f x (prime notation) d dx

Size: px
Start display at page:

Download "f x (prime notation) d dx"

Transcription

1 Hartfield MATH 040 Unit Page Basic Techniques for Finding Derivatives In the previous unit we introduced the mathematical concept of the derivative: f lim h0 f( h) f ( ) h (assuming the limit eists) In this unit we will look at rules for finding derivatives that will be simpler than applying the definition. There are many different forms of notation used to indicate a derivative. For eample, if we want the derivative of the function f(), we could epress it as: f (prime notation) d f d (Leibniz notation) D f (subscript notation) Assuming that y = f(), a common variation on Leibniz notation is dy d.

2 Hartfield MATH 040 Unit Page Eample: Epress all appropriate forms of notation that could be used for the derivative of the function g(t). The notation d may sometimes be used to d indicate that you wish to find a derivative without defining an epression eplicitly as a function.

3 Hartfield MATH 040 Unit Page 3 Rules For Differentiation Rule 1: Rule : Constant Rule For any real constant k, d k d 0. (If f = k, then Power Rule f = 0.) For any constant eponent n, d d n (If f = n1 n. n, then f = n1 n.) Eample set 1: Find each derivative. d A-1. 4 d A-. f 13 B-1. d 4 d B-. f 7

4 Hartfield MATH 040 Unit Page 4 Eample set : Find each derivative. Eample set 3: Find each derivative. C-1. d d 3 d 1 D-1. d C-. f 4 5 D f

5 Hartfield MATH 040 Unit Page 5 Practice: Find the derivative of each function. A. f 1 B. f 1 C. f 3 Rule 3: Rule 4: Constant Multiple Rule For any constant k, d k f k f d f = kg, k g.) (If then f = Sum/Difference Rules d f g f g d (If f = u v, then f = u v.).

6 Hartfield MATH 040 Unit Page 6 Eample set 1: Find each derivative. d d A Two noteworthy shortcuts based on rules and 3: d d 1 and d c c d A-. f 6 8 Eample set : Find the derivative. d d B-1. 3 d d 7 C-1. B-. f 6 5 C-. 4 f 85

7 Hartfield MATH 040 Unit Page 7 Eample: Find f. Eample: Find f. f f 4 1 6

8 Hartfield MATH 040 Unit Page 8 Practice: Find f. Practice: Find f. f f 5 3

9 Hartfield MATH 040 Unit Page 9 Marginal Analysis We will use the following function notations for application problems in business and economics: Revenue Function R() = Total revenue from selling units Cost Function C() = Total cost of producing units Profit Function P() = Total profit from producing and selling units Economists use the term marginal to refer to rates of change. The derivative, which coincides with instantaneous rate of change, is used when talking about marginal in calculus. If you have a cost function at some level of production, the marginal cost is the epected additional cost of producing the ( + 1)st unit. That is, if you are already making units, the marginal cost predicts the cost of making the net unit. Notationally, when C() represents the cost function, C () represents the marginal cost function.

10 Hartfield MATH 040 Unit Page 10 It is important to understand that the marginal function may not eactly identify the additional cost of the ( + 1)st unit. The actual cost of that net unit can be eactly found by calculating C( + 1) C(). In most cases though, the evaluation of the marginal cost function at is very close to the eact value found by the difference. Analogous statements can be made for revenue and profit. Some additional notes for future reference: Analogous statements can be made for revenue and profit. Thus R () represents the marginal revenue function and P () represents the marginal profit function. A common function in economics is the demand function p Dq which relates the number of units q that consumers are willing to purchase at price p. The revenue generated from selling q units is then found R q q D q. by

11 Hartfield MATH 040 Unit Page 11 Eample: A steel mill determines that its cost 3 function is C( ) dollars,where is in the daily production of tons of steel. A. Find the cost of manufacturing 64 tons of steel per day. B. Find the marginal cost function. C. Find the marginal cost of producing one more ton when 64 tons are being produced. D. Calculate the actually cost of producing one more ton by finding the cost of manufacturing 65 tons.

12 Hartfield MATH 040 Unit Page 1 Eample: If the demand function for 500 q heavyweight paper is p 5 dollars, where q is in reams, answer the following: C. Find the marginal revenue function. A. Find the revenue function. B. Find the revenue generated from 00 reams being sold. D. Calculate and interpret the marginal revenue function when 00 reams are being sold.

13 Hartfield MATH 040 Unit Page 13 Practice: Continuing the previous eample, suppose the cost function in dollars for heavyweight paper is given by C( q) 10 4 q, 0 q 300. C. Calculate and interpret the marginal profit function when 100 reams, 00 reams, and 50 reals are being produced and sold. A. Find the profit function. B. Find the marginal profit function.

14 Hartfield MATH 040 Unit Page Derivatives of Products and Quotients Rule 5: Product Rule Eample: Find f. d f g d f g g f f( ) 4 (If f = u v, then f = u v v u.)

15 Hartfield MATH 040 Unit Page 15 Practice: Find f. Rule 6: Quotient Rule f( ) 5 3 d f g f f g d g g (If f = then u f = v and v 0, vu uv v.)

16 Hartfield MATH 040 Unit Page 16 Eample: Find f. Practice: Find f. f ( ) 1 f ( ) 1 1

17 Hartfield MATH 040 Unit Page 17 Average Cost and Marginal Average Cost For a cost function C where C represents the cost of manufacturing items, the average cost function C is found by C / and determines the average cost per item. It is possible to find a marginal with respect to an average function. As with other marginals, a marginal average function is predictive of the change occurring when you increase the number of items by one. The marginal average cost function C is the derivative of the average cost function and finds the rate of change in the average cost. Analogous statements can be made for revenue and profit. Thus R represents the average revenue function, determined by R representing the marginal R /, with P represents average revenue function. the average profit function, determined by P /, with P representing the marginal average revenue function.

18 Hartfield MATH 040 Unit Page 18 Eample: The total profit (in tens of dollars) from selling self-help books is 5 6 P ( ). 3 C. Evaluate P, P, and P when = 0. Interpret each evaluation. A. Find the average profit function. B. Find the marginal average profit function.

19 Hartfield MATH 040 Unit Page 19 Practice: The fuel economy (in m.p.g.) of a Porsche driven at a speed of m.p.h. 000 is E ( ). 305 B. Evaluate E and E when = 80, rounding logically. Interpret each evaluation. A. Find E ( )

20 Hartfield MATH 040 Unit Page The Chain Rule Recall from algebra that composed functions consist of one function inside a second function. For eample, 3 1 is considered to be a composite function because the function ² 1 eists within a cubing function (that is, the output of ² 1 is the input to the cube). We can decompose 3 1 by defining the two functions that are brought together to make the new function. 3 1 f g( ) with 3 f ( ) g( ) 1 We tend to call g the inside function and f the outside function. Eample: Decompose each of the following functions so that f(g()) returns the original function. 3 6

21 Hartfield MATH 040 Unit Page 1 Practice: Decompose each of the following functions so that f(g()) returns the original function. A. 1 4 Finding a derivative for a function created by a composition requires we consider the differentiation of both the inside and outside function. It turns out that the outside derivative is taken initially without regard to the inside epression, with the inside derivative being multiplied in separately. This is called the Chain rule. B. 7

22 Hartfield MATH 040 Unit Page Chain Rule Rule 7: Chain Rule Eample: Find y. d f g ( ) f g ( ) g ( ) d A. 3 6 y We can also restate the composition y f g( ) as y = f(u) and u = g(). Their respective derivatives would be dy du f() u and g ( ). du d By appropriate substitution, we can present Chain Rule using Leibniz s Notation: B. y 7 dy d dy du. du d

23 Hartfield MATH 040 Unit Page 3 Practice: Find y. y 1 A. 4 Frequently you may need to combine Chain Rule with Product Rule or Quotient Rule to find a derivative. Eample: Find y. B. y y

24 Hartfield MATH 040 Unit Page 4 Eample: Find y. Practice: Find y. y 1 y

25 Hartfield MATH 040 Unit Page 5 Applications Eample: Suppose that for a group of 10,000 people, the number who survive to age is N( ) Evaluate and interpret N and N when = 36.

26 Hartfield MATH 040 Unit Page 6 Practice: A 35 year old male of average weight is injected with a 100 cubic centimeters of a specific medication. At t hours after injection, the body is 00t metabolizing Vt () cc of the t 1 3 medication. Evaluate and interpret V and V at t = 4.

27 Hartfield MATH 040 Unit Page Derivatives of Eponential Functions Rule 8: Eponential Rule (if base is e) d e e d Rule 8*: Eponential Rule (if base is a) d a ln a a d Our primary but not eclusive focus will be on differentiating eponential epressions with a base of e. Frequently you will need to find derivatives where the eponent of a base e (or a) eponential is not simply. Strictly speaking this creates a composition and requires the use of Chain Rule. We can integrate Chain Rule with the Eponential Rule as follows: Rule 8a: d e g e g g d d a g g ln a a g d

28 Hartfield MATH 040 Unit Page 8 Eample: Find the derivative of each. Practice: Find the derivative of each. A. 4 1 y 10e A. y 6 5e B. y 3 e 4 3 B. y 6 3 8e C. 3 y 5 C. 1 y 43

29 Hartfield MATH 040 Unit Page 9 Eample: Find the derivative. Eample: Find the derivative. y e y e

30 Hartfield MATH 040 Unit Page 30 Practice: Find the derivative. Practice: Find the derivative. y e e y e 1

31 Hartfield MATH 040 Unit Page 31 Applications: Eample: A cup of coffee brewed at 00 degrees, if left in a 70-degree room, will cool to T(t) = e 0.04t ( F) in t minutes. Determine the temperature of the coffee in 1 hour and the rate of change in the temperature at that time.

32 Hartfield MATH 040 Unit Page 3 Eample: For a particular market the demand 0.1q function of an item is p 00 e, where q is in thousands of units. Find the revenue function and its derivative. Then evaluate both and interpret when 5 thousand units are being sold.

33 Hartfield MATH 040 Unit Page Derivatives of Logarithmic Functions Rule 9: Logarithmic Rule (if base is e, > 0) d d ln 1 Rule 9*: Logarithmic Rule (if base is a, > 0) d d log a 1 lna Similar to eponentials, our primary but not eclusive focus will be on differentiating logarithmic epressions with a base of e. Recall that the domain of a logarithmic function is based on when the argument of the log is positive. As with eponentials, frequently you will need to find derivatives where the argument is not simply. Again this creates a composition and requires the use of Chain Rule. We can integrate Chain Rule with the Logarithmic Rule as follows: Rule 9a: d g ln g, d where g > 0 g d g log a g d ln( a) g

34 Hartfield MATH 040 Unit Page 34 Eample: Find the derivative of each. yln 8 3 A. Practice: Find the derivative of each. A. 3 yln 1 B. 3 y ln 5 B. y log y log 4 C.

35 Hartfield MATH 040 Unit Page 35 Eample: Find the derivative. Eample: Find the derivative. y 3 ln y 3 ln

36 Hartfield MATH 040 Unit Page 36 Practice: Find the derivative. Practice: Find the derivative. y e ln y ln 1

37 Hartfield MATH 040 Unit Page 37 Applications: Eample: The total revenue (in thousands of dollars) produced by selling thousands of books can be epressed as R( ) 50ln4 1. The cost (in thousands of dollars) to produce thousands of book is given by C( ) 5. B. Find the profit function and the marginal profit function. Interpret both when 10 thousand books are being sold. A. Find the marginal revenue function and interpret it when 10 thousand books are being sold.

38 Hartfield MATH 040 Unit Page 38 Eample: Based on projections from the Kelly Blue Book, the average resale value of a 010 Toyota Corolla sedan can be anticipated by the function f( t) logt 1, where t is the number of years since 010. Find & interpret f and f when t = 4.

lim Prime notation can either be directly applied to a function as previously seen with f x 4.1 Basic Techniques for Finding Derivatives

lim Prime notation can either be directly applied to a function as previously seen with f x 4.1 Basic Techniques for Finding Derivatives MATH 040 Notes: Unit Page 4. Basic Techniques for Fining Derivatives In the previous unit we introuce the mathematical concept of the erivative: f f ( h) f ( ) lim h0 h (assuming the limit eists) In this

More information

2.4 The Product and Quotient Rules

2.4 The Product and Quotient Rules Hartfield MATH 040 Unit Page 1.4 The Product and Quotient Rules For functions which are the result of multiplying or dividing epressions, special rules apply which involve multiple steps. E. 1: Find the

More information

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include: Hartfield MATH 2040 Unit 4 Page 1 4.1 Exponential Functions Recall from algebra the formulas for Compound Interest: Formula 1 For Discretely Compounded Interest 1 A t P r n nt Formula 2 Continuously Compounded

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have The questions listed below are drawn from midterm and final eams from the last few years at OSU. As the tet book and structure of the class have recently changed, it made more sense to list the questions

More information

Math 116: Business Calculus Chapter 4 - Calculating Derivatives

Math 116: Business Calculus Chapter 4 - Calculating Derivatives Math 116: Business Calculus Chapter 4 - Calculating Derivatives Instructor: Colin Clark Spring 2017 Exam 2 - Thursday March 9. 4.1 Techniques for Finding Derivatives. 4.2 Derivatives of Products and Quotients.

More information

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics Mathematics 0 MTU 070 Elements of Calculus in Economics Calculus Calculus deals with rate of change of quantity with respect to another

More information

7.1 Functions of Two or More Variables

7.1 Functions of Two or More Variables Hartfield MATH 2040 Unit 5 Page 1 7.1 Functions of Two or More Variables Definition: A function f of two variables is a rule such that each ordered pair (, y) in the domain of f corresponds to eactly one

More information

In economics, the amount of a good x demanded is a function of the price of that good. In other words,

In economics, the amount of a good x demanded is a function of the price of that good. In other words, I. UNIVARIATE CALCULUS Given two sets X and Y, a function is a rule that associates each member of X with eactly one member of Y. That is, some goes in, and some y comes out. These notations are used to

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives 7.5) Rates of Change: Velocity and Marginals MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives Previously we learned two primary applications of derivatives.

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 3 NON-LINEAR FUNCTIONS

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 3 NON-LINEAR FUNCTIONS DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 10 LECTURE NON-LINEAR FUNCTIONS 0. Preliminaries The following functions will be discussed briefly first: Quadratic functions and their solutions

More information

Chapter 2: Differentiation 1. Find the slope of the tangent line to the graph of the function below at the given point.

Chapter 2: Differentiation 1. Find the slope of the tangent line to the graph of the function below at the given point. Chapter : Differentiation 1. Find the slope of the tangent line to the graph of the function below at the given point. f( ) 10, (, ) 10 1 E) none of the above. Find the slope of the tangent line to the

More information

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim . Given f( ), find Math 5 Final Eam Review f h f. h0 h a. If f ( ) 5 (Set it up, but do not simplify) If c. If f ( ) 5 f (Simplify) ( ) 7 f (Set it up, but do not simplify) ( ) 7 (Simplify) d. If f. Given

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

INTRODUCTORY MATHEMATICAL ANALYSIS

INTRODUCTORY MATHEMATICAL ANALYSIS INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Lie and Social Sciences Chapter 11 Dierentiation 011 Pearson Education, Inc. Chapter 11: Dierentiation Chapter Objectives To compute

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Chapter 1 Functions, Graphs, and Limits MA1103 Business Mathematics I Semester I Year 016/017 SBM International Class Lecturer: Dr. Rinovia Simanjuntak 1.1 Functions Function A function is a rule that

More information

Name. Unit 1 Worksheets Math 150 College Algebra and Trig

Name. Unit 1 Worksheets Math 150 College Algebra and Trig Name Unit 1 Worksheets Math 10 College Algebra and Trig Revised: Fall 009 Worksheet 1: Integral Eponents Simplify each epression. Write all answers in eponential form. 1. (8 ). ( y). (a b ). y 6. (7 8

More information

7.1 Functions of Two or More Variables

7.1 Functions of Two or More Variables 7.1 Functions of Two or More Variables Hartfield MATH 2040 Unit 5 Page 1 Definition: A function f of two variables is a rule such that each ordered pair (x, y) in the domain of f corresponds to exactly

More information

Marginal Propensity to Consume/Save

Marginal Propensity to Consume/Save Marginal Propensity to Consume/Save The marginal propensity to consume is the increase (or decrease) in consumption that an economy experiences when income increases (or decreases). The marginal propensity

More information

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1 Math 160 - Want to have fun with chapter 4? Name Find the derivative. 1) y = 52e3 2) y = 2e - 2e 3) y = (2-2 + 3) e 9e 4) y = 2e + 1 5) y = e - + 1 e e 6) y = 32 + 7 7) y = e3-1 5 Use calculus to find

More information

Mat 210 Business Calculus Final Exam Review Spring Final on April 28 in COOR HALL 199 at 7:30 AM

Mat 210 Business Calculus Final Exam Review Spring Final on April 28 in COOR HALL 199 at 7:30 AM f ( Mat Business Calculus Final Eam Review Spring Final on April 8 in COOR HALL 99 at 7: AM. A: Find the limit (if it eists) as indicated. Justify your answer. 8 a) lim (Ans: 6) b) lim (Ans: -) c) lim

More information

Midterm 1 Review Problems Business Calculus

Midterm 1 Review Problems Business Calculus Midterm 1 Review Problems Business Calculus 1. (a) Show that the functions f and g are inverses of each other by showing that f g(x) = g f(x) given that (b) Sketch the functions and the line y = x f(x)

More information

MA 22000, Lesson 2 Functions & Addition/Subtraction Polynomials Algebra section of text: Sections 3.5 and 5.2, Calculus section of text: Section R.

MA 22000, Lesson 2 Functions & Addition/Subtraction Polynomials Algebra section of text: Sections 3.5 and 5.2, Calculus section of text: Section R. MA 000, Lesson Functions & Addition/Subtraction Polynomials Algebra section of tet: Sections.5 and 5., Calculus section of tet: Section R.1 Definition: A relation is any set of ordered pairs. The set of

More information

Applications of Exponential Functions

Applications of Exponential Functions Applications of Exponential Functions MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Spring 2014 Objectives After this lesson we will be able to solve problems involving

More information

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work.

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work. MATH 11012 Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri Dr. Kracht Name:. 1. Consider the function f depicted below. Final Exam Review Show all your work. y 1 1 x (a) Find each of the following

More information

The Review has 16 questions. Simplify all answers, include all units when appropriate.

The Review has 16 questions. Simplify all answers, include all units when appropriate. Math 1 Midterm Eam Review with Answers Name Date The Review has 16 questions. Simplify all answers, include all units when appropriate. 1. [Sec. 1.] Solve the following problems. a. A company s profit

More information

FINAL Exam REVIEW Math 1325 HCCS. Name

FINAL Exam REVIEW Math 1325 HCCS. Name FINAL Eam REVIEW Math 1325 HCCS Name ate MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1 The total cost to hand-produce large

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 112 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013

More information

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class:

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class: 1830 UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS Pre-Class: Take notes on the videos and readings (use the space below). Work and check problem #1 in the 2.1 NOTES section.

More information

Math 111 Final Exam Review KEY

Math 111 Final Exam Review KEY Math 111 Final Eam Review KEY 1. Use the graph of y = f in Figure 1 to answer the following. Approimate where necessary. a Evaluate f 1. f 1 = 0 b Evaluate f0. f0 = 6 c Solve f = 0. =, = 1, =,or = 3 Solution

More information

Math Reviewing Chapter 4

Math Reviewing Chapter 4 Math 80 - Reviewing Chapter Name If the following defines a one-to-one function, find the inverse. ) {(-, 8), (, 8), (-, -)} Decide whether or not the functions are inverses of each other. ) f() = + 7;

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

Math 112 Spring 2018 Midterm 2 Review Problems Page 1

Math 112 Spring 2018 Midterm 2 Review Problems Page 1 Math Spring 08 Midterm Review Problems Page Note: Certain eam questions have been more challenging for students. Questions marked (***) are similar to those challenging eam questions. Let f and g. (***)

More information

1.6-Quadratic Equations

1.6-Quadratic Equations 1.6-Quadratic Equations A quadratic equation is any equation that can be written in the form a + b + c = where a, b, and c are real numbers and a. The following are eamples of quadratic equations. 3 +

More information

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag.

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag. San Francisco State University Math Review Notes Michael Bar Sets A set is any collection of elements Eamples: a A {,,4,6,8,} - the set of even numbers between zero and b B { red, white, bule} - the set

More information

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part.

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part. BARUCH COLLEGE MATH 07 FALL 007 MANUAL FOR THE UNIFORM FINAL EXAMINATION The final eamination for Math 07 will consist of two parts. Part I: Part II: This part will consist of 5 questions. No calculator

More information

Section 11.7 The Chain Rule

Section 11.7 The Chain Rule Section.7 The Chain Rule Composition of Functions There is another way of combining two functions to obtain a new function. For example, suppose that y = fu) = u and u = gx) = x 2 +. Since y is a function

More information

Unit 4: Rules of Differentiation

Unit 4: Rules of Differentiation Unit : Rules of Differentiation DAY TOPIC ASSIGNMENT Power Rule p. Power Rule Again p. Even More Power Rule p. 5 QUIZ 5 Rates of Change p. 6-7 6 Rates of Change p. 8-9 7 QUIZ 8 Product Rule p. 0-9 Quotient

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during this eam. If you consider a question to be ambiguous, state your assumptions in the margin and do the best you can to provide the

More information

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 ))

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 )) Chapter 9 Derivatives Josef Leydold Mathematical Methods WS 208/9 9 Derivatives / 5 Difference Quotient Let f : R R be some function. The the ratio f = f ( 0 + ) f ( 0 ) = f ( 0) 0 is called difference

More information

The Remainder and Factor Theorems

The Remainder and Factor Theorems Page 1 of 7 6.5 The Remainder and Factor Theorems What you should learn GOAL 1 Divide polynomials and relate the result to the remainder theorem and the factor theorem. GOAL 2 Use polynomial division in

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Math Practice Final - solutions

Math Practice Final - solutions Math 151 - Practice Final - solutions 2 1-2 -1 0 1 2 3 Problem 1 Indicate the following from looking at the graph of f(x) above. All answers are small integers, ±, or DNE for does not exist. a) lim x 1

More information

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Show all of your work on the test paper. All of the problems must be solved symbolically using Calculus. You may use your calculator to confirm

More information

Math 111 Final Exam Review

Math 111 Final Exam Review Math 111 Final Eam Review With the eception of rounding irrational logarithmic epressions and problems that specif that a calculator should be used, ou should be prepared to do the entire problem without

More information

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET CALCULUS Berkant Ustaoğlu CRYPTOLOUNGE.NET Secant 1 Definition Let f be defined over an interval I containing u. If x u and x I then f (x) f (u) Q = x u is the difference quotient. Also if h 0, such that

More information

Graphing and Optimization

Graphing and Optimization BARNMC_33886.QXD //7 :7 Page 74 Graphing and Optimization CHAPTER - First Derivative and Graphs - Second Derivative and Graphs -3 L Hôpital s Rule -4 Curve-Sketching Techniques - Absolute Maima and Minima

More information

3 2 (C) 1 (D) 2 (E) 2. Math 112 Fall 2017 Midterm 2 Review Problems Page 1. Let. . Use these functions to answer the next two questions.

3 2 (C) 1 (D) 2 (E) 2. Math 112 Fall 2017 Midterm 2 Review Problems Page 1. Let. . Use these functions to answer the next two questions. Math Fall 07 Midterm Review Problems Page Let f and g. Evaluate and simplify f g. Use these functions to answer the net two questions.. (B) (E) None of these f g. Evaluate and simplify. (B) (E). Consider

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

Section 1.4 Composition of Functions

Section 1.4 Composition of Functions Section.4 Composition of Functions 49 Section.4 Composition of Functions Suppose we wanted to calculate how much it costs to heat a house on a particular day of the year. The cost to heat a house will

More information

x C) y = - A) $20000; 14 years B) $28,000; 14 years C) $28,000; 28 years D) $30,000; 15 years

x C) y = - A) $20000; 14 years B) $28,000; 14 years C) $28,000; 28 years D) $30,000; 15 years Dr. Lee - Math 35 - Calculus for Business - Review of 3 - Show Complete Work for Each Problem MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find

More information

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIUES 1 LECTURE 4 DIFFERENTIATION 1 Differentiation Managers are often concerned with the way that a variable changes over time Prices, for example,

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC FALL 207 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) 27 p 3 27 p 3 ) 2) If 9 t 3 4t 9-2t = 3, find t. 2) Solve the equation.

More information

Part I Analysis in Economics

Part I Analysis in Economics Part I Analysis in Economics D 1 1 (Function) A function f from a set A into a set B, denoted by f : A B, is a correspondence that assigns to each element A eactly one element y B We call y the image of

More information

3 6 x a. 12 b. 63 c. 27 d. 0. 6, find

3 6 x a. 12 b. 63 c. 27 d. 0. 6, find Advanced Algebra Topics COMPASS Review revised Summer 0 You will be allowed to use a calculator on the COMPASS test Acceptable calculators are basic calculators, scientific calculators, and approved models

More information

MATH 112 Final Exam Study Questions

MATH 112 Final Exam Study Questions MATH Final Eam Study Questions Spring 08 Note: Certain eam questions have been more challenging for students. Questions marked (***) are similar to those challenging eam questions.. A company produces

More information

DRAFT CHAPTER 2: Derivatives Errors will be corrected before printing. Final book will be available August 2008.

DRAFT CHAPTER 2: Derivatives Errors will be corrected before printing. Final book will be available August 2008. DRAFT CHAPTER : Derivatives Errors will be corrected before printing. Final book will be available August 008. Chapter DERIVATIVES Imagine a driver speeding down a highway, at 140 km/h. He hears a police

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

CLASS NOTES: BUSINESS CALCULUS

CLASS NOTES: BUSINESS CALCULUS CLASS NOTES: BUSINESS CALCULUS These notes can be thought of as the logical skeleton of my lectures, although they will generally contain a fuller exposition of concepts but fewer examples than my lectures.

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

Math 112 Fall 2015 Midterm 2 Review Problems Page 1. has a maximum or minimum and then determine the maximum or minimum value.

Math 112 Fall 2015 Midterm 2 Review Problems Page 1. has a maximum or minimum and then determine the maximum or minimum value. Math Fall 05 Midterm Review Problems Page f 84 00 has a maimum or minimum and then determine the maimum or minimum value.. Determine whether Ma = 00 Min = 00 Min = 8 Ma = 5 (E) Ma = 84. Consider the function

More information

Calculus AB Semester 1 Final Review

Calculus AB Semester 1 Final Review Name Period Calculus AB Semester Final Review. Eponential functions: (A) kg. of a radioactive substance decay to kg. after years. Find how much remains after years. (B) Different isotopes of the same element

More information

Exponential Growth and Decay Functions (Exponent of t) Read 6.1 Examples 1-3

Exponential Growth and Decay Functions (Exponent of t) Read 6.1 Examples 1-3 CC Algebra II HW #42 Name Period Row Date Section 6.1 1. Vocabulary In the eponential growth model Eponential Growth and Decay Functions (Eponent of t) Read 6.1 Eamples 1-3 y = 2.4(1.5), identify the initial

More information

Lecture 5: Rules of Differentiation. First Order Derivatives

Lecture 5: Rules of Differentiation. First Order Derivatives Lecture 5: Rules of Differentiation First order derivatives Higher order derivatives Partial differentiation Higher order partials Differentials Derivatives of implicit functions Generalized implicit function

More information

Chapter 2 Derivatives And Their Uses

Chapter 2 Derivatives And Their Uses Chapter Derivatives And Their Uses 1. Complete the table and use it to predict the limit, if it eists. 6 f( ) 0. 1 lim f( )? 0.1 0.01 0.001 0.? 0.999 0.99 f ( ) 0.9 160.0 80.0 80.0 0. does not eist. Use

More information

Mathematics Review For GSB 420. Instructor: Tim Opiela

Mathematics Review For GSB 420. Instructor: Tim Opiela Mathematics Review For GSB 40 Instructor: Tim Opiela I. lgebra Review. Solving Simultaneous Equations Two equations with two unknowns Supply: Q S = 75 +3P Demand: Q D = 5 P Solve for Equilibrium P and

More information

Basic methods to solve equations

Basic methods to solve equations Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 Basic methods to solve equations What you need to know already: How to factor an algebraic epression. What you can learn here:

More information

Format. Suggestions for study

Format. Suggestions for study *** Mac users using the Remote Desktop to access Scientific Notebook need to bring an Ethernet cord to the eam and use it to connect to the internet. That is, you should not connect to the internet using

More information

MATH 108 REVIEW TOPIC 6 Radicals

MATH 108 REVIEW TOPIC 6 Radicals Math 08 T6-Radicals Page MATH 08 REVIEW TOPIC 6 Radicals I. Computations with Radicals II. III. IV. Radicals Containing Variables Rationalizing Radicals and Rational Eponents V. Logarithms Answers to Eercises

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

The Product and Quotient Rules

The Product and Quotient Rules The Product and Quotient Rules In this section, you will learn how to find the derivative of a product of functions and the derivative of a quotient of functions. A function that is the product of functions

More information

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders.

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders. Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics Building Competence. Crossing Borders. Spring Semester 2017 Learning objectives After finishing this section you should

More information

CHAPTER 3: OPTIMIZATION

CHAPTER 3: OPTIMIZATION John Riley 8 February 7 CHAPTER 3: OPTIMIZATION 3. TWO VARIABLES 8 Second Order Conditions Implicit Function Theorem 3. UNCONSTRAINED OPTIMIZATION 4 Necessary and Sufficient Conditions 3.3 CONSTRAINED

More information

Math 2003 Test D This part of the Exam is to be done without a calculator

Math 2003 Test D This part of the Exam is to be done without a calculator Math 00 Test D This part of the Eam is to be done without a calculator. Which of the following is the correct graph of =? b) c) d) e). Find all the intercepts of = -intercept: 0 -intercepts: 0, -, b) -intercepts:

More information

Solutions. 1. Use the table of integral formulas in Appendix B in the textbook to help compute the integrals below. u du 9 + 4u + C 48

Solutions. 1. Use the table of integral formulas in Appendix B in the textbook to help compute the integrals below. u du 9 + 4u + C 48 ams 11b Study Guide 3 econ 11b Solutions 1. Use the table of integral formulas in Appendi B in the tetbook to help compute the integrals below. 4 d a. 5 + 9 = 4 5 1 3 ln + 9 3 + C = 4 15 ln + 9 3 + C Formula

More information

NOTATION: We have a special symbol to use when we wish to find the anti-derivative of a function, called an Integral Symbol,

NOTATION: We have a special symbol to use when we wish to find the anti-derivative of a function, called an Integral Symbol, SECTION 5.: ANTI-DERIVATIVES We eplored taking the Derivative of functions in the previous chapters, but now want to look at the reverse process, which the student should understand is sometimes more complicated.

More information

Calculus. Applications of Differentiations (IV)

Calculus. Applications of Differentiations (IV) Calculus Applications of Differentiations (IV) Outline 1 Rates of Change In Economics And The Sciences Applications of Derivative In Economics Applications of Derivative in the Sciences 2 Related Rate

More information

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n Algebra B: Chapter 6 Notes 1 EXPONENT REVIEW!!! Concept Byte (Review): Properties of Eponents Recall from Algebra 1, the Properties (Rules) of Eponents. Property of Eponents: Product of Powers m n = m

More information

Lecture 2. Derivative. 1 / 26

Lecture 2. Derivative. 1 / 26 Lecture 2. Derivative. 1 / 26 Basic Concepts Suppose we wish to nd the rate at which a given function f (x) is changing with respect to x when x = c. The simplest idea is to nd the average rate of change

More information

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions Chapter 4 Section 4.2 - Derivatives of Exponential and Logarithmic Functions Objectives: The student will be able to calculate the derivative of e x and of lnx. The student will be able to compute the

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Marginal Functions and Approximation

Marginal Functions and Approximation UCSC AMS/ECON 11A Supplemental Notes # 5 Marginal Functions and Approximation c 2006 Yonatan Katznelson 1. The approximation formula If y = f (x) is a dierentiable function then its derivative, y 0 = f

More information

MATH 135 Sample Review for the Final Exam

MATH 135 Sample Review for the Final Exam MATH 5 Sample Review for the Final Eam This review is a collection of sample questions used by instructors of this course at Missouri State University. It contains a sampling of problems representing the

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation? BA01 ENGINEERING MATHEMATICS 01 CHAPTER DIFFERENTIATION.1 FIRST ORDER DIFFERENTIATION What is Differentiation? Differentiation is all about finding rates of change of one quantity compared to another.

More information

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue.

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue. Systems of Linear Equations in Two Variables 1 Break Even This is when total cost equals total revenue C(x) = R(x) A company breaks even when the profit is zero P(x) = R(x) C(x) = 0 2 R x 565x C x 6000

More information

2 Integration by Substitution

2 Integration by Substitution 86 Chapter 5 Integration 2 Integration by Substitution (a) Find a function P(x) that satisfies these conditions. Use the graphing utility of your calculator to graph this function. (b) Use trace and zoom

More information

Math 113 Final Exam Practice Problem Solutions. f(x) = ln x x. lim. lim. x x = lim. = lim 2

Math 113 Final Exam Practice Problem Solutions. f(x) = ln x x. lim. lim. x x = lim. = lim 2 Math 3 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

Sample Final Exam 4 MATH 1110 CALCULUS I FOR ENGINEERS

Sample Final Exam 4 MATH 1110 CALCULUS I FOR ENGINEERS Dept. of Math. Sciences, UAEU Sample Final Eam Fall 006 Sample Final Eam MATH 0 CALCULUS I FOR ENGINEERS Section I: Multiple Choice Problems [0% of Total Final Mark, distributed equally] No partial credit

More information

Unit 7 Study Guide (2,25/16)

Unit 7 Study Guide (2,25/16) Unit 7 Study Guide 1) The point (-3, n) eists on the eponential graph shown. What is the value of n? (2,25/16) (-3,n) (3,125/64) a)y = 1 2 b)y = 4 5 c)y = 64 125 d)y = 64 125 2) The point (-2, n) eists

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods.

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach DEFINITION: As x approaches

More information

Chapter 3: Topics in Differentiation

Chapter 3: Topics in Differentiation Chapter 3: Topics in Differentiation Summary: Having investigated the derivatives of common functions in Chapter (i.e., polynomials, rational functions, trigonometric functions, and their combinations),

More information

NCC Precalculus Partnership Program Final Examination, 2004

NCC Precalculus Partnership Program Final Examination, 2004 NCC Precalculus Partnership Program Final Eamination, 2004 Part I: Answer onl 20 of the 25 questions below. Each question is worth 2 points. Place our answers on the answer sheet provided. Write the word

More information