, CU BOULDER) In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. 1. Divisibility Definition. Let a, b

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

Number Theory Homework.

Number Theory Homework. Number Theory Homewor. 1. The Theorems of Fermat, Euler, and Wilson. 1.1. Fermat s Theorem. The following is a special case of a result we have seen earlier, but as it will come up several times in this

More information

Perfect Power Riesel Numbers

Perfect Power Riesel Numbers Perfect Power Riesel Numbers Carrie Finch a, Lenny Jones b a Mathematics Department, Washington and Lee University, Lexington, VA 24450 b Department of Mathematics, Shippensburg University, Shippensburg,

More information

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) 1 Euclid s Algorithm Euclid s Algorithm for computing the greatest common divisor belongs to the oldest known computing procedures

More information

NOTE. On a Problem of Erdo s and Sa rko zy

NOTE. On a Problem of Erdo s and Sa rko zy Journal of Combinatorial Theory, Series A 94, 191195 (2001) doi10.1006jcta.2000.3142, available online at httpwww.idealibrary.com on NOTE On a Problem of Erdo s and Sa rko zy Tomasz Schoen Mathematisches

More information

Almost perfect powers in consecutive integers (II)

Almost perfect powers in consecutive integers (II) Indag. Mathem., N.S., 19 (4), 649 658 December, 2008 Almost perfect powers in consecutive integers (II) by N. Saradha and T.N. Shorey School of Mathematics, Tata Institute of Fundamental Research, Homi

More information

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT Journal of Prime Research in Mathematics Vol. 8 202, 28-35 GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT JORGE JIMÉNEZ URROZ, FLORIAN LUCA 2, MICHEL

More information

ABSTRACT. In this note, we find all the solutions of the Diophantine equation x k = y n, 1, y 1, k N, n INTRODUCTION

ABSTRACT. In this note, we find all the solutions of the Diophantine equation x k = y n, 1, y 1, k N, n INTRODUCTION Florian Luca Instituto de Matemáticas UNAM, Campus Morelia Apartado Postal 27-3 (Xangari), C.P. 58089, Morelia, Michoacán, Mexico e-mail: fluca@matmor.unam.mx Alain Togbé Mathematics Department, Purdue

More information

Amicable numbers. CRM Workshop on New approaches in probabilistic and multiplicative number theory December 8 12, 2014

Amicable numbers. CRM Workshop on New approaches in probabilistic and multiplicative number theory December 8 12, 2014 Amicable numbers CRM Workshop on New approaches in probabilistic and multiplicative number theory December 8 12, 2014 Carl Pomerance, Dartmouth College (U. Georgia, emeritus) Recall that s(n) = σ(n) n,

More information

On the prime divisors of elements of a D( 1) quadruple

On the prime divisors of elements of a D( 1) quadruple arxiv:1309.4347v1 [math.nt] 17 Sep 2013 On the prime divisors of elements of a D( 1) quadruple Anitha Srinivasan Abstract In [4] it was shown that if {1,b,c,d} is a D( 1) quadruple with b < c < d and b

More information

FURTHER EVALUATIONS OF WEIL SUMS

FURTHER EVALUATIONS OF WEIL SUMS FURTHER EVALUATIONS OF WEIL SUMS ROBERT S. COULTER 1. Introduction Weil sums are exponential sums whose summation runs over the evaluation mapping of a particular function. Explicitly they have the form

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

ON THE GAPS BETWEEN VALUES OF BINARY QUADRATIC FORMS

ON THE GAPS BETWEEN VALUES OF BINARY QUADRATIC FORMS Proceedings of the Edinburgh Mathematical Society (2011) 54, 25 32 DOI:10.1017/S0013091509000285 First published online 1 November 2010 ON THE GAPS BETWEEN VALUES OF BINARY QUADRATIC FORMS JÖRG BRÜDERN

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM. 1. Introduction

ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM. 1. Introduction ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM A. DUBICKAS and A. NOVIKAS Abstract. Let E(4) be the set of positive integers expressible by the form 4M d, where M is a multiple of the product ab and

More information

On the number of elements with maximal order in the multiplicative group modulo n

On the number of elements with maximal order in the multiplicative group modulo n ACTA ARITHMETICA LXXXVI.2 998 On the number of elements with maximal order in the multiplicative group modulo n by Shuguang Li Athens, Ga.. Introduction. A primitive root modulo the prime p is any integer

More information

A Gel fond type criterion in degree two

A Gel fond type criterion in degree two ACTA ARITHMETICA 111.1 2004 A Gel fond type criterion in degree two by Benoit Arbour Montréal and Damien Roy Ottawa 1. Introduction. Let ξ be any real number and let n be a positive integer. Defining the

More information

On the order of unimodular matrices modulo integers

On the order of unimodular matrices modulo integers ACTA ARITHMETICA 0.2 (2003) On the order of unimodular matrices modulo integers by Pär Kurlberg (Gothenburg). Introduction. Given an integer b and a prime p such that p b, let ord p (b) be the multiplicative

More information

A Note on Indefinite Ternary Quadratic Forms Representing All Odd Integers. Key Words: Quadratic Forms, indefinite ternary quadratic.

A Note on Indefinite Ternary Quadratic Forms Representing All Odd Integers. Key Words: Quadratic Forms, indefinite ternary quadratic. Bol. Soc. Paran. Mat. (3s.) v. 23 1-2 (2005): 85 92. c SPM ISNN-00378712 A Note on Indefinite Ternary Quadratic Forms Representing All Odd Integers Jean Bureau and Jorge Morales abstract: In this paper

More information

arxiv: v6 [math.nt] 16 May 2017

arxiv: v6 [math.nt] 16 May 2017 arxiv:5.038v6 [math.nt] 6 May 207 An alternative proof of the Dirichlet prime number theorem Haifeng Xu May 7, 207 Abstract Dirichlet s theorem on arithmetic progressions called as Dirichlet prime number

More information

Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01

Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01 Advanced Number Theory Note #8: Dirichlet's theorem on primes in arithmetic progressions 29 August 2012 at 19:01 Public In this note, which is intended mainly as a technical memo for myself, I give a 'blow-by-blow'

More information

Integers without large prime factors in short intervals and arithmetic progressions

Integers without large prime factors in short intervals and arithmetic progressions ACTA ARITHMETICA XCI.3 (1999 Integers without large prime factors in short intervals and arithmetic progressions by Glyn Harman (Cardiff 1. Introduction. Let Ψ(x, u denote the number of integers up to

More information

On prime factors of subset sums

On prime factors of subset sums On prime factors of subset sums by P. Erdös, A. Sárközy and C.L. Stewart * 1 Introduction For any set X let X denote its cardinality and for any integer n larger than one let ω(n) denote the number of

More information

An Approach to Hensel s Lemma

An Approach to Hensel s Lemma Irish Math. Soc. Bulletin 47 (2001), 15 21 15 An Approach to Hensel s Lemma gary mcguire Abstract. Hensel s Lemma is an important tool in many ways. One application is in factoring polynomials over Z.

More information

On the smallest simultaneous power nonresidue modulo a prime

On the smallest simultaneous power nonresidue modulo a prime arxiv:5.08428v [math.nt] 26 Nov 205 On the smallest simultaneous power nonresidue modulo a prime K. Ford, M. Z. Garaev and S. V. Konyagin Abstract Let p be a prime and p,...,p r be distinct prime divisors

More information