TOPIC IV CALCULUS. [1] Limit. Suppose that we have a function y = f(x). What would happen to y as x x? o

Size: px
Start display at page:

Download "TOPIC IV CALCULUS. [1] Limit. Suppose that we have a function y = f(x). What would happen to y as x x? o"

Transcription

1 [1] Limit TOPIC IV CALCULUS Suppose that we have a function = f(). What would happen to as? o Definition: Let = f(). Then, the limit value of as a is denoted b lim a f(). EX 1: = 1 +. As 0, 1. lim = 1. 0 EX : = 1/, 0. As 0, or - Limit does not eists. As 0 from the right,. 1 lim o. As 0 from the left, -. 1 lim 0. IV-1

2 1 EX 3: =. 1 lim = 1; lim 1 ;. 1 EX 4: =, lim1 = = 0 (?) 0 lim 1 lim = 0; lim- = 0. Nope!!!. 1 (1)(1) lim 1 = lim 1 = lim 1(1+) =!!! 1 1 EX 5: =, 0. lim0 = lim0 = 0. lim = lim =. Note: Before computing a limit, better to simplif the function f. Although f() ma not be defined at =, f() could have a limit. o IV-

3 a EX 6: =. a lim = lim (1 + ) = 1. Theorem: Suppose that lim f() and lim g() eists. (Here, lim = lim o.) Then, (R1) lim [f() ± g()] = lim f() ± lim g(). (R) lim[f()g()] = [lim f()][lim g()] (R3) lim[f()/g()] = [lim f()]/[lim g()], if lim g() 0. EX: = e /. lim = [lime ]/[lim ] (?) Nope!!!, since lim e and lim do not eist. In fact, lime / =. lim0 = [lim0e ]/[lim0 ] (?) Nope!!!, since lim0 = 0. In fact, lim =. 0 EX: = ( -1)/(-1), 1. lim1 = [lim ( -1)]/[lim (-1)] (?) Nope!!!, since lim (-1) = 0. 1 In fact, lim1 = lim 1(+1) =. IV-3

4 EX: = ( +)/( ++). lim = [lim ( +)]/[lim ( ++)] (?) Nope!!!, since lim lim = lim ( +) does not eists. 1/ 1// = [lim (1+/ )]/[lim (1+/+/ )] = 1. L'Hôpital's Theorem Suppose that we have two functions f() and g(). Suppose: lim f() = 0 and lim g() = 0, or, lim f() = ± and lim g() = ±. f() f () Then, lim = lim. g() g () IV-4

5 [] Derivative = f() We want to know changes in () when changes b. rate of change = f( 0 ) f( 0 ) 0 d d f f( ) f() () = lim. 0 d d = derivative evaluated at 0 = f( 0) 0 Note: If lim 0 lim, then, we sa that derivative does not eist. 0 Question: What is derivative? IV-5

6 =f() 0 / : tangent line at = 0 f( ) : measures slope of tangent line 0 IV-6

7 [3] Continuit vs. differentiabilit Definition: Consider a function = f(). Suppose: 1) f is defined at ; 0 ) limf() limf() limf() ; ) lim f() f( 0 ). 0 Then, f is called continuous at =. 0 EX 1) = f() = 6, for all. Is this function continuous at = 1? = 6 IV-7

8 1) f(1) = 6; ) lim 6; 1 3) lim 1 f(1) Continuous. EX ) 1 Is this function continuous at = 0 1) f(0) not defined. = 1/ is not continuous at = 0. IV-8

9 +1 =+ - 1 EX 3) = 1 if 1 if < 1 1) f(1) =. ) lim f() ; 1 Not continuous. lim f() 3 1 Definition: Suppose that at 0, f( ) = 0 lim 0 f( 0 ) f( 0 ) eists. IV-9

10 Note: Then, we sa that f is differentiable at. 0 If lim 0 lim, we sa that derivative does not eist. 0 Theorem: If f is differentiable at 0, then, f is continuous at 0. <proof> Note that: f() f( 0 ) f() - f( 0) = ( 0 ). 0 Then, lim 0 [f() f( 0 )] f() f( lim 0 ) = ( 0 0 ) = f( 0) 0 = 0. 0 Thus, lim f() f( 0 ) 0 lim f() = f( o). 0 0 Corollar: If f is not continuous, then f is not differentiable. EX 1) = 1 1 < 1 Not continuous at = 1 IV-10

11 not differentiable. Note: If a function is continuous, it ma or ma not be differentiable. Definition: a = a if a 0 a if a < 0 EX 1) -4 = 4; 4 = 4 EX) = f() = = 1 if 3 if < Continuous? ) lim f() lim f() 1 lim 0 1) f() defined and f() = 1 3) lim f() = f(). So, f is continuous. Differentiable? f( ) f() = ( ) 1 1 lim 0 = = 1 lim 0 IV-11

12 lim 0 f( ) f() = ( ) 3 1 lim 0 = = -1 lim 0 not differentiable IV-1

13 [4] Rules for Derivatives (1) = f() = k. d d 0. () = a n = an n-1 EX 1) = = 3 6 = 18 EX ) = = = d d (3) (f() g()) = d d f() d d g() f () g () EX) = + d d 4 1. IV-13

14 d (4) d (f()g()) = d d f() g() f() d d g() d d f() d f() g() f() d d g() (5) =. d g() [g()] EX) f() = g() = f() = 1 + 6; g() = d 3 f() g() = (1 + 6)(3 + 6 ) + (6 + 6)(9 + 1) d d f = d g (1 6)(3 3 6 ) (6 6)(9 1) (3 3 6 ) IV-14

15 [5] Chain Rule z z = f() = g() dz d dz d z w d dz d. dz d d d d f () g () EX 1) z = 3 ; = + 5 z dz d dz d = (6) = 1 = 1( + 5) = d d dz d EX ) = 3( +1). Set z = Then, = 3z ; z = + 1. d/d = (d/dz)(dz/d) = (9z )(4) = 36z = 36( +1). EX 3) TR = f(q); Q = g(l) dtr dl dtr dq dq = MR MP L= MRP dl IV-15 L

16 [6] Inverse Function (EX 1) Consider the following eample. This is a function. Looking at the reversed relation: (EX ) Consider the following eample. IV-16

17 Now, look at the reversed relation: Definition: If the reversed relation is also a function, we sa that there eists the inverse -1 function, and we denote it b f. Definition: A function = f() is strictl increasing (decreasing) iff f( 1) > f( ), whenever 1> (<). Theorem: -1 If a function = f() is strictl increasing or strictl decresing, then = f () (inverse function) eists. Note: IV-17

18 (1) Function : If ou know what happened esterda (cause), ou can predict what will happen toda (result). () Inverse function : If ou know what happens toda (result), ou can figure out what happened esterda (cause). EX) = f() = 5 + 5, - < <. --1 = /5-5 = f (). Theorem: Suppose that a function = f() has an inverse function. Then, d d 1 d d. EX) For the above eample, d/d = 5 ; d/d = 1/5. Clearl, d/d = 1/(d/d). IV-18

19 [7] Partial Differentiation Consider a function: = f( 1,,..., n), where i s are independent variables and is a dependent variables. Suppose we would like to know the rate of change of when 1 changes. Definition: d ceteris paribus 1 d 1 lim. 1 1 (Here, we treat all other variables as constant!!!!) EX 1) = / = / = EX ) = ( + 4)(3 + 4 ). 1 1 / = [( +4)/ ](3 +4 ) ( +4)[(3 +4 )/ ] = ( +4) 3 = / = (Show this at home.) 1 EX 3) 1 1. IV-19

20 1 ( 1 ) 1 ( 1 ) ( 1 ) ( 1 ) 1 ( 1 ) ( 1 ) 1 (1) ( 1 ) 3 ( 1 ). Simliarl, / = (1-1 )/(1- ). IV-0

21 [8] Jacobian Determinant There are n equations: 1 1 = f ( 1,,... n, n+1, n+,... m) = f ( 1,,..., n, n+1, n+,..., m) n n = f ( 1,,..., n, n+1, n+,..., m). Let s treat,... as given. (Treat them as constants) n+1 m Sometimes, we wish to know whether all the functions are distinctive, that is, whether there are redundant functions or not. For this case, we use Jacobian matri: J = n n n 1 n... n n If J = 0, we sa that the functions are functionall dependent. If J 0, we sa that the functions are functionall independent. IV-1

22 EX 1) ; ; ; 1 1 J EX ) = = ( 1 + ) J ( 1 4 ) 0 IV-

23 [9] Differentials d : derivatives d d, d : differentials (small changes) d d f () d f ()d EX) = d d f () 6 7 d = (6 + 7)d One important application of differentials: (price-elasticit of demand) d = % changes in demand % changes in price = % changes in demand when price changes b 1% Q d Q d dq d Q d = P dp = P P dq dp P Q d EX) Q = P d IV-3

24 dq d dp P Q d P 100 P = d () P 100 P P P When P = 10, d = = Total differentiation: = f(,... ) 1 n Denote f j j Then, d = f d + f d f d 1 1 n n d f 1 d 1. d d n 0 EX) U = U(, ) 1 du U d 1 U d 1 = U d + U d 1 1 IV-4

25 Suppose that du = 0. Then, U d + U d = d d U 1 (slope of indifference curve) du 1 0 U EX) d = ( + )d + ( + 8 )d IV-5

26 [10] Total derivatives CASE I: = f(, ) ; = g(w) ; = h(w) 1 1 d 1 d 1 d EX 1) 1 3 ; 1 = 6w + 6; = 3w + 4w d 1 d 1 d = ( 1 3 )6 (3 1 )(6w 4) = 1(6w+6)(3w +4w) + 3(6w+6) (3w +4w) (6w+4) = 7(w+1)(3w +4w) + 108(w+1) (3w +4w) (6w+4). EX ) 3 = (6w+6) (3w +4w) Set 1 = 6w + 6; = 3w + 4w. d 1 d 1 d IV-6

27 CASE II: = f(,, w) 1 = g(w) 1 = h(w) d f 1 d 1 f d f w Note: d/ = total derivative. f/w = partial derivative from EX 1) 1 w ; 1 = 6w; = 3w d 1 d 1 d w = ( ) w + 1 = 1(6w) + 6w + 1 = 78w IV-7

28 EX ) = 3 - w ; = w + w + 4 d Show that = 10w + 3. Total Partial Derivatives: = f(,, z, z) 1 1 = g(z, z) 1 1 = h(z, z) 1 d dz 1 Want to know (in tetbook, ) dz 0 z 1 z 1 f 1 f f z 1 1 z 1 z 1 z 1 fr. fr. fr. fr. fr. EX 3) w = a + b + cu; = u + v; = u IV-8

29 w u f u f u f u. = (a + b) + (b) + c = a + b + b + c w v w v = (a + b) = w u du w v dv IV-9

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

Name: Student ID: Math 314 (Calculus of Several Variables) Exam 3 May 24 28, Instructions:

Name: Student ID: Math 314 (Calculus of Several Variables) Exam 3 May 24 28, Instructions: Name: Student ID: Section: Instructor: _00 Scott Glasgow Math 314 (Calculus of Several Variables) RED Eam 3 Ma 4 8, 013 Instructions: For questions which require a written answer, show all our work. Full

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n Grade 1 (MCV4UE) - AP Calculus Etended Page 1 o 1 A unction o n-variales is a real-valued unction 1,..., n whose domain D is a set o n-tuples 1,..., n in which 1,..., n is deined. The range o is the set

More information

Lecture 5: Rules of Differentiation. First Order Derivatives

Lecture 5: Rules of Differentiation. First Order Derivatives Lecture 5: Rules of Differentiation First order derivatives Higher order derivatives Partial differentiation Higher order partials Differentials Derivatives of implicit functions Generalized implicit function

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Refresher Course in Mathematics September 013 Lecture 3 Differentiation Francesco Feri Rationale for Differentiation Much of economics is concerned with optimisation (maximise

More information

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 ))

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 )) Chapter 9 Derivatives Josef Leydold Mathematical Methods WS 208/9 9 Derivatives / 5 Difference Quotient Let f : R R be some function. The the ratio f = f ( 0 + ) f ( 0 ) = f ( 0) 0 is called difference

More information

Comparative Statics. Autumn 2018

Comparative Statics. Autumn 2018 Comparative Statics Autumn 2018 What is comparative statics? Contents 1 What is comparative statics? 2 One variable functions Multiple variable functions Vector valued functions Differential and total

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

4.3 Worksheet - Derivatives of Inverse Functions

4.3 Worksheet - Derivatives of Inverse Functions AP Calculus 3.8 Worksheet 4.3 Worksheet - Derivatives of Inverse Functions All work must be shown in this course for full credit. Unsupported answers ma receive NO credit.. What are the following derivatives

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

ECON 186 Class Notes: Derivatives and Differentials

ECON 186 Class Notes: Derivatives and Differentials ECON 186 Class Notes: Derivatives and Differentials Jijian Fan Jijian Fan ECON 186 1 / 27 Partial Differentiation Consider a function y = f (x 1,x 2,...,x n ) where the x i s are all independent, so each

More information

Sometimes the domains X and Z will be the same, so this might be written:

Sometimes the domains X and Z will be the same, so this might be written: II. MULTIVARIATE CALCULUS The first lecture covered functions where a single input goes in, and a single output comes out. Most economic applications aren t so simple. In most cases, a number of variables

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

2.8 Implicit Differentiation

2.8 Implicit Differentiation .8 Implicit Differentiation Section.8 Notes Page 1 Before I tell ou what implicit differentiation is, let s start with an example: EXAMPLE: Find if x. This question is asking us to find the derivative

More information

Functions. A function is a rule that gives exactly one output number to each input number.

Functions. A function is a rule that gives exactly one output number to each input number. Functions A function is a rule that gives exactly one output number to each input number. Why it is important to us? The set of all input numbers to which the rule applies is called the domain of the function.

More information

MA261-A Calculus III 2006 Fall Homework 7 Solutions Due 10/20/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 7 Solutions Due 10/20/2006 8:00AM MA26-A Calculus III 2006 Fall Homework 7 Solutions Due 0/20/2006 8:00AM 3 #4 Find the rst partial derivatives of the function f (; ) 5 + 3 3 2 + 3 4 f (; ) 5 4 + 9 2 2 + 3 4 f (; ) 6 3 + 2 3 3 #6 Find

More information

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n Grade (MCV4UE) - AP Calculus Etended Page o A unction o n-variales is a real-valued unction... n whose domain D is a set o n-tuples... n in which... n is deined. The range o is the set o all values...

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically.

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically. Mat 2 - Calculus for Management and Social Science. Understanding te basics of lines in te -plane is crucial to te stud of calculus. Notes Recall tat te and -intercepts of a line are were te line meets

More information

MA Lesson 25 Notes Section 5.3 (2 nd half of textbook)

MA Lesson 25 Notes Section 5.3 (2 nd half of textbook) MA 000 Lesson 5 Notes Section 5. ( nd half of tetbook) Higher Derivatives: In this lesson, we will find a derivative of a derivative. A second derivative is a derivative of the first derivative. A third

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C MATH 255 Line integrals III Fall 216 In general 1. The fundamental theorem of line integrals v T ds depends on the curve between the starting point and the ending point. onsider two was to get from (1,

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Chapter 4 Differentiation

Chapter 4 Differentiation Chapter 4 Differentiation 08 Section 4. The derivative of a function Practice Problems (a) (b) (c) 3 8 3 ( ) 4 3 5 4 ( ) 5 3 3 0 0 49 ( ) 50 Using a calculator, the values of the cube function, correct

More information

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation Second Order Derivatives Course Manual Background to Topic 6 Maximisation and Minimisation Jacques (4 th Edition): Chapter 4.6 & 4.7 Y Y=a+bX a X Y= f (X) = a + bx First Derivative dy/dx = f = b constant

More information

Chapter 2 DERIVATIVES

Chapter 2 DERIVATIVES Chapter DERIVATIVES Imagine a driver speeding down a highwa, at 0 km/h. He hears a police siren and is quickl pulled over. The police officer tells him that he was speeding, but the driver argues that

More information

INTRODUCTORY MATHEMATICAL ANALYSIS

INTRODUCTORY MATHEMATICAL ANALYSIS INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Lie and Social Sciences Chapter 11 Dierentiation 011 Pearson Education, Inc. Chapter 11: Dierentiation Chapter Objectives To compute

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Eample: change in the sales of a company; change in the value

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6. Worksheet Da All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. Indefinite Integrals: Remember the first step to evaluating an integral is to

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

Calculus One variable

Calculus One variable Calculus One variable (f ± g) ( 0 ) = f ( 0 ) ± g ( 0 ) (λf) ( 0 ) = λ f ( 0 ) ( (fg) ) ( 0 ) = f ( 0 )g( 0 ) + f( 0 )g ( 0 ) f g (0 ) = f ( 0 )g( 0 ) f( 0 )g ( 0 ) f( 0 ) 2 (f g) ( 0 ) = f (g( 0 )) g

More information

Derivatives of Multivariable Functions

Derivatives of Multivariable Functions Chapter 0 Derivatives of Multivariable Functions 0. Limits Motivating Questions In this section, we strive to understand the ideas generated b the following important questions: What do we mean b the limit

More information

ECON0702: Mathematical Methods in Economics

ECON0702: Mathematical Methods in Economics ECON0702: Mathematical Methods in Economics Yulei Luo SEF of HKU January 14, 2009 Luo, Y. (SEF of HKU) MME January 14, 2009 1 / 44 Comparative Statics and The Concept of Derivative Comparative Statics

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Mathematics for Economics ECON MA/MSSc in Economics-2017/2018. Dr. W. M. Semasinghe Senior Lecturer Department of Economics

Mathematics for Economics ECON MA/MSSc in Economics-2017/2018. Dr. W. M. Semasinghe Senior Lecturer Department of Economics Mathematics for Economics ECON 53035 MA/MSSc in Economics-2017/2018 Dr. W. M. Semasinghe Senior Lecturer Department of Economics MATHEMATICS AND STATISTICS LERNING OUTCOMES: By the end of this course unit

More information

Business Mathematics. Lecture Note #13 Chapter 7-(1)

Business Mathematics. Lecture Note #13 Chapter 7-(1) 1 Business Mathematics Lecture Note #13 Chapter 7-(1) Applications of Partial Differentiation 1. Differentials and Incremental Changes 2. Production functions: Cobb-Douglas production function, MP L, MP

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv Universit, 2013/14 Analsis-III,IV 53 4 Inverse function theorem 4a What is the problem................ 53 4b Simple observations before the theorem..... 54 4c The theorem.....................

More information

CHAPTER 2 Differentiation

CHAPTER 2 Differentiation CHAPTER Differentiation Section. The Derivative and the Slope of a Graph............. 9 Section. Some Rules for Differentiation.................. 56 Section. Rates of Change: Velocit and Marginals.............

More information

Learning Outcomes and Assessment Standards

Learning Outcomes and Assessment Standards Lesson 5 CALCULUS (8) Rate of change Learning Outcomes and Assessment Standards Learning Outcome : Functions and Algebra Assessment standard 1..7(e) Solve practical problems involving optimisation and

More information

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016 MATH 35 Calculus Solutions/Answers for Exam 3 Practice Problems November 8, 206 I. Find the indicated derivative(s) and simplify. (A) ( y = ln(x) x 7 4 ) x Solution: By the product rule and the derivative

More information

In economics, the amount of a good x demanded is a function of the price of that good. In other words,

In economics, the amount of a good x demanded is a function of the price of that good. In other words, I. UNIVARIATE CALCULUS Given two sets X and Y, a function is a rule that associates each member of X with eactly one member of Y. That is, some goes in, and some y comes out. These notations are used to

More information

What is the limit of a function? Intuitively, we want the limit to say that as x gets closer to some value a,

What is the limit of a function? Intuitively, we want the limit to say that as x gets closer to some value a, Limits The notion of a limit is fundamental to the stud of calculus. It is one of the primar concepts that distinguishes calculus from mathematical subjects that ou saw prior to calculus, such as algebra

More information

TOPIC VI UNCONSTRAINED OPTIMIZATION I

TOPIC VI UNCONSTRAINED OPTIMIZATION I [1] Motivation TOPIC VI UNCONSTRAINED OPTIMIZATION I y 8 6 3 3 5 7 Consider Dom (f) = {0 7}. Global ma: y = 8 at = 7 gma Global min: y = 3 at = 5 gmin Local ma: y = 6 at = 3 lma Local min: y = 3 at = 5

More information

Integration by Substitution

Integration by Substitution Integration by Substitution MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to use the method of integration by substitution

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

Economics 205 Exercises

Economics 205 Exercises Economics 05 Eercises Prof. Watson, Fall 006 (Includes eaminations through Fall 003) Part 1: Basic Analysis 1. Using ε and δ, write in formal terms the meaning of lim a f() = c, where f : R R.. Write the

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Comple Analsis II Lecture Notes Part I Chapter 1 Preliminar results/review of Comple Analsis I These are more detailed notes for the results

More information

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises 062 Chapter Introduction to Calculus Critical Thinking Eercises Make Sense? In Eercises 74 77, determine whether each statement makes sense or does not make sense, and eplain our reasoning. 74. I evaluated

More information

Math 53 Homework 4 Solutions

Math 53 Homework 4 Solutions Math 5 Homework 4 Solutions Problem 1. (a) z = is a paraboloid with its highest point at (0,0,) and intersecting the -plane at the circle + = of radius. (or: rotate the parabola z = in the z-plane about

More information

Vector-Valued Functions

Vector-Valued Functions Vector-Valued Functions 1 Parametric curves 8 ' 1 6 1 4 8 1 6 4 1 ' 4 6 8 Figure 1: Which curve is a graph of a function? 1 4 6 8 1 8 1 6 4 1 ' 4 6 8 Figure : A graph of a function: = f() 8 ' 1 6 4 1 1

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

CHAPTER 2 Differentiation

CHAPTER 2 Differentiation CHAPTER Differentiation Section. The Derivative and the Slope of a Graph............. 6 Section. Some Rules for Differentiation.................. 69 Section. Rates of Change: Velocit and Marginals.............

More information

3.6 Implicit Differentiation. explicit representation of a function rule. y = f(x) y = f (x) e.g. y = (x 2 + 1) 3 y = 3(x 2 + 1) 2 (2x)

3.6 Implicit Differentiation. explicit representation of a function rule. y = f(x) y = f (x) e.g. y = (x 2 + 1) 3 y = 3(x 2 + 1) 2 (2x) Mathematics 0110a Summar Notes page 43 3.6 Implicit Differentiation eplicit representation of a function rule = f() = f () e.g. = ( + 1) 3 = 3( + 1) () implicit representation of a function rule f(, )

More information

f x,y da ln 1 y ln 1 x dx. To evaluate this integral, we use integration by parts with dv dx

f x,y da ln 1 y ln 1 x dx. To evaluate this integral, we use integration by parts with dv dx MATH (Calculus III) - Quiz 4 Solutions March, 5 S. F. Ellermeer Name Instructions. This is a take home quiz. It is due to be handed in to me on Frida, March at class time. You ma work on this quiz alone

More information

University of Toronto Mississauga

University of Toronto Mississauga Surname: First Name: Student Number: Tutorial: Universit of Toronto Mississauga Mathematical and Computational Sciences MATY5Y Term Test Duration - 0 minutes No Aids Permitted This eam contains pages (including

More information

Chapter 3 Differentiation. Historical notes. Some history. LC Abueg: mathematical economics. chapter 3: differentiation 1

Chapter 3 Differentiation. Historical notes. Some history. LC Abueg: mathematical economics. chapter 3: differentiation 1 Chapter 3 Differentiation Lectures in Mathematical Economics L Cagandahan Abueg De La Salle University School of Economics Historical notes Some history Prior to the seventeenth century [1600s], a curve

More information

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics Mathematics 0 MTU 070 Elements of Calculus in Economics Calculus Calculus deals with rate of change of quantity with respect to another

More information

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIUES 1 LECTURE 4 DIFFERENTIATION 1 Differentiation Managers are often concerned with the way that a variable changes over time Prices, for example,

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Exercises - SOLUTIONS UEC Advanced Microeconomics, Fall 2018 Instructor: Dusan Drabik, de Leeuwenborch 2105

Exercises - SOLUTIONS UEC Advanced Microeconomics, Fall 2018 Instructor: Dusan Drabik, de Leeuwenborch 2105 Eercises - SOLUTIONS UEC-5806 Advanced Microeconomics, Fall 08 Instructor: Dusan Drabik, de Leeuwenborch 05. A consumer has a preference relation on R which can be represented by the utility function u()

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

Chiang/Wainwright: Fundamental Methods of Mathematical Economics

Chiang/Wainwright: Fundamental Methods of Mathematical Economics Chiang/Wainwright: Fundamental Methods of Mathematical Economics CHAPTER 9 EXERCISE 9.. Find the stationary values of the following (check whether they are relative maima or minima or inflection points),

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

On Range and Reflecting Functions About the Line y = mx

On Range and Reflecting Functions About the Line y = mx On Range and Reflecting Functions About the Line = m Scott J. Beslin Brian K. Heck Jerem J. Becnel Dept.of Mathematics and Dept. of Mathematics and Dept. of Mathematics and Computer Science Computer Science

More information

EC611--Managerial Economics

EC611--Managerial Economics EC611--Managerial Economics Optimization Techniques and New Management Tools Dr. Savvas C Savvides, European University Cyprus Models and Data Model a framework based on simplifying assumptions it helps

More information

f x (prime notation) d dx

f x (prime notation) d dx Hartfield MATH 040 Unit Page 1 4.1 Basic Techniques for Finding Derivatives In the previous unit we introduced the mathematical concept of the derivative: f lim h0 f( h) f ( ) h (assuming the limit eists)

More information

Marginal Functions and Approximation

Marginal Functions and Approximation ucsc supplementary notes ams/econ 11a Marginal Functions and Approximation 1. Linear approximation If y = f(x) is a differentiable function then its derivative, y = f (x), gives the rate of change of the

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph Ch 0 Homework Complete Solutions V Part : S. Stirling Calculus: Earl Transcendental Functions, 4e Larson WATCH for the product rule and the chain rule. If the order that our terms are in differ from the

More information

Mathematical Economics (ECON 471) Lecture 3 Calculus of Several Variables & Implicit Functions

Mathematical Economics (ECON 471) Lecture 3 Calculus of Several Variables & Implicit Functions Mathematical Economics (ECON 471) Lecture 3 Calculus of Several Variables & Implicit Functions Teng Wah Leo 1 Calculus of Several Variables 11 Functions Mapping between Euclidean Spaces Where as in univariate

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.3. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Example: change in the sales of a company; change in the value

More information

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability Grade 2 (MCV4UE) AP Calculus Page of 5 The Derivative at a Point f ( a h) f ( a) Recall, lim provides the slope of h0 h the tangent to the graph y f ( at the point, f ( a), and the instantaneous rate of

More information

Helpful Concepts for MTH 261 Final. What are the general strategies for determining the domain of a function?

Helpful Concepts for MTH 261 Final. What are the general strategies for determining the domain of a function? Helpful Concepts for MTH 261 Final What are the general strategies for determining the domain of a function? How do we use the graph of a function to determine its range? How many graphs of basic functions

More information

Mathematical Economics: Lecture 9

Mathematical Economics: Lecture 9 Mathematical Economics: Lecture 9 Yu Ren WISE, Xiamen University October 17, 2011 Outline 1 Chapter 14: Calculus of Several Variables New Section Chapter 14: Calculus of Several Variables Partial Derivatives

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

d dx x = d dx (10,000 - p2 ) 1/2 dx [10,000 - p2 ] p' = dv = 0 dl dv V + n Things to remember: dt dt ; dy dt = 3

d dx x = d dx (10,000 - p2 ) 1/2 dx [10,000 - p2 ] p' = dv = 0 dl dv V + n Things to remember: dt dt ; dy dt = 3 45. x 0,000 " p 2 (0,000 - p 2 ) /2 d x d (0,000 - p2 ) /2 2 (0,000 - p2 ) -/2 d [0,000 - p2 ] 2(0,000 " p 2 ) 2 (!2pp') p' "p p # 0,000 " p 2 " 0,000 " p2 p 47. (L + m)(v + n) k (L + m)() + (V + n) dl

More information

Unit #11 - Integration by Parts, Average of a Function

Unit #11 - Integration by Parts, Average of a Function Unit # - Integration by Parts, Average of a Function Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Integration by Parts. For each of the following integrals, indicate whether

More information

y »x 2» x 1. Find x if a = be 2x, lna = 7, and ln b = 3 HAL ln 7 HBL 2 HCL 7 HDL 4 HEL e 3

y »x 2» x 1. Find x if a = be 2x, lna = 7, and ln b = 3 HAL ln 7 HBL 2 HCL 7 HDL 4 HEL e 3 . Find if a = be, lna =, and ln b = HAL ln HBL HCL HDL HEL e a = be and taing the natural log of both sides, we have ln a = ln b + ln e ln a = ln b + = + = B. lim b b b = HAL b HBL b HCL b HDL b HEL b

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

Chapter 5: Introduction to Limits. Chapter 5 Recommendations

Chapter 5: Introduction to Limits. Chapter 5 Recommendations Chapter 5: Introduction to Limits Chapter 5 Topics: Inverse and Direct Variation Transformations of Rational Functions Graphing Reciprocals of Functions Introduction to Limits Working With One-Sided Limits

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

Section Differential Equations: Modeling, Slope Fields, and Euler s Method

Section Differential Equations: Modeling, Slope Fields, and Euler s Method Section.. Differential Equations: Modeling, Slope Fields, and Euler s Method Preliminar Eample. Phsical Situation Modeling Differential Equation An object is taken out of an oven and placed in a room where

More information

( ) is just a function of x, with

( ) is just a function of x, with II. MULTIVARIATE CALCULUS The first ecture covered functions where a singe input goes in, and a singe output comes out. Most economic appications aren t so simpe. In most cases, a number of variabes infuence

More information

Partial Differentiation

Partial Differentiation CHAPTER 7 Partial Differentiation From the previous two chapters we know how to differentiate functions of one variable But many functions in economics depend on several variables: output depends on both

More information

MA 113 Calculus I Fall 2009 Exam 4 December 15, 2009

MA 113 Calculus I Fall 2009 Exam 4 December 15, 2009 MA 3 Calculus I Fall 009 Eam December 5, 009 Answer all of the questions - 7 and two of the questions 8-0. Please indicate which problem is not to be graded b crossing through its number in the table below.

More information

Elasticities as differentials; the elasticity of substitution

Elasticities as differentials; the elasticity of substitution Elasticities as differentials. Derivative: the instantaneous rate of change in units per units. Elasticity: the instantaneous rate of change in percent per percent. That is, if you like: on logarithmic

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

Review Exercises for Chapter 2

Review Exercises for Chapter 2 Review Eercises for Chapter 367 Review Eercises for Chapter. f 1 1 f f f lim lim 1 1 1 1 lim 1 1 1 1 lim 1 1 lim lim 1 1 1 1 1 1 1 1 1 4. 8. f f f f lim lim lim lim lim f 4, 1 4, if < if (a) Nonremovable

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2 MAT 7: Calculus C, Spring 07 Solutions to Problem Set Section 7., Problems -6 (webassign, pts) Match the differential equation with its direction field (labeled I-IV on p06 in the book). Give reasons for

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information