Linear Associator Linear Layer

Size: px
Start display at page:

Download "Linear Associator Linear Layer"

Transcription

1 Hebbia Learig opic 6 Note: lecture otes by Michael Negevitsky (uiversity of asmaia) Bob Keller (Harvey Mudd College CA) ad Marti Haga (Uiversity of Colorado) are used Mai idea: learig based o associatio betwee euros he mai property of a eural etwork is a ability to lear from its eviromet ad to improve its performace through learig. So far we have cosidered supervised or active learig learig with a exteral teacher or a supervisor who presets a traiig set to the etwork. But aother type of learig also exists: usupervised learig.. I cotrast to supervised learig usupervised or self-orgaised learig does ot require a exteral teacher. Durig the traiig sessio the eural etwork receives a umber of differet iput patters discovers sigificat features i these patters ad lears how to classify iput data ito appropriate categories. Usupervised learig teds to follow the euro-biological orgaisatio of the brai. Usupervised learig algorithms aim to lear rapidly ad ca be used i real-time. Hebbia learig I 99 Doald Hebb proposed oe of the key ideas i biological learig commoly kow as Hebb s Law. Hebb s Law states that if euro i is ear eough to excite euro j ad repeatedly participates i its activatio the syaptic coectio betwee these two euros is stregtheed ad euro j becomes more sesitive to stimuli from euro i. Hebb s Postulate Whe a axo of cell A is ear eough to excite a cell B ad repeatedly or persistetly takes part i firig it some growth process or metabolic chage takes place i oe or both cells such that A s efficiecy as oe of the cells firig B is icreased. D. O. Hebb 99 Dedrites B Syapse Cell Body Axo A Iputs R Liear Associator p R x W Liear Layer S x R a S a S x S x a = pureli (Wp) = Wp raiig Set: R a = i w p j j = { p t } { p t } { p Q t } Q Hebb Rule w ew = Simplified Form: Supervised Form: Matrix Form: wold + α f i ( a iq )g j ( p jq ) Postsyaptic Sigal w ew = w old+ αa iq p jq w ew = w old + t iq p jq W ew = W old + t q p q Presyaptic Sigal

2 Matrix Form: Batch Operatio Q W t p t p = t Q p Q = t q p q q = p W = p t t t Q = P p Q P = p p p Q = t t t Q (Zero Iitial Weights) Hebb s Law ca be represeted i the form of two rules:. If two euros o either side of a coectio are activated sychroously the the weight of that coectio is icreased.. If two euros o either side of a coectio are activated asychroously the the weight of that coectio is decreased (added later) Hebb s Law provides the basis for learig without a teacher. Learig here is a local pheomeo occurrig without feedback from the eviromet. I p u t S i g a l s Hebbia learig i a eural etwork i j O u t p u t S i g a l s Hebbia learig implies that weights ca oly icrease. o resolve this problem we might impose a limit o the growth of syaptic weights. It ca be doe by itroducig a o-liear forgettig factor ito Hebb s Law: w = α y j xi ϕ y j w where ϕ is the forgettig factor. Forgettig factor usually falls i the iterval betwee ad typically betwee. ad. to allow oly a little forgettig while limitig the weight growth. Simple Associative Network Iputs p w Hard Limit Neuro a Σ b = -.5 a = hardlim (wp + b) a = hardlim( wp + b) = hardlim( wp.5 ) stimulus respose p = a = o stimulus o respose Shape Fruit Network Baaa? Baaa Associator Smell Sight of baaa p Smell of baaa p Ucoditioed Stimulus Iputs Hard Limit Neuro w = Σ w = p shape detected = p = shape ot detected b = -.5 a = hardlim (w p + w p + b) Coditioed Stimulus smell detected smell ot detected a Baaa?

3 Usupervised Hebb Rule w q ( ) = w ( q ) + αa i ( q)p j ( q) Vector Form: W( q) = W ( q ) + αa( q )p ( q) raiig Sequece: p()p () p () Q Baaa Recogitio Example Iitial Weights: w = w( ) = raiig Sequece: { p ( ) = p( ) = } { p ( ) = p( ) = } α = wq () = wq ( ) + aq ( )pq ( ) First Iteratio (sight fails): a( ) = hardlim( w p ( ) + w( )p( ).5) = hardlim( +.5) = (o respose) w( ) = w ( ) + a( )p( ) = + = Example Secod Iteratio (sight works): a( ) = hardlim( w p ( ) + w( )p( ).5) = hardlim( +.5) = (baaa) w( ) = w ( ) + a( )p( ) = + = hird Iteratio (sight fails): a( ) = hardlim( w p ( ) + w ( )p( ).5) = hardlim( +.5) = (baaa) w( ) = w( ) + a( )p( ) = + = Baaa will ow be detected if either sesor works. Problems with Hebb Rule Weights ca become arbitrarily large here is o mechaism for weights to decrease Hebb Rule with Decay W ( q) = W ( q ) + αa( q)p( q) γw( q ) W ( q ) = ( γ )W ( q ) + αa( q)p( q) his keeps the weight matrix from growig without boud which ca be demostrated by settig both a i ad p j to : wmax = ( γ )wmax + α a p i j wmax = ( γ )wmax + α wmax = α -- γ Example: Baaa Associator α = γ =. First Iteratio (sight fails): a( ) = hardlim( w p ( ) + w( )p( ).5) = hardlim( +.5) = (o respose) w ( ) = w ( ) + a( )p( ). w( ) = +. ( ) = Secod Iteratio (sight works): a( ) = hardlim( w p ( ) + w( )p( ).5) = hardlim( +.5) = (baaa) w() = w( ) + a( )p( ).w( ) = +.( ) =

4 Example hird Iteratio (sight fails): a( ) = hardlim( w p ( ) + w ( )p( ).5) = hardlim( +.5) = (baaa) w( ) = w( ) + a( )p( ).w( ) = +.( ) =.9 Hebb Rule 8 6 max α w = -- = ---- = γ. Hebb with Decay Problem of Hebb with Decay Associatios will decay away if stimuli are ot occasioally preseted. If a i = the w ( q) = ( γ )w ( q ) If γ = this becomes w ( q) = (.9)w ( q ) herefore the weight decays by % at each iteratio where there is o stimulus. Usig Hebb s Law we ca express the adjustmet applied to the weight w at iteratio p i the followig form: w ( p ) = F [ y j ( p ) x i ( p )] As a special case we ca represet Hebb s Law as follows: w = α y x j i where α is the learig rate parameter. his equatio is referred to as the activity product rule. Hebbia learig algorithm Step : Iitialisatio. Set iitial syaptic weights ad thresholds to small radom values say i a iterval [ ]. Step : Activatio. Compute the euro output at iteratio p y j = xi w θ j i= where is the umber of euro iputs ad θ j is the threshold value of euro j. Step : Learig. Update the weights i the etwork: w( p + ) = w( p) + w( p) where w (p)) is the weight correctio at iteratio p. he weight correctio is determied by the geeralised activity product rule: w = ϕ y j [ λ xi w ] Step : Iteratio. Icrease iteratio p by oe go back to Step. Hebbia learig examplee xample o illustrate Hebbia learig cosider a fully coected feedforward etwork with a sigle layer of five computatio euros. Each euro is represeted by a McCulloch ad Pitts model with the sig activatio fuctio. he etwork is traied o the followig set of iput vectors: X = X = X = X = X 5 =

5 Iitial ad fial states of the etwork x x x x x 5 5 Iput layer y y y y 5 y 5 Output layer x x x x x 5 5 Iput layer y y y y 5 y 5 Output layer I p u t l a y e r Iitial ad fial weight matrices O u t p u t l a y e r 5 5 I p u t l a y e r O u t p u t l a y e r A test iput vector or probe is defied as X = Whe this probe is preseted to the etwork we obtai: Y = sig = Variatios of Hebbia Learig Basic Rule: W ew W old = + t q p q Learig Rate: W ew W old = + α t q p q Smoothig: W ew W old + α t q p q γ W old ( γ )W old = = + αt q p q Delta Rule: W ew = W old + α( t q a q )p q Usupervised: W ew = W old + αa q p q

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading :

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading : ME 537: Learig-Based Cotrol Week 1, Lecture 2 Neural Network Basics Aoucemets: HW 1 Due o 10/8 Data sets for HW 1 are olie Proect selectio 10/11 Suggested readig : NN survey paper (Zhag Chap 1, 2 ad Sectios

More information

ME 539, Fall 2008: Learning-Based Control

ME 539, Fall 2008: Learning-Based Control ME 539, Fall 2008: Learig-Based Cotrol Neural Network Basics 10/1/2008 & 10/6/2008 Uiversity Orego State Neural Network Basics Questios??? Aoucemet: Homework 1 has bee posted Due Friday 10/10/08 at oo

More information

Perceptron. Inner-product scalar Perceptron. XOR problem. Gradient descent Stochastic Approximation to gradient descent 5/10/10

Perceptron. Inner-product scalar Perceptron. XOR problem. Gradient descent Stochastic Approximation to gradient descent 5/10/10 Perceptro Ier-product scalar Perceptro Perceptro learig rule XOR problem liear separable patters Gradiet descet Stochastic Approximatio to gradiet descet LMS Adalie 1 Ier-product et =< w, x >= w x cos(θ)

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Intermittent demand forecasting by using Neural Network with simulated data

Intermittent demand forecasting by using Neural Network with simulated data Proceedigs of the 011 Iteratioal Coferece o Idustrial Egieerig ad Operatios Maagemet Kuala Lumpur, Malaysia, Jauary 4, 011 Itermittet demad forecastig by usig Neural Network with simulated data Nguye Khoa

More information

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 No-Parametric Techiques Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 Parametric vs. No-Parametric Parametric Based o Fuctios (e.g Normal Distributio) Uimodal Oly oe peak Ulikely real data cofies

More information

Computing the output response of LTI Systems.

Computing the output response of LTI Systems. Computig the output respose of LTI Systems. By breaig or decomposig ad represetig the iput sigal to the LTI system ito terms of a liear combiatio of a set of basic sigals. Usig the superpositio property

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Adaptive Resonance Theory (ART)

Adaptive Resonance Theory (ART) Adaptive Resoace Theory : Soft Computig Course Lecture 25-28, otes, slides www.myreaders.ifo/, RC Chakraborty, e-mail rcchak@gmail.com, Dec., 2 http://www.myreaders.ifo/html/soft_computig.html www.myreaders.ifo

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

ChE 471 Lecture 10 Fall 2005 SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS

ChE 471 Lecture 10 Fall 2005 SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS I a exothermic reactio the temperature will cotiue to rise as oe moves alog a plug flow reactor util all of the limitig reactat is exhausted. Schematically

More information

Pattern recognition systems Laboratory 10 Linear Classifiers and the Perceptron Algorithm

Pattern recognition systems Laboratory 10 Linear Classifiers and the Perceptron Algorithm Patter recogitio systems Laboratory 10 Liear Classifiers ad the Perceptro Algorithm 1. Objectives his laboratory sessio presets the perceptro learig algorithm for the liear classifier. We will apply gradiet

More information

Pixel Recurrent Neural Networks

Pixel Recurrent Neural Networks Pixel Recurret Neural Networks Aa ro va de Oord, Nal Kalchbreer, Koray Kavukcuoglu Google DeepMid August 2016 Preseter - Neha M Example problem (completig a image) Give the first half of the image, create

More information

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

Multilayer perceptrons

Multilayer perceptrons Multilayer perceptros If traiig set is ot liearly separable, a etwork of McCulloch-Pitts uits ca give a solutio If o loop exists i etwork, called a feedforward etwork (else, recurret etwork) A two-layer

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

An Introduction to Neural Networks

An Introduction to Neural Networks A Itroductio to Neural Networks Referece: B.J.A. Kröse ad P.P. va der Smagt (1994): A Itroductio to Neural Networks, Poglavja 1-5, 6.1, 6.2, 7-8. Systems modellig from data 0 B.J.A. Kröse ad P.P. va der

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

CSI 2101 Discrete Structures Winter Homework Assignment #4 (100 points, weight 5%) Due: Thursday, April 5, at 1:00pm (in lecture)

CSI 2101 Discrete Structures Winter Homework Assignment #4 (100 points, weight 5%) Due: Thursday, April 5, at 1:00pm (in lecture) CSI 101 Discrete Structures Witer 01 Prof. Lucia Moura Uiversity of Ottawa Homework Assigmet #4 (100 poits, weight %) Due: Thursday, April, at 1:00pm (i lecture) Program verificatio, Recurrece Relatios

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

The Phi Power Series

The Phi Power Series The Phi Power Series I did this work i about 0 years while poderig the relatioship betwee the golde mea ad the Madelbrot set. I have fially decided to make it available from my blog at http://semresearch.wordpress.com/.

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable Statistics Chapter 4 Correlatio ad Regressio If we have two (or more) variables we are usually iterested i the relatioship betwee the variables. Associatio betwee Variables Two variables are associated

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

CS:3330 (Prof. Pemmaraju ): Assignment #1 Solutions. (b) For n = 3, we will have 3 men and 3 women with preferences as follows: m 1 : w 3 > w 1 > w 2

CS:3330 (Prof. Pemmaraju ): Assignment #1 Solutions. (b) For n = 3, we will have 3 men and 3 women with preferences as follows: m 1 : w 3 > w 1 > w 2 Shiyao Wag CS:3330 (Prof. Pemmaraju ): Assigmet #1 Solutios Problem 1 (a) Cosider iput with me m 1, m,..., m ad wome w 1, w,..., w with the followig prefereces: All me have the same prefereces for wome:

More information

Orthogonal Gaussian Filters for Signal Processing

Orthogonal Gaussian Filters for Signal Processing Orthogoal Gaussia Filters for Sigal Processig Mark Mackezie ad Kiet Tieu Mechaical Egieerig Uiversity of Wollogog.S.W. Australia Abstract A Gaussia filter usig the Hermite orthoormal series of fuctios

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n.

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n. 0_0905.qxd //0 :7 PM Page SECTION 9.5 Alteratig Series Sectio 9.5 Alteratig Series Use the Alteratig Series Test to determie whether a ifiite series coverges. Use the Alteratig Series Remaider to approximate

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Disjoint set (Union-Find)

Disjoint set (Union-Find) CS124 Lecture 7 Fall 2018 Disjoit set (Uio-Fid) For Kruskal s algorithm for the miimum spaig tree problem, we foud that we eeded a data structure for maitaiig a collectio of disjoit sets. That is, we eed

More information

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions Faculty of Egieerig MCT242: Electroic Istrumetatio Lecture 2: Istrumetatio Defiitios Overview Measuremet Error Accuracy Precisio ad Mea Resolutio Mea Variace ad Stadard deviatio Fiesse Sesitivity Rage

More information

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING Mechaical Vibratios FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING A commo dampig mechaism occurrig i machies is caused by slidig frictio or dry frictio ad is called Coulomb dampig. Coulomb dampig

More information

Activity 3: Length Measurements with the Four-Sided Meter Stick

Activity 3: Length Measurements with the Four-Sided Meter Stick Activity 3: Legth Measuremets with the Four-Sided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a four-sided meter

More information

Pattern Classification, Ch4 (Part 1)

Pattern Classification, Ch4 (Part 1) Patter Classificatio All materials i these slides were take from Patter Classificatio (2d ed) by R O Duda, P E Hart ad D G Stork, Joh Wiley & Sos, 2000 with the permissio of the authors ad the publisher

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to:

OBJECTIVES. Chapter 1 INTRODUCTION TO INSTRUMENTATION FUNCTION AND ADVANTAGES INTRODUCTION. At the end of this chapter, students should be able to: OBJECTIVES Chapter 1 INTRODUCTION TO INSTRUMENTATION At the ed of this chapter, studets should be able to: 1. Explai the static ad dyamic characteristics of a istrumet. 2. Calculate ad aalyze the measuremet

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Pattern recognition systems Lab 10 Linear Classifiers and the Perceptron Algorithm

Pattern recognition systems Lab 10 Linear Classifiers and the Perceptron Algorithm Patter recogitio systems Lab 10 Liear Classifiers ad the Perceptro Algorithm 1. Objectives his lab sessio presets the perceptro learig algorithm for the liear classifier. We will apply gradiet descet ad

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 07 Problem Set #5 Assiged: Jue 3, 07 Due Date: Jue 30, 07 Readig: Chapter 5 o FIR Filters. PROBLEM 5..* (The

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture 3 Tolstikhi Ilya Abstract I this lecture we will prove the VC-boud, which provides a high-probability excess risk boud for the ERM algorithm whe

More information

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016 subcaptiofot+=small,labelformat=pares,labelsep=space,skip=6pt,list=0,hypcap=0 subcaptio ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, /6/06. Self-cojugate Partitios Recall that, give a partitio λ, we may

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

CS322: Network Analysis. Problem Set 2 - Fall 2009

CS322: Network Analysis. Problem Set 2 - Fall 2009 Due October 9 009 i class CS3: Network Aalysis Problem Set - Fall 009 If you have ay questios regardig the problems set, sed a email to the course assistats: simlac@staford.edu ad peleato@staford.edu.

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3 ELEC2: A System View of Commuicatios: from Sigals to Packets Lecture 3 Commuicatio chaels Discrete time Chael Modelig the chael Liear Time Ivariat Systems Step Respose Respose to sigle bit Respose to geeral

More information

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc)

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc) Classificatio of problem & problem solvig strategies classificatio of time complexities (liear, arithmic etc) Problem subdivisio Divide ad Coquer strategy. Asymptotic otatios, lower boud ad upper boud:

More information

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32 Boostig Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machie Learig Algorithms March 1, 2017 1 / 32 Outlie 1 Admiistratio 2 Review of last lecture 3 Boostig Professor Ameet Talwalkar CS260

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif.

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif. AN ALMOST LINEAR RECURRENCE Doald E. Kuth Calif. Istitute of Techology, Pasadea, Calif. form A geeral liear recurrece with costat coefficiets has the U 0 = a l* U l = a 2 " ' " U r - l = a r ; u = b, u,

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram. Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016 Lecture 3 Digital Sigal Processig Chapter 3 z-trasforms Mikael Swartlig Nedelko Grbic Begt Madersso rev. 06 Departmet of Electrical ad Iformatio Techology Lud Uiversity z-trasforms We defie the z-trasform

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time Sigals ad Systems Problem Set: From Cotiuous-Time to Discrete-Time Updated: October 5, 2017 Problem Set Problem 1 - Liearity ad Time-Ivariace Cosider the followig systems ad determie whether liearity ad

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

MA Advanced Econometrics: Properties of Least Squares Estimators

MA Advanced Econometrics: Properties of Least Squares Estimators MA Advaced Ecoometrics: Properties of Least Squares Estimators Karl Whela School of Ecoomics, UCD February 5, 20 Karl Whela UCD Least Squares Estimators February 5, 20 / 5 Part I Least Squares: Some Fiite-Sample

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

Unit 6: Sequences and Series

Unit 6: Sequences and Series AMHS Hoors Algebra 2 - Uit 6 Uit 6: Sequeces ad Series 26 Sequeces Defiitio: A sequece is a ordered list of umbers ad is formally defied as a fuctio whose domai is the set of positive itegers. It is commo

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Istitute of Techology 6.867 Machie Learig, Fall 6 Problem Set : Solutios. (a) (5 poits) From the lecture otes (Eq 4, Lecture 5), the optimal parameter values for liear regressio give the

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Solution of Linear Constant-Coefficient Difference Equations

Solution of Linear Constant-Coefficient Difference Equations ECE 38-9 Solutio of Liear Costat-Coefficiet Differece Equatios Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa Solutio of Liear Costat-Coefficiet Differece Equatios Example: Determie

More information

ME NUMERICAL METHODS Fall 2007

ME NUMERICAL METHODS Fall 2007 ME - 310 NUMERICAL METHODS Fall 2007 Group 02 Istructor: Prof. Dr. Eres Söylemez (Rm C205, email:eres@metu.edu.tr ) Class Hours ad Room: Moday 13:40-15:30 Rm: B101 Wedesday 12:40-13:30 Rm: B103 Course

More information

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam Itroductio to Artificial Itelligece CAP 601 Summer 013 Midterm Exam 1. Termiology (7 Poits). Give the followig task eviromets, eter their properties/characteristics. The properties/characteristics of the

More information

Title: Damage Identification of Structures Based on Pattern Classification Using Limited Number of Sensors

Title: Damage Identification of Structures Based on Pattern Classification Using Limited Number of Sensors Cover page Title: Damage Idetificatio of Structures Based o Patter Classificatio Usig Limited Number of Sesors Authors: Yuyi QIAN Akira MITA PAPER DEADLINE: **JULY, ** PAPER LENGTH: **8 PAGES MAXIMUM **

More information

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION NEW NEWTON-TYPE METHOD WITH k -ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION R. Thukral Padé Research Cetre, 39 Deaswood Hill, Leeds West Yorkshire, LS7 JS, ENGLAND ABSTRACT The objective

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

Research Article Nonautonomous Discrete Neuron Model with Multiple Periodic and Eventually Periodic Solutions

Research Article Nonautonomous Discrete Neuron Model with Multiple Periodic and Eventually Periodic Solutions Discrete Dyamics i Nature ad Society Volume 21, Article ID 147282, 6 pages http://dx.doi.org/1.11/21/147282 Research Article Noautoomous Discrete Neuro Model with Multiple Periodic ad Evetually Periodic

More information