EC611--Managerial Economics

Size: px
Start display at page:

Download "EC611--Managerial Economics"

Transcription

1 EC611--Managerial Economics Optimization Techniques and New Management Tools Dr. Savvas C Savvides, European University Cyprus

2 Models and Data Model a framework based on simplifying assumptions it helps to organize our economic thinking based on a simplified picture of reality We focus on key elements Data the economist s link with the real world 1. time series 2. cross section Managerial Economics DR. SAVVAS C SAVVIDES 1

3 Real and Nominal Variables Many economic variables are measured in money terms Nominal values measured in current prices Real values adjusted for price changes compared with a base year measured in constant prices Managerial Economics DR. SAVVAS C SAVVIDES 2

4 Real & Nominal Values--Example Land Prices (Hilton Park Area, Nicosia) 2,500 27, ,000 Price Index (2000=100) Real Land Price (in 2000 prices) 33,783 68, ,000 Real Land Price (in 1960 prices) 2,500 5,084 9,250 (2,500*100) / 7.4 = 33,783 (125,000*7.4) / 100 = 9,250 Managerial Economics DR. SAVVAS C SAVVIDES 3

5 Evidence in Economics Evidence collected and produced from empirical observation and testing may allow us to accumulate support for a theory, or to reject it, or indicate points for further research and investigation Scatter diagrams help us to test and validate economic theory with empirical reality Econometrics is a more sophisticated method that takes this task of empirically validating theory further using statistical techniques Managerial Economics DR. SAVVAS C SAVVIDES 4

6 Data & Scatter Diagrams Price Year Price Quantity X (7.0, 80) X X X X X (6.0, 100) X Quantity Managerial Economics DR. SAVVAS C SAVVIDES 5

7 Economic Models: An Example Examples: 1. Quantity of CDs demanded depend on (or is a function of): f (Prices, income, preferences) 2. Revenues are a function of Sales: f (Q) Managerial Economics DR. SAVVAS C SAVVIDES 6

8 Expressing Economic Relationships Equations: TR = 100Q - 10Q 2 e.g. if Q=1 TR = 100(1) 10(31) 2 = 90 Tables: if Q=3 TR = 100(3) 10(3) 2 = 210 Q TR Graphs: TR Q Managerial Economics DR. SAVVAS C SAVVIDES 7

9 25 Managerial Economics DR. SAVVAS C SAVVIDES 8

10 Total, Average, & Marginal Cost AC = TC/Q e.g. for Q=3 AC = 180/3 =60 MC = TC/ Q For Q from 3 to 4: MC = ( )/(4-3) =60 / 1 = 60 AC Managerial Economics DR. SAVVAS C SAVVIDES 9 Q TC MC

11 Total, Average, & Marginal Cost TC ($) 240 TC Q AC, MC ($) MC AC Q Managerial Economics DR. SAVVAS C SAVVIDES 10

12 Profit Maximization Profit = TR - TC Q TR TC Profit Managerial Economics DR. SAVVAS C SAVVIDES 11

13 Profit Maximization ($) 300 TC 240 TR Profit Q Managerial Economics DR. SAVVAS C SAVVIDES 12

14 Slope of a Line Slope between A & B P/ Q = -5 / +5 = - 1 Managerial Economics DR. SAVVAS C SAVVIDES 13

15 Slope of a Line Price Quantity Managerial Economics DR. SAVVAS C SAVVIDES 14

16 Slope of Non-Linear Relationships Total Revenue Slope of TR at A is positive: Slope of tangency at pt. A Slope of TR at B is negative Slope of tangency at pt. B A B TR Quantity Managerial Economics DR. SAVVAS C SAVVIDES 15

17 Concept of the Derivative (1) Optimization analysis can be conducted much more efficiently using differential calculus. This relies on the concept of the derivative, which resembles the concept of the margin. For example, if TR = Y and Q =X, the derivative of Y with respect to X is equal to the Y w.r.t. X, as the X approaches zero. dy dx = lim X 0 Y X Managerial Economics DR. SAVVAS C SAVVIDES 16

18 Concept of the Derivative (2) Let s expand on the right hand side. Since Y depends on X, Y = f ( X ) Y = X X = X (tautology). Add & subtract X on RHS. X = (X+ X) (X) Y = f(x+ X) f(x) Divide both sides by X Y/ X = [f(x+ X) f(x] / X Substituting the RHS of the last expression in the derivative expression, we get dy/ dx = [f(x+ X) f(x] / X Managerial Economics DR. SAVVAS C SAVVIDES 17

19 The Derivative An Example If Y = X 2 dy/ dx = [(X+ X) 2 X 2 ] / X dy/ dx = [ X 2 + 2X * X) + ( X) 2 -X 2 ] / X dy/ dx = [ (2X * X) + ( X) 2 ] / X dy/ dx = [ (2X * X)/ X ] + [( X) 2 / X] Cancelling the X terms dy/ dx = (2X + X) This says that at the limit, i.e., as X 0, the whole expression will approach 2X (since X=0) Managerial Economics DR. SAVVAS C SAVVIDES 18

20 Rules of Differentiation Constant Function Rule: The derivative of a constant, Y = f(x) = a, is zero for all values of a (the constant). Y = f( X) = a dy 0 dx = Y 10 Changes in X do not affect the value of Y. Horizontal lines have zero slope! Y = 10 Managerial Economics DR. SAVVAS C SAVVIDES 19 X

21 Rules of Differentiation Power Function Rule: The derivative of a power function, where a and b are constants, is defined as follows. b Y = f( X) = ax dy dx = bax b 1 Example: Y = 3X 2 Derivative: dy/dx = 2 * 3X 2-1 = 6X Managerial Economics DR. SAVVAS C SAVVIDES 20

22 Power Function --Example Equations: TR = 100Q - 10Q 2 Tables: Q TR Graphs: TR TR MR = dtr/dq = Q MR Q Q MR Managerial Economics DR. SAVVAS C SAVVIDES 21

23 Rules of Differentiation Sum-and-Differences Rule: The derivative of the sum or difference of two functions U and V, is defined as follows. U = g( X) V = h( X) dy du dv = ± dx dx dx Y = U ± V Managerial Economics DR. SAVVAS C SAVVIDES 22

24 Rules of Differentiation Product Rule: The derivative of the product of two functions U and V, is defined as follows. U = g( X) V = h( X) Y = U V dy dv du = U + V dx dx dx Managerial Economics DR. SAVVAS C SAVVIDES 23

25 Rules of Differentiation Quotient Rule: The derivative of the ratio of two functions U and V, is defined as follows. U = g( X) V = h( X) Y ( du ) U( dv ) dy V = dx dx 2 dx V U = V Managerial Economics DR. SAVVAS C SAVVIDES 24

26 Rules of Differentiation Chain Rule: The derivative of a function that is a function of X is defined as follows. Y = f ( U ) U = g( X ) dy dy du = dx du dx Managerial Economics DR. SAVVAS C SAVVIDES 25

27 Optimization With Calculus (1) Optimization often requires finding the max. or the min. of a function (e.g. maxtr, mintc, or maxπ) Find X such that dy/dx = 0. This means that the curve of the function has zero slope Example: Given that TR = 100Q 10Q 2 d(tr) / dq = Q Setting dtr/dq =0, we get 0 =100 20Q 20Q = 100 Q* = 5 Therefore, Total Revenues are maximized at Q* = 5 To find the optimum Price, we go to the demand equation from which the TR function derived: P = Q P* = (5) = 50 Managerial Economics DR. SAVVAS C SAVVIDES 26

28 Optimization With Calculus (2) Equation: TR = 100Q - 10Q TR TR MR = dtr/dq = Q = 0 20Q = 100 Q MR Q = 5 Managerial Economics DR. SAVVAS C SAVVIDES 27

29 Optimization With Calculus (2) To distinguish between a max and a min, we use the second derivative. Second derivative rules: If d 2 Y/dX 2 > 0 (positive), then X is a minimum. If d 2 Y/dX 2 < 0 (negative), then X is a maximum. In the example, we found d(tr) / dq = Q d 2 (TR)/dQ 2 = - 20 (negative) Therefore, we know that the TR function is at a maximum ( top of the hill ) at Q = 5 Managerial Economics DR. SAVVAS C SAVVIDES 28

30 Multivariate Optimization Multivariate functions: TR = f (Sales, Advertising, prices, ) TC = f ( wages, interest, raw materials, ) Demand = f (price, income, P of substitutes, ) To optimize a function that has more than one independent variables, we use the partial derivative. Managerial Economics DR. SAVVAS C SAVVIDES 29

31 Multivariate Optimization (2) The Partial Derivative: The partial derivative (indicated by ) is used in order to isolate the marginal effect of each one of the independent variables. The same rules of differentiation apply, except that when we differentiate the dependent variable w.r.t. one variable, we hold all other variables constant. Managerial Economics DR. SAVVAS C SAVVIDES 30

32 Partial Derivative--Example Suppose that Profits (π) are a function of the sales of products X and Y as follows: π = f (X, Y) = 80X 2X 2 XY 3Y Y To find the partial derivative of Π w.r.t X, we hold Y constant (i.e. Y =0) to get: π / X = 80 4X Y To find the partial derivative of Π w.r.t Y, we hold X constant (i.e. X =0) to get: π / Y = 100 X 6Y Managerial Economics DR. SAVVAS C SAVVIDES 31

33 Max or Min Multivariate Functions Example (cont) To max or min a multivariate function, we set each partial derivative equal to zero and solve the resulting simultaneous equations: π / X = 80 4X Y = 0 π / Y = 100 X 6Y = 0 To solve these simultaneous equations, we multiply the 1 st by (-6) and the 2 nd by (-1) to get: X +6Y = X 6Y = X = 0 Therefore, X = 380 / 23 = Managerial Economics DR. SAVVAS C SAVVIDES 32

34 Max or Min Multivariate Functions Example (cont) Substituting X = into the first equation, we find the value of Y: 80 4 (16.52) Y = Y = 0 Y = Thus, the firm maximize Profits when it sells unit of Y and units of X. Thus: π = 80X 2X 2 XY 3Y Y π = 80(16.52) 2(16.52) * (13.92) (13.92) π = 1, Managerial Economics DR. SAVVAS C SAVVIDES 33

35 Constrained Optimization So far, we dealt with unconstrained optimization However, in most real life situations, firms are faced with a series of constraints (budget, capacity, lack of raw materials, etc). In these cases, we need to optimize (max or min) the objective function (profits, revenues, costs, market share, etc) subject to the constraints faced by the firm. We have two methods to solve constrained optimization problems: 1. Substitution Method (used for simple functions) 2. Lagrangian Method (used for complex functions) Managerial Economics DR. SAVVAS C SAVVIDES 34

36 New Management Tools Benchmarking: finding out what processes or techniques excellent firms use and adopt & adapt Total Quality Management: the constant improvements in product quality and processes to deliver consistently superior service and value to customers Reengineering: seeks to completely reorganize the firm (processes, departments, entire firm). Radically redesigning processes to achieve significant gains in speed, quality, service, profitability The Learning Organization: continuous learning both on the individual level as well as on the collective level. It is based on five ingredients: a new mental model - achieve personal mastery develop system thinking develop shared vision strive for team learning Managerial Economics DR. SAVVAS C SAVVIDES 35

37 Other Management Tools Broad Banding: eliminating multiple layers of salary levels, and increasing labor flexibility Direct Business Model: dealing directly with the consumer, eliminating distributors and saving on time and costs (e.g, Dell ) Networking: the formation of strategic alliances to increase the synergies and capitalize on individual competences Pricing Power: being able to increase prices faster than costs thus increasing profits Small-World Model: large firms may gain efficiency by simulating the operation of small firms by breaking up the process in smaller scale and linking the units or individuals through organizational systems Virtual Integration: the blurring of traditional boundaries between manufacturer and its suppliers and manufacturer and customer supply chain management Virtual Management: the simulation of the production process and consumer behavior using computer models Managerial Economics DR. SAVVAS C SAVVIDES 36

Optimization Techniques

Optimization Techniques Optimization Techniques Methods for maximizing or minimizing an objective function Examples Consumers maximize utility by purchasing an optimal combination of goods Firms maximize profit by producing and

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS Variables, functions and slopes: A Variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify the

More information

Mathematics for Economics ECON MA/MSSc in Economics-2017/2018. Dr. W. M. Semasinghe Senior Lecturer Department of Economics

Mathematics for Economics ECON MA/MSSc in Economics-2017/2018. Dr. W. M. Semasinghe Senior Lecturer Department of Economics Mathematics for Economics ECON 53035 MA/MSSc in Economics-2017/2018 Dr. W. M. Semasinghe Senior Lecturer Department of Economics MATHEMATICS AND STATISTICS LERNING OUTCOMES: By the end of this course unit

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS 1 Variables, functions and slopes A variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify

More information

Functions. A function is a rule that gives exactly one output number to each input number.

Functions. A function is a rule that gives exactly one output number to each input number. Functions A function is a rule that gives exactly one output number to each input number. Why it is important to us? The set of all input numbers to which the rule applies is called the domain of the function.

More information

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y))

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y)) Anwers for Review Quiz #1. Material Covered. Klein 1, 2; Schaums 1, 2 1. Solve the following system of equations for x, y and z: x + y = 2 2x + 2y + z = 5 7x + y + z = 9 Answers: x = 1, y = 1, z = 1. 2.

More information

Chapter 4 Differentiation

Chapter 4 Differentiation Chapter 4 Differentiation 08 Section 4. The derivative of a function Practice Problems (a) (b) (c) 3 8 3 ( ) 4 3 5 4 ( ) 5 3 3 0 0 49 ( ) 50 Using a calculator, the values of the cube function, correct

More information

School of Business. Blank Page

School of Business. Blank Page Maxima and Minima 9 This unit is designed to introduce the learners to the basic concepts associated with Optimization. The readers will learn about different types of functions that are closely related

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.3. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Example: change in the sales of a company; change in the value

More information

Topic 6: Optimization I. Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7

Topic 6: Optimization I. Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7 Topic 6: Optimization I Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7 1 For a straight line Y=a+bX Y= f (X) = a + bx First Derivative dy/dx = f = b constant slope b Second Derivative

More information

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation Second Order Derivatives Course Manual Background to Topic 6 Maximisation and Minimisation Jacques (4 th Edition): Chapter 4.6 & 4.7 Y Y=a+bX a X Y= f (X) = a + bx First Derivative dy/dx = f = b constant

More information

Tvestlanka Karagyozova University of Connecticut

Tvestlanka Karagyozova University of Connecticut September, 005 CALCULUS REVIEW Tvestlanka Karagyozova University of Connecticut. FUNCTIONS.. Definition: A function f is a rule that associates each value of one variable with one and only one value of

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

EXAMINATION #4 ANSWER KEY. I. Multiple choice (1)a. (2)e. (3)b. (4)b. (5)d. (6)c. (7)b. (8)b. (9)c. (10)b. (11)b.

EXAMINATION #4 ANSWER KEY. I. Multiple choice (1)a. (2)e. (3)b. (4)b. (5)d. (6)c. (7)b. (8)b. (9)c. (10)b. (11)b. William M. Boal Version A EXAMINATION #4 ANSWER KEY I. Multiple choice (1)a. ()e. (3)b. (4)b. (5)d. (6)c. (7)b. (8)b. (9)c. (10)b. (11)b. II. Short answer (1) a. 4 units of food b. 1/4 units of clothing

More information

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIUES 1 LECTURE 4 DIFFERENTIATION 1 Differentiation Managers are often concerned with the way that a variable changes over time Prices, for example,

More information

Marginal Functions and Approximation

Marginal Functions and Approximation ucsc supplementary notes ams/econ 11a Marginal Functions and Approximation 1. Linear approximation If y = f(x) is a differentiable function then its derivative, y = f (x), gives the rate of change of the

More information

STUDY MATERIALS. (The content of the study material is the same as that of Chapter I of Mathematics for Economic Analysis II of 2011 Admn.

STUDY MATERIALS. (The content of the study material is the same as that of Chapter I of Mathematics for Economic Analysis II of 2011 Admn. STUDY MATERIALS MATHEMATICAL TOOLS FOR ECONOMICS III (The content of the study material is the same as that of Chapter I of Mathematics for Economic Analysis II of 2011 Admn.) & MATHEMATICAL TOOLS FOR

More information

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function).

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function). Integration Course Manual Indefinite Integration 7.-7. Definite Integration 7.-7.4 Jacques ( rd Edition) Indefinite Integration 6. Definite Integration 6. y F (x) x n + c dy/dx F`(x) f(x) n x n- Given

More information

Optimization, constrained optimization and applications of integrals.

Optimization, constrained optimization and applications of integrals. ams 11b Study Guide econ 11b Optimization, constrained optimization and applications of integrals. (*) In all the constrained optimization problems below, you may assume that the critical values you find

More information

Queen s University. Department of Economics. Instructor: Kevin Andrew

Queen s University. Department of Economics. Instructor: Kevin Andrew Figure 1: 1b) GDP Queen s University Department of Economics Instructor: Kevin Andrew Econ 320: Math Assignment Solutions 1. (10 Marks) On the course website is provided an Excel file containing quarterly

More information

Business Mathematics. Lecture Note #11 Chapter 6-(2)

Business Mathematics. Lecture Note #11 Chapter 6-(2) Business Mathematics Lecture Note #11 Chapter 6-(2) 1 Applications of Differentiation Total functions 1) TR (Total Revenue) function TR = P Q where P = unit price, Q = quantity Note that P(price) is given

More information

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost.

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost. Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost. Opportunity Cost (or "Wow, I coulda had a V8!") The underlying idea is derived

More information

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x.

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x. Economics 203: Intermediate Microeconomics Calculus Review Functions, Graphs and Coordinates Econ 203 Calculus Review p. 1 Functions: A function f, is a rule assigning a value y for each value x. The following

More information

EconS 301. Math Review. Math Concepts

EconS 301. Math Review. Math Concepts EconS 301 Math Review Math Concepts Functions: Functions describe the relationship between input variables and outputs y f x where x is some input and y is some output. Example: x could number of Bananas

More information

Mathematics Review Revised: January 9, 2008

Mathematics Review Revised: January 9, 2008 Global Economy Chris Edmond Mathematics Review Revised: January 9, 2008 Mathematics is a precise and efficient language for expressing quantitative ideas, including many that come up in business. What

More information

ECON 186 Class Notes: Optimization Part 2

ECON 186 Class Notes: Optimization Part 2 ECON 186 Class Notes: Optimization Part 2 Jijian Fan Jijian Fan ECON 186 1 / 26 Hessians The Hessian matrix is a matrix of all partial derivatives of a function. Given the function f (x 1,x 2,...,x n ),

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

The New Keynesian Model: Introduction

The New Keynesian Model: Introduction The New Keynesian Model: Introduction Vivaldo M. Mendes ISCTE Lisbon University Institute 13 November 2017 (Vivaldo M. Mendes) The New Keynesian Model: Introduction 13 November 2013 1 / 39 Summary 1 What

More information

The Monopolist. The Pure Monopolist with symmetric D matrix

The Monopolist. The Pure Monopolist with symmetric D matrix University of California, Davis Department of Agricultural and Resource Economics ARE 252 Optimization with Economic Applications Lecture Notes 5 Quirino Paris The Monopolist.................................................................

More information

Solutions. ams 11b Study Guide 9 econ 11b

Solutions. ams 11b Study Guide 9 econ 11b ams 11b Study Guide 9 econ 11b Solutions 1. A monopolistic firm sells one product in two markets, A and B. The daily demand equations for the firm s product in these markets are given by Q A = 100 0.4P

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Eample: change in the sales of a company; change in the value

More information

Microeconomic Theory. Microeconomic Theory. Everyday Economics. The Course:

Microeconomic Theory. Microeconomic Theory. Everyday Economics. The Course: The Course: Microeconomic Theory This is the first rigorous course in microeconomic theory This is a course on economic methodology. The main goal is to teach analytical tools that will be useful in other

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2016, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

SECTION 5.1: Polynomials

SECTION 5.1: Polynomials 1 SECTION 5.1: Polynomials Functions Definitions: Function, Independent Variable, Dependent Variable, Domain, and Range A function is a rule that assigns to each input value x exactly output value y =

More information

Review for Final Review

Review for Final Review Topics Review for Final Review 1. Functions and equations and graphing: linear, absolute value, quadratic, polynomials, rational (first 1/3 of semester) 2. Simple Interest, compounded interest, and continuously

More information

Doug Clark The Learning Center 100 Student Success Center learningcenter.missouri.edu Overview

Doug Clark The Learning Center 100 Student Success Center learningcenter.missouri.edu Overview Math 1400 Final Exam Review Saturday, December 9 in Ellis Auditorium 1:00 PM 3:00 PM, Saturday, December 9 Part 1: Derivatives and Applications of Derivatives 3:30 PM 5:30 PM, Saturday, December 9 Part

More information

Math Practice Final - solutions

Math Practice Final - solutions Math 151 - Practice Final - solutions 2 1-2 -1 0 1 2 3 Problem 1 Indicate the following from looking at the graph of f(x) above. All answers are small integers, ±, or DNE for does not exist. a) lim x 1

More information

Study Unit 2 : Linear functions Chapter 2 : Sections and 2.6

Study Unit 2 : Linear functions Chapter 2 : Sections and 2.6 1 Study Unit 2 : Linear functions Chapter 2 : Sections 2.1 2.4 and 2.6 1. Function Humans = relationships Function = mathematical form of a relationship Temperature and number of ice cream sold Independent

More information

Business Mathematics. Lecture Note #13 Chapter 7-(1)

Business Mathematics. Lecture Note #13 Chapter 7-(1) 1 Business Mathematics Lecture Note #13 Chapter 7-(1) Applications of Partial Differentiation 1. Differentials and Incremental Changes 2. Production functions: Cobb-Douglas production function, MP L, MP

More information

Essential Mathematics for Economics and Business, 4 th Edition CHAPTER 6 : WHAT IS THE DIFFERENTIATION.

Essential Mathematics for Economics and Business, 4 th Edition CHAPTER 6 : WHAT IS THE DIFFERENTIATION. Essential Mathematics for Economics and Business, 4 th Edition CHAPTER 6 : WHAT IS THE DIFFERENTIATION. John Wiley and Sons 13 Slopes/rates of change Recall linear functions For linear functions slope

More information

Math 116: Business Calculus Chapter 4 - Calculating Derivatives

Math 116: Business Calculus Chapter 4 - Calculating Derivatives Math 116: Business Calculus Chapter 4 - Calculating Derivatives Instructor: Colin Clark Spring 2017 Exam 2 - Thursday March 9. 4.1 Techniques for Finding Derivatives. 4.2 Derivatives of Products and Quotients.

More information

Microeconomic Theory -1- Introduction

Microeconomic Theory -1- Introduction Microeconomic Theory -- Introduction. Introduction. Profit maximizing firm with monopoly power 6 3. General results on maximizing with two variables 8 4. Model of a private ownership economy 5. Consumer

More information

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics BEE020 { Basic Mathematical Economics Week 2, Lecture Thursday 2.0.0 Constrained optimization Dieter Balkenborg Department of Economics University of Exeter Objective We give the \ rst order conditions"

More information

2. Linear Programming Problem

2. Linear Programming Problem . Linear Programming Problem. Introduction to Linear Programming Problem (LPP). When to apply LPP or Requirement for a LPP.3 General form of LPP. Assumptions in LPP. Applications of Linear Programming.6

More information

LECTURE NOTES ON MICROECONOMICS

LECTURE NOTES ON MICROECONOMICS LECTURE NOTES ON MICROECONOMICS ANALYZING MARKETS WITH BASIC CALCULUS William M. Boal Part : Mathematical tools Chapter : Introduction to multivariate calculus But those skilled in mathematical analysis

More information

Midterm 1 Review Problems Business Calculus

Midterm 1 Review Problems Business Calculus Midterm 1 Review Problems Business Calculus 1. (a) Show that the functions f and g are inverses of each other by showing that f g(x) = g f(x) given that (b) Sketch the functions and the line y = x f(x)

More information

Contents CONTENTS 1. 1 Straight Lines and Linear Equations 1. 2 Systems of Equations 6. 3 Applications to Business Analysis 11.

Contents CONTENTS 1. 1 Straight Lines and Linear Equations 1. 2 Systems of Equations 6. 3 Applications to Business Analysis 11. CONTENTS 1 Contents 1 Straight Lines and Linear Equations 1 2 Systems of Equations 6 3 Applications to Business Analysis 11 4 Functions 16 5 Quadratic Functions and Parabolas 21 6 More Simple Functions

More information

Study Skills in Mathematics. Edited by D. Burkhardt and D. Rutherford. Nottingham: Shell Centre for Mathematical Education (Revised edn 1981).

Study Skills in Mathematics. Edited by D. Burkhardt and D. Rutherford. Nottingham: Shell Centre for Mathematical Education (Revised edn 1981). Study Skills in Mathematics. Edited by D. Burkhardt and D. Rutherford. Nottingham: Shell Centre for Mathematical Education (Revised edn 1981). (Copies are available from the Shell Centre for Mathematical

More information

Practice Questions for Math 131 Exam # 1

Practice Questions for Math 131 Exam # 1 Practice Questions for Math 131 Exam # 1 1) A company produces a product for which the variable cost per unit is $3.50 and fixed cost 1) is $20,000 per year. Next year, the company wants the total cost

More information

Long-run Analysis of Production. Theory of Production

Long-run Analysis of Production. Theory of Production ong-run Analysis of Production Theory of Production ong-run Production Analysis ong-run production analysis concerned about the producers behavior in the long-run. In the long-run, expansion of output

More information

Solutions. F x = 2x 3λ = 0 F y = 2y 5λ = 0. λ = 2x 3 = 2y 5 = x = 3y 5. 2y 1/3 z 1/6 x 1/2 = 5x1/2 z 1/6. 3y 2/3 = 10x1/2 y 1/3

Solutions. F x = 2x 3λ = 0 F y = 2y 5λ = 0. λ = 2x 3 = 2y 5 = x = 3y 5. 2y 1/3 z 1/6 x 1/2 = 5x1/2 z 1/6. 3y 2/3 = 10x1/2 y 1/3 econ 11b ucsc ams 11b Review Questions 3 Solutions Note: In these problems, you may generally assume that the critical point(s) you find produce the required optimal value(s). At the same time, you should

More information

ECONOMICS 207 SPRING 2008 PROBLEM SET 13

ECONOMICS 207 SPRING 2008 PROBLEM SET 13 ECONOMICS 207 SPRING 2008 PROBLEM SET 13 Problem 1. The cost function for a firm is a rule or mapping that tells the minimum total cost of production of any output level produced by the firm for a fixed

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Mathematics Review For GSB 420. Instructor: Tim Opiela

Mathematics Review For GSB 420. Instructor: Tim Opiela Mathematics Review For GSB 40 Instructor: Tim Opiela I. lgebra Review. Solving Simultaneous Equations Two equations with two unknowns Supply: Q S = 75 +3P Demand: Q D = 5 P Solve for Equilibrium P and

More information

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders.

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders. Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics Building Competence. Crossing Borders. Spring Semester 2017 Learning objectives After finishing this section you should

More information

Bi-Variate Functions - ACTIVITES

Bi-Variate Functions - ACTIVITES Bi-Variate Functions - ACTIVITES LO1. Students to consolidate basic meaning of bi-variate functions LO2. Students to learn how to confidently use bi-variate functions in economics Students are given the

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

ECON 186 Class Notes: Derivatives and Differentials

ECON 186 Class Notes: Derivatives and Differentials ECON 186 Class Notes: Derivatives and Differentials Jijian Fan Jijian Fan ECON 186 1 / 27 Partial Differentiation Consider a function y = f (x 1,x 2,...,x n ) where the x i s are all independent, so each

More information

Y = f (x) Y Y. x 0 x 1 x. Managerial Economics -- Some Mathematical Notes. Basic Concepts: derivatives.

Y = f (x) Y Y. x 0 x 1 x. Managerial Economics -- Some Mathematical Notes. Basic Concepts: derivatives. Managerial Economics -- Some Mathematical Notes I Basic Concepts: derivatives. The derivative of a function denotes its rate of change as a result of change in the right hand side variable(s). When we

More information

Marginal Functions and Approximation

Marginal Functions and Approximation UCSC AMS/ECON 11A Supplemental Notes # 5 Marginal Functions and Approximation c 2006 Yonatan Katznelson 1. The approximation formula If y = f (x) is a dierentiable function then its derivative, y 0 = f

More information

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue.

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue. Systems of Linear Equations in Two Variables 1 Break Even This is when total cost equals total revenue C(x) = R(x) A company breaks even when the profit is zero P(x) = R(x) C(x) = 0 2 R x 565x C x 6000

More information

Lecture Notes. Applied Mathematics for Business, Economics, and the Social Sciences (4th Edition); by Frank S. Budnick

Lecture Notes. Applied Mathematics for Business, Economics, and the Social Sciences (4th Edition); by Frank S. Budnick 1 Lecture Notes Applied Mathematics for Business, Economics, and the Social Sciences (4th Edition); by Frank S. Budnick 2 Chapter 2: Linear Equations Definition: Linear equations are first degree equations.

More information

Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/ (a) The equation of the indifference curve is given by,

Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/ (a) The equation of the indifference curve is given by, Dirk Bergemann Department of Economics Yale University Economics 121b: Intermediate Microeconomics Midterm Suggested Solutions 2/8/12 1. (a) The equation of the indifference curve is given by, (x 1 + 2)

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

Chapter 1 Linear Equations and Graphs

Chapter 1 Linear Equations and Graphs Chapter 1 Linear Equations and Graphs Section R Linear Equations and Inequalities Important Terms, Symbols, Concepts 1.1. Linear Equations and Inequalities A first degree, or linear, equation in one variable

More information

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives 7.5) Rates of Change: Velocity and Marginals MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives Previously we learned two primary applications of derivatives.

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work.

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work. MATH 11012 Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri Dr. Kracht Name:. 1. Consider the function f depicted below. Final Exam Review Show all your work. y 1 1 x (a) Find each of the following

More information

FACULTY OF ARTS AND SCIENCE University of Toronto FINAL EXAMINATIONS, APRIL 2016 MAT 133Y1Y Calculus and Linear Algebra for Commerce

FACULTY OF ARTS AND SCIENCE University of Toronto FINAL EXAMINATIONS, APRIL 2016 MAT 133Y1Y Calculus and Linear Algebra for Commerce FACULTY OF ARTS AND SCIENCE University of Toronto FINAL EXAMINATIONS, APRIL 206 MAT YY Calculus and Linear Algebra for Commerce Duration: Examiners: hours N. Hoell A. Igelfeld D. Reiss L. Shorser J. Tate

More information

General Equilibrium and Welfare

General Equilibrium and Welfare and Welfare Lectures 2 and 3, ECON 4240 Spring 2017 University of Oslo 24.01.2017 and 31.01.2017 1/37 Outline General equilibrium: look at many markets at the same time. Here all prices determined in the

More information

System of Linear Equations. Slide for MA1203 Business Mathematics II Week 1 & 2

System of Linear Equations. Slide for MA1203 Business Mathematics II Week 1 & 2 System of Linear Equations Slide for MA1203 Business Mathematics II Week 1 & 2 Function A manufacturer would like to know how his company s profit is related to its production level. How does one quantity

More information

Lecture 7. The Dynamics of Market Equilibrium. ECON 5118 Macroeconomic Theory Winter Kam Yu Department of Economics Lakehead University

Lecture 7. The Dynamics of Market Equilibrium. ECON 5118 Macroeconomic Theory Winter Kam Yu Department of Economics Lakehead University Lecture 7 The Dynamics of Market Equilibrium ECON 5118 Macroeconomic Theory Winter 2013 Phillips Department of Economics Lakehead University 7.1 Outline 1 2 3 4 5 Phillips Phillips 7.2 Market Equilibrium:

More information

The TransPacific agreement A good thing for VietNam?

The TransPacific agreement A good thing for VietNam? The TransPacific agreement A good thing for VietNam? Jean Louis Brillet, France For presentation at the LINK 2014 Conference New York, 22nd 24th October, 2014 Advertisement!!! The model uses EViews The

More information

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Exercises 8 Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Objectives - know and understand the relation between a quadratic function and a quadratic

More information

UNIVERSITY OF KWA-ZULU NATAL

UNIVERSITY OF KWA-ZULU NATAL UNIVERSITY OF KWA-ZULU NATAL EXAMINATIONS: June 006 Solutions Subject, course and code: Mathematics 34 MATH34P Multiple Choice Answers. B. B 3. E 4. E 5. C 6. A 7. A 8. C 9. A 0. D. C. A 3. D 4. E 5. B

More information

Maximum Value Functions and the Envelope Theorem

Maximum Value Functions and the Envelope Theorem Lecture Notes for ECON 40 Kevin Wainwright Maximum Value Functions and the Envelope Theorem A maximum (or minimum) value function is an objective function where the choice variables have been assigned

More information

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them.

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. What is market design? Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. This requires different tools and ideas than neoclassical economics, which

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Refresher Course in Mathematics September 013 Lecture 3 Differentiation Francesco Feri Rationale for Differentiation Much of economics is concerned with optimisation (maximise

More information

1.4 Linear Functions of Several Variables

1.4 Linear Functions of Several Variables .4 Linear Functions of Several Variables Question : What is a linear function of several independent variables? Question : What do the coefficients of the variables tell us? Question : How do you find

More information

ECON0702: Mathematical Methods in Economics

ECON0702: Mathematical Methods in Economics ECON0702: Mathematical Methods in Economics Yulei Luo SEF of HKU January 14, 2009 Luo, Y. (SEF of HKU) MME January 14, 2009 1 / 44 Comparative Statics and The Concept of Derivative Comparative Statics

More information

Lecture Notes October 18, Reading assignment for this lecture: Syllabus, section I.

Lecture Notes October 18, Reading assignment for this lecture: Syllabus, section I. Lecture Notes October 18, 2012 Reading assignment for this lecture: Syllabus, section I. Economic General Equilibrium Partial and General Economic Equilibrium PARTIAL EQUILIBRIUM S k (p o ) = D k k (po

More information

Calculus Overview. f(x) f (x) is slope. I. Single Variable. A. First Order Derivative : Concept : measures slope of curve at a point.

Calculus Overview. f(x) f (x) is slope. I. Single Variable. A. First Order Derivative : Concept : measures slope of curve at a point. Calculus Overview I. Single Variable A. First Order Derivative : Concept : measures slope of curve at a point. Notation : Let y = f (x). First derivative denoted f ʹ (x), df dx, dy dx, f, etc. Example

More information

Rules of Differentiation

Rules of Differentiation Rules of Differentiation The process of finding the derivative of a function is called Differentiation. 1 In the previous chapter, the required derivative of a function is worked out by taking the limit

More information

Classic Oligopoly Models: Bertrand and Cournot

Classic Oligopoly Models: Bertrand and Cournot Classic Oligopoly Models: Bertrand and Cournot Class Note: There are supplemental readings, including Werden (008) Unilateral Competitive Effects of Horizontal Mergers I: Basic Concepts and Models, that

More information

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved.

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved. 7 Linear Systems and Matrices Copyright Cengage Learning. All rights reserved. 7.1 Solving Systems of Equations Copyright Cengage Learning. All rights reserved. What You Should Learn Use the methods of

More information

Thou Shalt Not Distribute Powers or Radicals. Copyright c 2010 Jason Underdown Some rights reserved. Thou Shalt Not Split a Denominator

Thou Shalt Not Distribute Powers or Radicals. Copyright c 2010 Jason Underdown Some rights reserved. Thou Shalt Not Split a Denominator Copyright & License Review Copyright c 2010 Jason Underdown Some rights reserved. Thou Shalt Not Distribute Powers or Radicals Review Review Thou Shalt Not Split a Denominator Thou Shalt Not Cancel Terms

More information

Sometimes the domains X and Z will be the same, so this might be written:

Sometimes the domains X and Z will be the same, so this might be written: II. MULTIVARIATE CALCULUS The first lecture covered functions where a single input goes in, and a single output comes out. Most economic applications aren t so simple. In most cases, a number of variables

More information

Partial derivatives, linear approximation and optimization

Partial derivatives, linear approximation and optimization ams 11b Study Guide 4 econ 11b Partial derivatives, linear approximation and optimization 1. Find the indicated partial derivatives of the functions below. a. z = 3x 2 + 4xy 5y 2 4x + 7y 2, z x = 6x +

More information

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics Mathematics 0 MTU 070 Elements of Calculus in Economics Calculus Calculus deals with rate of change of quantity with respect to another

More information

Mathematical Economics: Lecture 9

Mathematical Economics: Lecture 9 Mathematical Economics: Lecture 9 Yu Ren WISE, Xiamen University October 17, 2011 Outline 1 Chapter 14: Calculus of Several Variables New Section Chapter 14: Calculus of Several Variables Partial Derivatives

More information

Lecture 4: Optimization. Maximizing a function of a single variable

Lecture 4: Optimization. Maximizing a function of a single variable Lecture 4: Optimization Maximizing or Minimizing a Function of a Single Variable Maximizing or Minimizing a Function of Many Variables Constrained Optimization Maximizing a function of a single variable

More information

Mathematical Foundations II

Mathematical Foundations II Mathematical Foundations 2-1- Mathematical Foundations II A. Level and superlevel sets 2 B. Convex sets and concave functions 4 C. Parameter changes: Envelope Theorem I 17 D. Envelope Theorem II 41 48

More information

Practice Problems #1 Practice Problems #2

Practice Problems #1 Practice Problems #2 Practice Problems #1 Interpret the following equations where C is the cost, and Q is quantity produced by the firm a) C(Q) = 10 + Q Costs depend on quantity. If the firm produces nothing, costs are 10,

More information

Economics 101 Spring 2001 Section 4 - Hallam Problem Set #5

Economics 101 Spring 2001 Section 4 - Hallam Problem Set #5 Economics 101 Spring 001 Section 4 - Hallam Problem Set #5 Due date: March, 001 1. Consider the following data on quantities of q 1 and q and utility. In the table q is held fixed at 3 units. Compute marginal

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 112 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013

More information

The Envelope Theorem

The Envelope Theorem The Envelope Theorem In an optimization problem we often want to know how the value of the objective function will change if one or more of the parameter values changes. Let s consider a simple example:

More information

The Kuhn-Tucker and Envelope Theorems

The Kuhn-Tucker and Envelope Theorems The Kuhn-Tucker and Envelope Theorems Peter Ireland EC720.01 - Math for Economists Boston College, Department of Economics Fall 2010 The Kuhn-Tucker and envelope theorems can be used to characterize the

More information