On Character Sums of Binary Quadratic Forms 1 2. Mei-Chu Chang 3. Abstract. We establish character sum bounds of the form.

Size: px
Start display at page:

Download "On Character Sums of Binary Quadratic Forms 1 2. Mei-Chu Chang 3. Abstract. We establish character sum bounds of the form."

Transcription

1 On Character Sums of Binary Quadratic Forms 2 Mei-Chu Chang 3 Abstract. We establish character sum bounds of the form χ(x 2 + ky 2 ) < τ H 2, a x a+h b y b+h where χ is a nontrivial character (mod ), 4 +ε < H <, and a, b < ε/2 H. As an alication, we obtain that given k Z\{0}, x 2 + k is a quadratic non-residue (mod ) for some x < 2 e +ɛ. Introduction. Let k be a nonzero integer. Let be a large rime and let H. We are interested in the character sum x,y χ(x2 + ky 2 ), where χ (mod q) is a nontrivial character, and x and y run over intervals of length H; say a x a + H and b y b + H, and a and b are less than ɛ H. The trivial bound for this character sum is H 2, and we seek an uer bound of the form H 2 δ for some δ > 0. Burgess [Bu3] considered such character sums, and obtained the desired H 2 δ estimate rovided H 3 +ɛ. Moreover, in the case that x 2 + ky 2 is irreducible (mod ) (i.e., k is a quadratic non-residue (mod )), Burgess obtained such cancelation in the wider range H 4 +ɛ. In this aer we obtain a corresonding result in the case that x 2 + ky 2 is reducible (mod ) ( i.e., k is a quadratic residue (mod )). More recisely, we rove Theorem. Given ε > 0, there is τ > 0 such that if is a sufficiently large rime and H is an integer satisfying we have 4 +ε < H <, (0.) 2000 Mathematics Subject Classification.Primary L40, L26; Secondary A07, B75. 2 Key words. character sums, quadratic residues, Burgess 3 Research artially financed by the National Science Foundation.

2 2 a x a+h b y b+h χ(x 2 + ky 2 ) < τ H 2 (0.2) for any nontrivial character χ (mod ) and arbitrary a, b < ε/2 H. Our argument is a variant of Burgess well-known method [Bu]. Following [Bu2], this estimate for binary forms allows us to deduce ( ) Corollary. Given k Z\{0}, we have = for some < x < 2 e +ɛ, for all ɛ > 0. x 2 +k In [Bu2], Burgess established this statement for x < 2 3 e +ɛ and for x < 2 e +ɛ rovided x 2 + k is assumed irreducible (mod ). Thus, both the theorem and the corollary are only new if k is a quadratic residue (mod ). The other case was treated by Burgess based on the following aroach. Recall that if k is a quadratic non-residue (mod ), then χ(x 2 +ky 2 ) is a character (mod ) of x + ωy with ω = k. Estimate (0.2) is then equivalent to bounding a character sum χ (z) (0.3) z B where B = {x + ωy : a x a + H, b y b + H} and χ is a nontrivial multilicative character of F 2. In [Bu5], Burgess established the desired bound for (0.3) assuming H 4 +ɛ. A more general result along these lines was obtained by A. Karacuba [Ka], for boxes B F n of the form B = {x 0 +x ω+ +x n ω n : r i x i r i +H, for i = 0,..., n }. Here ω is a root of a given olynomial of degree n, which is irreducible (mod ) and assuming again H > 4 +ɛ. Notation. [a, b] := {i Z : a i b}. x y means x y (mod ).. Estimate of the character sums. Denote f(x, y) = x 2 + ky 2, k Z\{0} and assume f(x, y) (x + λy)(x λy), λ F. (.)

3 Recall also that by Weil s theorem χ(x 2 + a) < c log (.2) max a F x I for χ a nontrivial character (mod ) and I [, ) an interval. Hence χ(f(x, y)) < c (log )H, (.3) a x a+h b y b+h and we may therefore assume H < Proof of the theorem. We let a = b = 0. The modification needed in the argument below to treat the situation a, b < ɛ/2 H are straightforward and left to the reader. As mentioned earlier, the basic technique is Burgess. Let and We introduce arameters Here the inequality is because of (0.). Thus for all 0 u, v D, 0 t M S := 0 x,y H χ(f(x, y)) = δ = ε 4. (.4) M = [ δ ] (.5) D = 3 H 3 < 2δ H. (.6) 0 x,y H Taking some subset D [0, D] 2, it follows that S 0 x,y H (u,v) D χ(f(x + ut, y + vt)) + O( δ H 2 ). (.7) M χ(f(x + ut, y + vt)) + O( δ H 2 ). (.8) t= Assume u + λv, u λv 0 for (u, v) D. By (.2), the first term in (.8) equals

4 4 where w = = 0 x,y H (u,v) D F w M t= (( x + λy )( x λy )) χ u + λv + t u λv + t M χ((ξ + t)(ζ + t)), t= { (x, y, u, v) [0, H] 2 D : x + λy u + λv = ξ and (.9) x λy u λv = ζ}. Let [ 0 ] r =. (.0) ε To estimate (.9), we follow the usual aroach of alying Hölder s inequality with suitable exonent 2r Z + and Weil s theorem later. Thus, (.9) is bounded by ( (w ) 2r 2r ) ( 2r M which is bounded by ( ) ( ( ) w r w 2 2r t i t= ( ξ χ((ξ + t)(ζ + t)) 2r) 2r, χ (ξ + t )... (ξ + t r ) ) ) 2 2r (ξ + t r+ )... (ξ + t 2r ) Here i =,..., 2r, t i [, M] and ξ F such that ξ + t r+,..., ξ + t 2r are nonzero. Now by Weil s theorem, (.9) is bounded by (H2 D ) r ( w 2 ) 2r ( r 2r M r 2 + M 2r (2r 2 ) 2 ) 2r. (.) (From the definition of w, we have w = H 2 D.) By (.4), (.5) and (.0), if ( 0 ) 40 3ε >, (.2) ε then > r 2r M r 2. Therefore, by (.8) and (.) (after canceling M), we have ( ) S < H 2 (H 2 D ) r w 2 2r 2r + O( δ H 2 ). (.3) Our next aim is to estimate w 2, which is the number of solutions of the following system of equations in F.

5 5 x + λy x 2 + λy 2 u + λv u 2 + λv 2 x λy x 2 λy 2, u λv u 2 λv 2 when x i, y i [0, H] and (u i, v i ) D for i =, 2. Define D = { [ D ] 2 (u, v) 2, D } : (u, v) = (u, k) = (v, k) =, u ± λv 0. (Here (u, v) denotes gcd(u, v).) Hence D D 2. Multilying and adding the equations in the above system, we get by (.2) (x 2 + ky 2 )(u kv 2 2) (x ky 2 2)(u 2 + kv 2 ) (.4) (x u + ky v )(u kv 2 2) (x 2 u 2 + ky 2 v 2 )(u 2 + kv 2 ). (.5) We imose on H, D the condition HD 3 < 8k. (.6) 2 Hence (.5) holds in Z and we have (x u + ky v )(u kv 2 2) = (x 2 u 2 + ky 2 v 2 )(u 2 + kv 2 ). (.7) Fix u, u 2, v, v 2 and let = gcd(u 2 + kv 2, u kv 2 2). Hence { u 2 + kv 2 = w u kv 2 2 = w 2, (.8) where (w, w 2 ) =. log a Since a rational integer a has at most log D factorizations of log log a the form x + yλ in Q(λ) with x, y [0, D], the equation u 2 + kv 2 = a has at most ex ( c log(d+ a ) log log(d+ a )) solutions (u, v) [0, D] 2. Therefore, given w, w 2,, the system (.8) has < ε solutions (u, v, u 2, v 2 ). It follows from (.7) that

6 6 for some t Z, satisfying { x u + ky v = tw x 2 u 2 + ky 2 v 2 = tw 2 (.9) t HD w + w 2. (.20) Let x, y, x 2, y 2 be some solution (other than x, y, x 2, y 2 ) of (.9) and (.4) with secified u, v, u 2, v 2 and t. Then { (x x )u = k(y y )v (x 2 x 2)u 2 = k(y 2 y 2 )v 2. (.2) Since (u, kv ) = = (u 2, kv 2 ), we get for some s, s 2 Z satisfying x x = s kv y y = s u x 2 x 2 = s 2 kv 2 y 2 y 2 = s 2 u 2. (.22) s i H D for i =, 2. (.23) Substituting (.22) in (.4) and (.8) yield the following equation in s, s 2 w 2 ( (x + s kv ) 2 + k(y s u ) 2) w ( (x 2 + s 2 kv 2 ) 2 + k(y 2 s 2 u 2 ) 2). Hence w w 2 (s 2 s 2 2) + 2w 2 (x v y u )s 2w (x 2v 2 y 2u 2 )s 2 0 (.24) and there are obviously at most c H solutions in (s D, s 2 ) satisfying (.23) and (.24). Summarizing, we showed that for given, w, w 2, the system of equations (.4) and (.5) has at most ε HD w + w 2 H D (.25) solutions in x, y, x 2, y 2. Notice that by (.8), ( w + w 2 ) D 2. Summing (.25) over, w, w 2 we obtain

7 7 ε H 2 Therefore D 2 w + w 2 D2 w + w 2 < ε H 2 D2 D 2 < ε H 2 D 2. w 2 < ε H 2 D 2, (.26) rovided H, D satisfy (.6). Substitute (.26) in (.3). By (0.) and (.6), we have S < H 2 ε2 /5. With some small modification of the roof of the theorem, we can also obtain the following more general statement. Theorem. Given ε > 0, there is τ > 0 such that if is a sufficiently large rime and H is an integer satisfying we have a x a+h b y b+h 4 +ε < H <, χ(x 2 + ky 2 ) < τ H 2 for any nontrivial character χ(mod ) and arbitrary a, b < ε/2 H. 2. An alication to quadratic non-residues. In this section we will rove the corollary. Let φ(x) = x 2 + k, with k Z\{0} and let be a large rime. Assume ( φ(x) ) = for x H. (2.) The roblem of estimating H = H() was considered in Burgess aer [Bu2]. (See also [Bu4].) We distinguish the following two cases. Case. k = l 2, l Z. Hence φ(x) = (x + l)(x l). In this case H < 4 e ( ) ( ) +ɛ. Indeed, if x+l x l = for x H, taking x = l, 3l, 5l..., gives that ( ) ( ) = constant for y < H2l. Hence =, which contradicts 2l y y

8 8 Burgess theorem [Bu] on the existence of quadratic non-residues in short intervals [, 4 e +ɛ ]. Case 2. k is not a square. We will follow the argument in [Bu2] with some adjustment. We may assume k > 0, since the case k < 0 is similar. (See [Bu2].) For readers convenience we state below the lemmas we use from [Bu2]. (See Lemmas, 3 in [Bu2].). For x, y Z, there exists a reresentation of n = x 2 + ky 2 r n = u 2 (vi 2 + k) α i, (2.2) i= for some r N, ositive integers u, v,..., v r all n and α i = ±. 2. Given < β < e, there is a constant M = M(β) > 0 such that if ( x 2 + ky 2 ) = for x 2 + ky 2 H, then for H sufficiently large and any rime > H β we have ( x 2 + ky 2 ) > MH β, x 2 +ky 2 H β where the sum is over all airs x, y (not necessarily integers) for which x + y k is an integer of Q( k). Since for k 3 (mod 4), x + y k is an algebraic integer of Q( k) if and only if x, y Z, the sum is over all x, y Z with x 2 + ky 2 H β. For k (mod 4) the ring of algebraic integers is generated by + k. Burgess showed that the inequality holds when 2 the sum is over all x, y Z such that x 2 + 4ky 2 H β. In both cases, the roofs of the theorem are identical, so we give only the former here. It follows from our assumtion (2.) and (2.2) that ( x 2 + ky 2 ) = if x 2 + ky 2 H. (2.3) Hence we may aly Burgess second lemma and get a contradiction, if we show that ( x 2 + ky 2 ) = O( δ H β ). (2.4) x 2 +ky 2 H β We divide the region enclosed by the ellise x 2 + ky 2 = H β into squares of length h with h > /4+ɛ. For those squares comletely lying in the ellise, we use Theorem to estimate the character sum.

9 For the others, we count the number of lattice oints and use the trivial bound. According to Theorem, it follows that (2.4) will hold rovided H β 2 > 4 +ɛ for some ɛ > 0. Therefore H < 2 e. Hence the corollary is roved. Acknowledgement. The author would like to thank the referee for helful comment. 9 References [Bu] D.A. Burgess, On character sums and rimitive roots, Proc LMS (3), 2, (962), [Bu2], On the quadratic character of a olynomial, JLMS, 42, (967), [Bu3], A note on character sums of binary quadratic forms, JLMS, 43 (968), [Bu4], Direchlet characters and olynomials, Trudy Math Inst-Steklov, 32, (973). [Bu5] Character sums and rimitive roots in finite fields, Proc. London Math. Soc. (3) 7 (967), -25. [Ka] A. A. Karacuba, Estimates of character sums, Izv. Akad Nauk SSR, Ser Mat Tom, 34, (970), N. Deartment Of Mathematics, University Of California, Riverside, CA address: mcc@math.ucr.edu

An Estimate For Heilbronn s Exponential Sum

An Estimate For Heilbronn s Exponential Sum An Estimate For Heilbronn s Exonential Sum D.R. Heath-Brown Magdalen College, Oxford For Heini Halberstam, on his retirement Let be a rime, and set e(x) = ex(2πix). Heilbronn s exonential sum is defined

More information

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang BURGESS INEQUALITY IN F p 2 Mei-Chu Chang Abstract. Let be a nontrivial multiplicative character of F p 2. We obtain the following results.. Given ε > 0, there is δ > 0 such that if ω F p 2\F p and I,

More information

ON THE SET a x + b g x (mod p) 1 Introduction

ON THE SET a x + b g x (mod p) 1 Introduction PORTUGALIAE MATHEMATICA Vol 59 Fasc 00 Nova Série ON THE SET a x + b g x (mod ) Cristian Cobeli, Marian Vâjâitu and Alexandru Zaharescu Abstract: Given nonzero integers a, b we rove an asymtotic result

More information

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS #A13 INTEGERS 14 (014) ON THE LEAST SIGNIFICANT ADIC DIGITS OF CERTAIN LUCAS NUMBERS Tamás Lengyel Deartment of Mathematics, Occidental College, Los Angeles, California lengyel@oxy.edu Received: 6/13/13,

More information

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS #A47 INTEGERS 15 (015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS Mihai Ciu Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 5,

More information

Representing Integers as the Sum of Two Squares in the Ring Z n

Representing Integers as the Sum of Two Squares in the Ring Z n 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 17 (2014), Article 14.7.4 Reresenting Integers as the Sum of Two Squares in the Ring Z n Joshua Harrington, Lenny Jones, and Alicia Lamarche Deartment

More information

Ernie Croot 1. Department of Mathematics, Georgia Institute of Technology, Atlanta, GA Abstract

Ernie Croot 1. Department of Mathematics, Georgia Institute of Technology, Atlanta, GA Abstract SUMS OF THE FORM 1/x k 1 + + 1/x k n MODULO A PRIME Ernie Croot 1 Deartment of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 ecroot@math.gatech.edu Abstract Using a sum-roduct result

More information

Small Zeros of Quadratic Forms Mod P m

Small Zeros of Quadratic Forms Mod P m International Mathematical Forum, Vol. 8, 2013, no. 8, 357-367 Small Zeros of Quadratic Forms Mod P m Ali H. Hakami Deartment of Mathematics, Faculty of Science, Jazan University P.O. Box 277, Jazan, Postal

More information

Solvability and Number of Roots of Bi-Quadratic Equations over p adic Fields

Solvability and Number of Roots of Bi-Quadratic Equations over p adic Fields Malaysian Journal of Mathematical Sciences 10(S February: 15-35 (016 Secial Issue: The 3 rd International Conference on Mathematical Alications in Engineering 014 (ICMAE 14 MALAYSIAN JOURNAL OF MATHEMATICAL

More information

#A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS

#A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS #A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS Norbert Hegyvári ELTE TTK, Eötvös University, Institute of Mathematics, Budaest, Hungary hegyvari@elte.hu François Hennecart Université

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #10 10/8/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #10 10/8/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #10 10/8/2013 In this lecture we lay the groundwork needed to rove the Hasse-Minkowski theorem for Q, which states that a quadratic form over

More information

x 2 a mod m. has a solution. Theorem 13.2 (Euler s Criterion). Let p be an odd prime. The congruence x 2 1 mod p,

x 2 a mod m. has a solution. Theorem 13.2 (Euler s Criterion). Let p be an odd prime. The congruence x 2 1 mod p, 13. Quadratic Residues We now turn to the question of when a quadratic equation has a solution modulo m. The general quadratic equation looks like ax + bx + c 0 mod m. Assuming that m is odd or that b

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001 The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001 The Hasse-Minkowski Theorem rovides a characterization of the rational quadratic forms. What follows is a roof of the Hasse-Minkowski

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information

Almost All Palindromes Are Composite

Almost All Palindromes Are Composite Almost All Palindromes Are Comosite William D Banks Det of Mathematics, University of Missouri Columbia, MO 65211, USA bbanks@mathmissouriedu Derrick N Hart Det of Mathematics, University of Missouri Columbia,

More information

2 Asymptotic density and Dirichlet density

2 Asymptotic density and Dirichlet density 8.785: Analytic Number Theory, MIT, sring 2007 (K.S. Kedlaya) Primes in arithmetic rogressions In this unit, we first rove Dirichlet s theorem on rimes in arithmetic rogressions. We then rove the rime

More information

When do Fibonacci invertible classes modulo M form a subgroup?

When do Fibonacci invertible classes modulo M form a subgroup? Calhoun: The NPS Institutional Archive DSace Reository Faculty and Researchers Faculty and Researchers Collection 2013 When do Fibonacci invertible classes modulo M form a subgrou? Luca, Florian Annales

More information

MATH 361: NUMBER THEORY ELEVENTH LECTURE

MATH 361: NUMBER THEORY ELEVENTH LECTURE MATH 361: NUMBER THEORY ELEVENTH LECTURE The subjects of this lecture are characters, Gauss sums, Jacobi sums, and counting formulas for olynomial equations over finite fields. 1. Definitions, Basic Proerties

More information

BOUNDS FOR THE SIZE OF SETS WITH THE PROPERTY D(n) Andrej Dujella University of Zagreb, Croatia

BOUNDS FOR THE SIZE OF SETS WITH THE PROPERTY D(n) Andrej Dujella University of Zagreb, Croatia GLASNIK MATMATIČKI Vol. 39(59(2004, 199 205 BOUNDS FOR TH SIZ OF STS WITH TH PROPRTY D(n Andrej Dujella University of Zagreb, Croatia Abstract. Let n be a nonzero integer and a 1 < a 2 < < a m ositive

More information

The inverse Goldbach problem

The inverse Goldbach problem 1 The inverse Goldbach roblem by Christian Elsholtz Submission Setember 7, 2000 (this version includes galley corrections). Aeared in Mathematika 2001. Abstract We imrove the uer and lower bounds of the

More information

2 Asymptotic density and Dirichlet density

2 Asymptotic density and Dirichlet density 8.785: Analytic Number Theory, MIT, sring 2007 (K.S. Kedlaya) Primes in arithmetic rogressions In this unit, we first rove Dirichlet s theorem on rimes in arithmetic rogressions. We then rove the rime

More information

arxiv:math/ v2 [math.nt] 21 Oct 2004

arxiv:math/ v2 [math.nt] 21 Oct 2004 SUMS OF THE FORM 1/x k 1 + +1/x k n MODULO A PRIME arxiv:math/0403360v2 [math.nt] 21 Oct 2004 Ernie Croot 1 Deartment of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 ecroot@math.gatech.edu

More information

arxiv: v2 [math.nt] 9 Oct 2018

arxiv: v2 [math.nt] 9 Oct 2018 ON AN EXTENSION OF ZOLOTAREV S LEMMA AND SOME PERMUTATIONS LI-YUAN WANG AND HAI-LIANG WU arxiv:1810.03006v [math.nt] 9 Oct 018 Abstract. Let be an odd rime, for each integer a with a, the famous Zolotarev

More information

f(r) = a d n) d + + a0 = 0

f(r) = a d n) d + + a0 = 0 Math 400-00/Foundations of Algebra/Fall 07 Polynomials at the Foundations: Roots Next, we turn to the notion of a root of a olynomial in Q[x]. Definition 8.. r Q is a rational root of fx) Q[x] if fr) 0.

More information

QUADRATIC RECIPROCITY

QUADRATIC RECIPROCITY QUADRATIC RECIPROCITY JORDAN SCHETTLER Abstract. The goals of this roject are to have the reader(s) gain an areciation for the usefulness of Legendre symbols and ultimately recreate Eisenstein s slick

More information

QUADRATIC RECIPROCITY

QUADRATIC RECIPROCITY QUADRATIC RECIPROCITY JORDAN SCHETTLER Abstract. The goals of this roject are to have the reader(s) gain an areciation for the usefulness of Legendre symbols and ultimately recreate Eisenstein s slick

More information

Mobius Functions, Legendre Symbols, and Discriminants

Mobius Functions, Legendre Symbols, and Discriminants Mobius Functions, Legendre Symbols, and Discriminants 1 Introduction Zev Chonoles, Erick Knight, Tim Kunisky Over the integers, there are two key number-theoretic functions that take on values of 1, 1,

More information

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM JOHN BINDER Abstract. In this aer, we rove Dirichlet s theorem that, given any air h, k with h, k) =, there are infinitely many rime numbers congruent to

More information

Primes - Problem Sheet 5 - Solutions

Primes - Problem Sheet 5 - Solutions Primes - Problem Sheet 5 - Solutions Class number, and reduction of quadratic forms Positive-definite Q1) Aly the roof of Theorem 5.5 to find reduced forms equivalent to the following, also give matrices

More information

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime J. Cilleruelo and M. Z. Garaev Abstract We obtain a sharp upper bound estimate of the form Hp o(1)

More information

YOUNESS LAMZOURI H 2. The purpose of this note is to improve the error term in this asymptotic formula. H 2 (log log H) 3 ζ(3) H2 + O

YOUNESS LAMZOURI H 2. The purpose of this note is to improve the error term in this asymptotic formula. H 2 (log log H) 3 ζ(3) H2 + O ON THE AVERAGE OF THE NUMBER OF IMAGINARY QUADRATIC FIELDS WITH A GIVEN CLASS NUMBER YOUNESS LAMZOURI Abstract Let Fh be the number of imaginary quadratic fields with class number h In this note we imrove

More information

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China Ramanuan J. 40(2016, no. 3, 511-533. CONGRUENCES INVOLVING g n (x n ( n 2 ( 2 0 x Zhi-Wei Sun Deartment of Mathematics, Naning University Naning 210093, Peole s Reublic of China zwsun@nu.edu.cn htt://math.nu.edu.cn/

More information

On the Diophantine Equation x 2 = 4q n 4q m + 9

On the Diophantine Equation x 2 = 4q n 4q m + 9 JKAU: Sci., Vol. 1 No. 1, : 135-141 (009 A.D. / 1430 A.H.) On the Diohantine Equation x = 4q n 4q m + 9 Riyadh University for Girls, Riyadh, Saudi Arabia abumuriefah@yahoo.com Abstract. In this aer, we

More information

#A6 INTEGERS 15A (2015) ON REDUCIBLE AND PRIMITIVE SUBSETS OF F P, I. Katalin Gyarmati 1.

#A6 INTEGERS 15A (2015) ON REDUCIBLE AND PRIMITIVE SUBSETS OF F P, I. Katalin Gyarmati 1. #A6 INTEGERS 15A (015) ON REDUCIBLE AND PRIMITIVE SUBSETS OF F P, I Katalin Gyarmati 1 Deartment of Algebra and Number Theory, Eötvös Loránd University and MTA-ELTE Geometric and Algebraic Combinatorics

More information

LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS CONTAINING SQUARE-FREE NUMBERS AND PERFECT POWERS OF PRIME NUMBERS

LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS CONTAINING SQUARE-FREE NUMBERS AND PERFECT POWERS OF PRIME NUMBERS LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS CONTAINING SQUARE-FREE NUMBERS AND PERFECT POWERS OF PRIME NUMBERS HELMUT MAIER AND MICHAEL TH. RASSIAS Abstract. We rove a modification as well as an imrovement

More information

An Overview of Witt Vectors

An Overview of Witt Vectors An Overview of Witt Vectors Daniel Finkel December 7, 2007 Abstract This aer offers a brief overview of the basics of Witt vectors. As an alication, we summarize work of Bartolo and Falcone to rove that

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

Applicable Analysis and Discrete Mathematics available online at HENSEL CODES OF SQUARE ROOTS OF P-ADIC NUMBERS

Applicable Analysis and Discrete Mathematics available online at   HENSEL CODES OF SQUARE ROOTS OF P-ADIC NUMBERS Alicable Analysis and Discrete Mathematics available online at htt://efmath.etf.rs Al. Anal. Discrete Math. 4 (010), 3 44. doi:10.98/aadm1000009m HENSEL CODES OF SQUARE ROOTS OF P-ADIC NUMBERS Zerzaihi

More information

HASSE INVARIANTS FOR THE CLAUSEN ELLIPTIC CURVES

HASSE INVARIANTS FOR THE CLAUSEN ELLIPTIC CURVES HASSE INVARIANTS FOR THE CLAUSEN ELLIPTIC CURVES AHMAD EL-GUINDY AND KEN ONO Astract. Gauss s F x hyergeometric function gives eriods of ellitic curves in Legendre normal form. Certain truncations of this

More information

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN Int. J. Number Theory 004, no., 79-85. CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 00, P.R. China zhihongsun@yahoo.com

More information

p-adic Measures and Bernoulli Numbers

p-adic Measures and Bernoulli Numbers -Adic Measures and Bernoulli Numbers Adam Bowers Introduction The constants B k in the Taylor series exansion t e t = t k B k k! k=0 are known as the Bernoulli numbers. The first few are,, 6, 0, 30, 0,

More information

We collect some results that might be covered in a first course in algebraic number theory.

We collect some results that might be covered in a first course in algebraic number theory. 1 Aendices We collect some results that might be covered in a first course in algebraic number theory. A. uadratic Recirocity Via Gauss Sums A1. Introduction In this aendix, is an odd rime unless otherwise

More information

Expansions of quadratic maps in prime fields

Expansions of quadratic maps in prime fields Expansions of quadratic maps in prime fields Mei-Chu Chang Department of Mathematics University of California, Riverside mcc@math.ucr.edu Abstract Let f(x) = ax 2 +bx+c Z[x] be a quadratic polynomial with

More information

An Inverse Problem for Two Spectra of Complex Finite Jacobi Matrices

An Inverse Problem for Two Spectra of Complex Finite Jacobi Matrices Coyright 202 Tech Science Press CMES, vol.86, no.4,.30-39, 202 An Inverse Problem for Two Sectra of Comlex Finite Jacobi Matrices Gusein Sh. Guseinov Abstract: This aer deals with the inverse sectral roblem

More information

MA3H1 TOPICS IN NUMBER THEORY PART III

MA3H1 TOPICS IN NUMBER THEORY PART III MA3H1 TOPICS IN NUMBER THEORY PART III SAMIR SIKSEK 1. Congruences Modulo m In quadratic recirocity we studied congruences of the form x 2 a (mod ). We now turn our attention to situations where is relaced

More information

#A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS

#A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS #A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS Ramy F. Taki ElDin Physics and Engineering Mathematics Deartment, Faculty of Engineering, Ain Shams University, Cairo, Egyt

More information

Ohno-type relation for finite multiple zeta values

Ohno-type relation for finite multiple zeta values Ohno-tye relation for finite multile zeta values Kojiro Oyama Abstract arxiv:1506.00833v3 [math.nt] 23 Se 2017 Ohno s relation is a well-known relation among multile zeta values. In this aer, we rove Ohno-tye

More information

On Erdős and Sárközy s sequences with Property P

On Erdős and Sárközy s sequences with Property P Monatsh Math 017 18:565 575 DOI 10.1007/s00605-016-0995-9 On Erdős and Sárközy s sequences with Proerty P Christian Elsholtz 1 Stefan Planitzer 1 Received: 7 November 015 / Acceted: 7 October 016 / Published

More information

MATH 361: NUMBER THEORY EIGHTH LECTURE

MATH 361: NUMBER THEORY EIGHTH LECTURE MATH 361: NUMBER THEORY EIGHTH LECTURE 1. Quadratic Recirocity: Introduction Quadratic recirocity is the first result of modern number theory. Lagrange conjectured it in the late 1700 s, but it was first

More information

A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO p. 1. Introduction

A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO p. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXI, (2002),. 3 7 3 A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO C. COBELI, M. VÂJÂITU and A. ZAHARESCU Abstract. Let be a rime number, J a set of consecutive integers,

More information

Research Article New Mixed Exponential Sums and Their Application

Research Article New Mixed Exponential Sums and Their Application Hindawi Publishing Cororation Alied Mathematics, Article ID 51053, ages htt://dx.doi.org/10.1155/01/51053 Research Article New Mixed Exonential Sums and Their Alication Yu Zhan 1 and Xiaoxue Li 1 DeartmentofScience,HetaoCollege,Bayannur015000,China

More information

A FEW EQUIVALENCES OF WALL-SUN-SUN PRIME CONJECTURE

A FEW EQUIVALENCES OF WALL-SUN-SUN PRIME CONJECTURE International Journal of Mathematics & Alications Vol 4, No 1, (June 2011), 77-86 A FEW EQUIVALENCES OF WALL-SUN-SUN PRIME CONJECTURE ARPAN SAHA AND KARTHIK C S ABSTRACT: In this aer, we rove a few lemmas

More information

When do the Fibonacci invertible classes modulo M form a subgroup?

When do the Fibonacci invertible classes modulo M form a subgroup? Annales Mathematicae et Informaticae 41 (2013). 265 270 Proceedings of the 15 th International Conference on Fibonacci Numbers and Their Alications Institute of Mathematics and Informatics, Eszterházy

More information

(Workshop on Harmonic Analysis on symmetric spaces I.S.I. Bangalore : 9th July 2004) B.Sury

(Workshop on Harmonic Analysis on symmetric spaces I.S.I. Bangalore : 9th July 2004) B.Sury Is e π 163 odd or even? (Worksho on Harmonic Analysis on symmetric saces I.S.I. Bangalore : 9th July 004) B.Sury e π 163 = 653741640768743.999999999999.... The object of this talk is to exlain this amazing

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

On the irreducibility of a polynomial associated with the Strong Factorial Conjecture

On the irreducibility of a polynomial associated with the Strong Factorial Conjecture On the irreducibility of a olynomial associated with the Strong Factorial Conecture Michael Filaseta Mathematics Deartment University of South Carolina Columbia, SC 29208 USA E-mail: filaseta@math.sc.edu

More information

MAT 311 Solutions to Final Exam Practice

MAT 311 Solutions to Final Exam Practice MAT 311 Solutions to Final Exam Practice Remark. If you are comfortable with all of the following roblems, you will be very well reared for the midterm. Some of the roblems below are more difficult than

More information

Class Numbers and Iwasawa Invariants of Certain Totally Real Number Fields

Class Numbers and Iwasawa Invariants of Certain Totally Real Number Fields Journal of Number Theory 79, 249257 (1999) Article ID jnth.1999.2433, available online at htt:www.idealibrary.com on Class Numbers and Iwasawa Invariants of Certain Totally Real Number Fields Dongho Byeon

More information

ON THE DISTRIBUTION OF THE PARTIAL SUM OF EULER S TOTIENT FUNCTION IN RESIDUE CLASSES

ON THE DISTRIBUTION OF THE PARTIAL SUM OF EULER S TOTIENT FUNCTION IN RESIDUE CLASSES C O L L O Q U I U M M A T H E M A T I C U M VOL. * 0* NO. * ON THE DISTRIBUTION OF THE PARTIAL SUM OF EULER S TOTIENT FUNCTION IN RESIDUE CLASSES BY YOUNESS LAMZOURI, M. TIP PHAOVIBUL and ALEXANDRU ZAHARESCU

More information

THE DISTRIBUTION OF ADDITIVE FUNCTIONS IN SHORT INTERVALS ON THE SET OF SHIFTED INTEGERS HAVING A FIXED NUMBER OF PRIME FACTORS

THE DISTRIBUTION OF ADDITIVE FUNCTIONS IN SHORT INTERVALS ON THE SET OF SHIFTED INTEGERS HAVING A FIXED NUMBER OF PRIME FACTORS Annales Univ. Sci. Budaest., Sect. Com. 38 202) 57-70 THE DISTRIBUTION OF ADDITIVE FUNCTIONS IN SHORT INTERVALS ON THE SET OF SHIFTED INTEGERS HAVING A FIXED NUMBER OF PRIME FACTORS J.-M. De Koninck Québec,

More information

Distribution of Matrices with Restricted Entries over Finite Fields

Distribution of Matrices with Restricted Entries over Finite Fields Distribution of Matrices with Restricted Entries over Finite Fields Omran Ahmadi Deartment of Electrical and Comuter Engineering University of Toronto, Toronto, ON M5S 3G4, Canada oahmadid@comm.utoronto.ca

More information

Diophantine Equations and Congruences

Diophantine Equations and Congruences International Journal of Algebra, Vol. 1, 2007, no. 6, 293-302 Diohantine Equations and Congruences R. A. Mollin Deartment of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada,

More information

Aliquot sums of Fibonacci numbers

Aliquot sums of Fibonacci numbers Aliquot sums of Fibonacci numbers Florian Luca Instituto de Matemáticas Universidad Nacional Autónoma de Méico C.P. 58089, Morelia, Michoacán, Méico fluca@matmor.unam.m Pantelimon Stănică Naval Postgraduate

More information

March 4, :21 WSPC/INSTRUCTION FILE FLSpaper2011

March 4, :21 WSPC/INSTRUCTION FILE FLSpaper2011 International Journal of Number Theory c World Scientific Publishing Comany SOLVING n(n + d) (n + (k 1)d ) = by 2 WITH P (b) Ck M. Filaseta Deartment of Mathematics, University of South Carolina, Columbia,

More information

STRONG TYPE INEQUALITIES AND AN ALMOST-ORTHOGONALITY PRINCIPLE FOR FAMILIES OF MAXIMAL OPERATORS ALONG DIRECTIONS IN R 2

STRONG TYPE INEQUALITIES AND AN ALMOST-ORTHOGONALITY PRINCIPLE FOR FAMILIES OF MAXIMAL OPERATORS ALONG DIRECTIONS IN R 2 STRONG TYPE INEQUALITIES AND AN ALMOST-ORTHOGONALITY PRINCIPLE FOR FAMILIES OF MAXIMAL OPERATORS ALONG DIRECTIONS IN R 2 ANGELES ALFONSECA Abstract In this aer we rove an almost-orthogonality rincile for

More information

Research Article A New Sum Analogous to Gauss Sums and Its Fourth Power Mean

Research Article A New Sum Analogous to Gauss Sums and Its Fourth Power Mean e Scientific World Journal, Article ID 139725, ages htt://dx.doi.org/10.1155/201/139725 Research Article A New Sum Analogous to Gauss Sums and Its Fourth Power Mean Shaofeng Ru 1 and Weneng Zhang 2 1 School

More information

Unit Groups of Semisimple Group Algebras of Abelian p-groups over a Field*

Unit Groups of Semisimple Group Algebras of Abelian p-groups over a Field* JOURNAL OF ALGEBRA 88, 580589 997 ARTICLE NO. JA96686 Unit Grous of Semisimle Grou Algebras of Abelian -Grous over a Field* Nako A. Nachev and Todor Zh. Mollov Deartment of Algebra, Plodi Uniersity, 4000

More information

ON THE LEAST QUADRATIC NON-RESIDUE. 1. Introduction

ON THE LEAST QUADRATIC NON-RESIDUE. 1. Introduction ON THE LEAST QUADRATIC NON-RESIDUE YUK-KAM LAU AND JIE WU Abstract. We rove that for almost all real rimitive characters χ d of modulus d, the least ositive integer n χd at which χ d takes a value not

More information

ACONJECTUREOFEVANS ON SUMS OF KLOOSTERMAN SUMS

ACONJECTUREOFEVANS ON SUMS OF KLOOSTERMAN SUMS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 9, Setember 010, Pages 307 3056 S 000-9939(101086-9 Article electronically ublished on May, 010 ACONJECTUREOFEVANS ON SUMS OF KLOOSTERMAN

More information

HOMEWORK # 4 MARIA SIMBIRSKY SANDY ROGERS MATTHEW WELSH

HOMEWORK # 4 MARIA SIMBIRSKY SANDY ROGERS MATTHEW WELSH HOMEWORK # 4 MARIA SIMBIRSKY SANDY ROGERS MATTHEW WELSH 1. Section 2.1, Problems 5, 8, 28, and 48 Problem. 2.1.5 Write a single congruence that is equivalent to the air of congruences x 1 mod 4 and x 2

More information

Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-laplacian type

Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-laplacian type Nonlinear Analysis 7 29 536 546 www.elsevier.com/locate/na Multilicity of weak solutions for a class of nonuniformly ellitic equations of -Lalacian tye Hoang Quoc Toan, Quô c-anh Ngô Deartment of Mathematics,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10. Booker, A. R., & Pomerance, C. (07). Squarefree smooth numbers and Euclidean rime generators. Proceedings of the American Mathematical Society, 45(), 5035-504. htts://doi.org/0.090/roc/3576 Peer reviewed

More information

ON FREIMAN S 2.4-THEOREM

ON FREIMAN S 2.4-THEOREM ON FREIMAN S 2.4-THEOREM ØYSTEIN J. RØDSETH Abstract. Gregory Freiman s celebrated 2.4-Theorem says that if A is a set of residue classes modulo a rime satisfying 2A 2.4 A 3 and A < /35, then A is contained

More information

Jacobi symbols and application to primality

Jacobi symbols and application to primality Jacobi symbols and alication to rimality Setember 19, 018 1 The grou Z/Z We review the structure of the abelian grou Z/Z. Using Chinese remainder theorem, we can restrict to the case when = k is a rime

More information

Legendre polynomials and Jacobsthal sums

Legendre polynomials and Jacobsthal sums Legendre olynomials and Jacobsthal sums Zhi-Hong Sun( Huaiyin Normal University( htt://www.hytc.edu.cn/xsjl/szh Notation: Z the set of integers, N the set of ositive integers, [x] the greatest integer

More information

RECIPROCITY LAWS JEREMY BOOHER

RECIPROCITY LAWS JEREMY BOOHER RECIPROCITY LAWS JEREMY BOOHER 1 Introduction The law of uadratic recirocity gives a beautiful descrition of which rimes are suares modulo Secial cases of this law going back to Fermat, and Euler and Legendre

More information

DIVISIBILITY CRITERIA FOR CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS

DIVISIBILITY CRITERIA FOR CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS IVISIBILITY CRITERIA FOR CLASS NUMBERS OF IMAGINARY QUARATIC FIELS PAUL JENKINS AN KEN ONO Abstract. In a recent aer, Guerzhoy obtained formulas for certain class numbers as -adic limits of traces of singular

More information

P -PARTITIONS AND RELATED POLYNOMIALS

P -PARTITIONS AND RELATED POLYNOMIALS P -PARTITIONS AND RELATED POLYNOMIALS 1. P -artitions A labelled oset is a oset P whose ground set is a subset of the integers, see Fig. 1. We will denote by < the usual order on the integers and < P the

More information

SQUAREFREE VALUES OF QUADRATIC POLYNOMIALS COURSE NOTES, 2015

SQUAREFREE VALUES OF QUADRATIC POLYNOMIALS COURSE NOTES, 2015 SQUAREFREE VALUES OF QUADRATIC POLYNOMIALS COURSE NOTES, 2015 1. Squarefree values of olynomials: History In this section we study the roblem of reresenting square-free integers by integer olynomials.

More information

By Evan Chen OTIS, Internal Use

By Evan Chen OTIS, Internal Use Solutions Notes for DNY-NTCONSTRUCT Evan Chen January 17, 018 1 Solution Notes to TSTST 015/5 Let ϕ(n) denote the number of ositive integers less than n that are relatively rime to n. Prove that there

More information

Algebraic number theory LTCC Solutions to Problem Sheet 2

Algebraic number theory LTCC Solutions to Problem Sheet 2 Algebraic number theory LTCC 008 Solutions to Problem Sheet ) Let m be a square-free integer and K = Q m). The embeddings K C are given by σ a + b m) = a + b m and σ a + b m) = a b m. If m mod 4) then

More information

A structure theorem for product sets in extra special groups

A structure theorem for product sets in extra special groups A structure theorem for roduct sets in extra secial grous Thang Pham Michael Tait Le Anh Vinh Robert Won arxiv:1704.07849v1 [math.nt] 25 Ar 2017 Abstract HegyváriandHennecartshowedthatifB isasufficientlylargebrickofaheisenberg

More information

The sum of digits function in finite fields

The sum of digits function in finite fields The sum of digits function in finite fields Cécile Dartyge, András Sárközy To cite this version: Cécile Dartyge, András Sárközy. The sum of digits function in finite fields. Proceedings of the American

More information

A Note on the Positive Nonoscillatory Solutions of the Difference Equation

A Note on the Positive Nonoscillatory Solutions of the Difference Equation Int. Journal of Math. Analysis, Vol. 4, 1, no. 36, 1787-1798 A Note on the Positive Nonoscillatory Solutions of the Difference Equation x n+1 = α c ix n i + x n k c ix n i ) Vu Van Khuong 1 and Mai Nam

More information

RAMANUJAN-NAGELL CUBICS

RAMANUJAN-NAGELL CUBICS RAMANUJAN-NAGELL CUBICS MARK BAUER AND MICHAEL A. BENNETT ABSTRACT. A well-nown result of Beuers [3] on the generalized Ramanujan-Nagell equation has, at its heart, a lower bound on the quantity x 2 2

More information

Bent Functions of maximal degree

Bent Functions of maximal degree IEEE TRANSACTIONS ON INFORMATION THEORY 1 Bent Functions of maximal degree Ayça Çeşmelioğlu and Wilfried Meidl Abstract In this article a technique for constructing -ary bent functions from lateaued functions

More information

On the Rank of the Elliptic Curve y 2 = x(x p)(x 2)

On the Rank of the Elliptic Curve y 2 = x(x p)(x 2) On the Rank of the Ellitic Curve y = x(x )(x ) Jeffrey Hatley Aril 9, 009 Abstract An ellitic curve E defined over Q is an algebraic variety which forms a finitely generated abelian grou, and the structure

More information

A construction of bent functions from plateaued functions

A construction of bent functions from plateaued functions A construction of bent functions from lateaued functions Ayça Çeşmelioğlu, Wilfried Meidl Sabancı University, MDBF, Orhanlı, 34956 Tuzla, İstanbul, Turkey. Abstract In this resentation, a technique for

More information

QUADRATIC RESIDUES AND DIFFERENCE SETS

QUADRATIC RESIDUES AND DIFFERENCE SETS QUADRATIC RESIDUES AND DIFFERENCE SETS VSEVOLOD F. LEV AND JACK SONN Abstract. It has been conjectured by Sárközy that with finitely many excetions, the set of quadratic residues modulo a rime cannot be

More information

arxiv: v1 [math.nt] 9 Sep 2015

arxiv: v1 [math.nt] 9 Sep 2015 REPRESENTATION OF INTEGERS BY TERNARY QUADRATIC FORMS: A GEOMETRIC APPROACH GABRIEL DURHAM arxiv:5090590v [mathnt] 9 Se 05 Abstract In957NCAnkenyrovidedanewroofofthethreesuarestheorem using geometry of

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem on Arithmetic Progressions Thai Pham Massachusetts Institute of Technology May 2, 202 Abstract In this aer, we derive a roof of Dirichlet s theorem on rimes in arithmetic rogressions.

More information

arxiv: v4 [math.nt] 11 Oct 2017

arxiv: v4 [math.nt] 11 Oct 2017 POPULAR DIFFERENCES AND GENERALIZED SIDON SETS WENQIANG XU arxiv:1706.05969v4 [math.nt] 11 Oct 2017 Abstract. For a subset A [N], we define the reresentation function r A A(d := #{(a,a A A : d = a a }

More information

ON THE NORM OF AN IDEMPOTENT SCHUR MULTIPLIER ON THE SCHATTEN CLASS

ON THE NORM OF AN IDEMPOTENT SCHUR MULTIPLIER ON THE SCHATTEN CLASS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 000-9939XX)0000-0 ON THE NORM OF AN IDEMPOTENT SCHUR MULTIPLIER ON THE SCHATTEN CLASS WILLIAM D. BANKS AND ASMA HARCHARRAS

More information

An Existence Theorem for a Class of Nonuniformly Nonlinear Systems

An Existence Theorem for a Class of Nonuniformly Nonlinear Systems Australian Journal of Basic and Alied Sciences, 5(7): 1313-1317, 11 ISSN 1991-8178 An Existence Theorem for a Class of Nonuniformly Nonlinear Systems G.A. Afrouzi and Z. Naghizadeh Deartment of Mathematics,

More information

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang. 0 Introduction

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang. 0 Introduction Geom. Funct. Anal. Vol. 9 2009 00 06 DOI 0.007/s00039-009-003-5 Published online November 2, 2009 2009 The Authors GAFA Geometric And Functional Analysis This article is published with open access at Springerlink.com

More information

Short character sums for composite moduli

Short character sums for composite moduli Short character sums for composite moduli Mei-Chu Chang Department of Mathematics University of California, Riverside mcc@math.ucr.edu Abstract We establish new estimates on short character sums for arbitrary

More information

THE LEAST PRIME QUADRATIC NONRESIDUE IN A PRESCRIBED RESIDUE CLASS MOD 4

THE LEAST PRIME QUADRATIC NONRESIDUE IN A PRESCRIBED RESIDUE CLASS MOD 4 THE LEAST PRIME QUADRATIC NONRESIDUE IN A PRESCRIBED RESIDUE CLASS MOD 4 PAUL POLLACK Abstract For all rimes 5, there is a rime quadratic nonresidue q < with q 3 (mod 4 For all rimes 3, there is a rime

More information

Eötvös Loránd University Faculty of Informatics. Distribution of additive arithmetical functions

Eötvös Loránd University Faculty of Informatics. Distribution of additive arithmetical functions Eötvös Loránd University Faculty of Informatics Distribution of additive arithmetical functions Theses of Ph.D. Dissertation by László Germán Suervisor Prof. Dr. Imre Kátai member of the Hungarian Academy

More information

Multiplicative group law on the folium of Descartes

Multiplicative group law on the folium of Descartes Multilicative grou law on the folium of Descartes Steluţa Pricoie and Constantin Udrişte Abstract. The folium of Descartes is still studied and understood today. Not only did it rovide for the roof of

More information