In the beginning God created tensor... as a picture

Size: px
Start display at page:

Download "In the beginning God created tensor... as a picture"

Transcription

1 In the beginning God created tensor... as a picture Bob Coecke coecke@comlab.ox.ac.uk EPSRC Advanced Research Fellow Oxford University Computing Laboratory se10.comlab.ox.ac.uk:8080/bobcoecke/home en.html

2 Main result,... The quantum mechanical structure can be completely reformulated in terms of tensor structure alone.

3 Main result,... The quantum mechanical structure can be completely reformulated in terms of tensor structure alone. (in particular) quantum measurements can be described in terms of tensor structure alone, merely by making the distinct abilities to copy and delete classical & quantum data explicit.

4 Main result,... The quantum mechanical structure can be completely reformulated in terms of tensor structure alone. (in particular) quantum measurements can be described in terms of tensor structure alone, merely by making the distinct abilities to copy and delete classical & quantum data explicit. (in particular) 2 also the classical world and classical data transformations can be described in terms of tensor structure alone.

5 Samson Abramsky & BC ( 04) A categorical semantics for quantum protocols; IEEE-LiCS; quant-ph/ Peter Selinger ( 05)... mixed states & CPMs; his www BC ( 05) Kindergarten Quantum Mechanics; quant-ph/ BC ( 05) Introducing Categories to Practicing Physicists; soon BC & Dusko Pavlovic ( 06) Quantum measurements...; soon

6 Strip-tease of quantum theory,... exposing its bare bones

7 Strip-tease of quantum theory,... exposing its bare bones Mathematically: tensors without vectors,... no a priori number field cf. C, [0, 1],... no a priori sums, inner-product,... no a priori algebra of observables,...

8 Strip-tease of quantum theory,... exposing its bare bones Mathematically: tensors without vectors,... no a priori number field cf. C, [0, 1],... no a priori sums, inner-product,... no a priori algebra of observables,... Physically: combining systems as prime concept,... not probability, statistics,... not superposition, orthogonality,... not observation, measurement, tests,...

9 Strip-tease of quantum theory,... exposing its bare bones So some things vanish,... (cf. clothes, make-up)

10 Strip-tease of quantum theory,... exposing its bare bones So some things vanish,... (cf. clothes, make-up) But some things emerge,... (cf. skin, organs, and then bones) operational roots compositionality types reflecting kinds

11 Strip-tease of quantum theory,... exposing its bare bones These enable interpretation in terms of information-flow,... quantum-classical flow (measurement) quantum-quantum flow (evolution) classical-quantum flow (control) classical-classical flow (computation) and more (entanglement)

12 OUTLINE Part I: General compoundness Part II: Quantum compoundness Part III: Measurement & classicality

13 I Practising physics as a symmetric monoidal category

14 I Practising physics as a picture calculus

15 Kinds/types of systems: A, B, C,... e.g. electron, one qubit, n qubits, classical data,...

16 Kinds/types of systems: A, B, C,... e.g. electron, one qubit, n qubits, classical data,... Operations/experiments on systems: A f A, A g B, B h C,... e.g. preparation, acting force field, measurement,...

17 Kinds/types of systems: A, B, C,... e.g. electron, one qubit, n qubits, classical data,... Operations/experiments on systems: A f A, A g B, B h C,... e.g. preparation, acting force field, measurement,... Composition of operations: A g f C := A f B g C Doing nothing -operations: A 1 A A, B 1 B B, C 1 C C,...

18 Compoundness/parallel composition: A B A C f g B D A C h B D

19 Compoundness/parallel composition: A B A C f g B D A C h B D -structure captured by graphical representation: f B A A f B A g C f B A D C g C D A B h f B A C

20 Pseudo-locality of systems/operations A 1 A 2 f 1 A2 B 1 A 2 1 A1 g A 1 B 2 f 1 B2 B 1 B 2 1 B1 g f g = f g

21 Swapping systems/operations A 1 A 2 f g B 1 B 2 σ A1,A 2 σ B1,B 2 A 2 A 1 g f B 2 B 1 f g = g f

22 The pictures are not merely an illustration,... not merely an intuitive support,... but an actual formalism: diagrammatic proof algebraic proof

23 The pictures are not merely an illustration,... not merely an intuitive support,... but an actual formalism: diagrammatic proof algebraic proof they extend and formalise Dirac s bra-kets in 2-D by distinguishing between sequential & parallel modes.

24 Creating/destroying systems I := no system i.e. A I A I A A ψ π A s

25 Quantities: probabilistic weights s f := A A I f s B I Bs t = (s f) (t g) = (s t) (f g) (s f) (t g) = (s t) (f g) s s f = f = f s

26 PRACTICING PHYSICS Physical System Physical Operation PROGRAMMING Data Types Programs LOGIC & PROOF THEORY Propositions Proofs

27 PRACTICING PHYSICS Physical System Physical Operation PROGRAMMING Data Types Programs LOGIC & PROOF THEORY Propositions Proofs COOKING Vegetables, meet, fish, spices, mayonaise Growing, breeding, catching, cutting, mixing, eating

28 II Practising quantum physics as a -compact category

29 II Practising quantum physics as a pictures with U-turns

30 Copying? { A : A A A} A A f B A B A A f f B B

31 No-copying of quantum states { H : i i i } H C NO! C C C C C 1 1 ( ) ( ) (C C) (C C) ( ) ( ) Bell-states cause trouble!

32 Symmetric monoidal category with contravariant -involution adjoint f A B f B A ; involution dual A A ; Units η A : I A A with η A = σ A,A η A A I A η A 1 A (A A ) A 1 A A A I 1A η A A (A A)

33 Symmetric monoidal category with contravariant -involution adjoint f A B f B A ; involution dual A A ; Bell-states η A : I A A with η A = σ A,A η A A I A η A 1 A (A A ) A 1 A A A I 1A η A A (A A)

34 Symmetric monoidal category with contravariant -involution adjoint f A B f B A ; involution dual A A ; Bell-states η A : I A A with η A = σ A,A η A =

35 Symmetric monoidal category with contravariant -involution adjoint f A B f B A ; involution dual A A ; Bell-states η A : I A A with η A = σ A,A η A =

36 Symmetric monoidal category with contravariant -involution adjoint f A B f B A ; involution dual A A ; Bell-states η A : I A A with η A = σ A,A η A =

37 The contravariant involution arises as f : A B f : B A f * =: f

38 The covariant involution arises as f : A B f : A B f f * =:

39 From f * =: f and f f * =: follows (f )* * = f = f and analogous we can prove that (f ) = f

40 The adjoint decomposes: f = (f ) = (f )

41 The adjoint decomposes: f = (f ) = (f ) For Hilbert spaces: ( ) := transposition ( ) := complex conjugation

42 Others: Unitaries Projectors Bipartite projectors Hilbert-Schmidt inner-product Identification of projective structure Mixed states and completely positive maps

43 When setting f =: f f =: f

44 When setting f =: f f =: f we obtain f g = f g = g = g f f

45 Hyper-compositionality f g = g f

46 OUR description and proof f -1 i f i =

47 OUR description and proof Alice Alice f -1 i f i = Bob Bob

48 III Quantum measurement as an Eilenberg-Moore coalgebra

49 III Quantum measurement as a non-linear picture

50 Quantum measurement type: A M X A

51 Quantum measurement type: A M X A Classical data type: (X, δ, ɛ) X X δ X ɛ I

52 X δ X X X δ 1 X δ λ X δ ρx X X δ 1 X X X X I X ɛ 1 X X X 1 X ɛ X I = = = + commutativity + δ =δ +... (capture behaviour)

53 Proposition. Internal commutative comonoid structures over X are in 1-1 correspondence with commutative comonad structures on X : C C.

54 Proposition. Internal commutative comonoid structures over X are in 1-1 correspondence with commutative comonad structures on X : C C. Question. What are Eilenberg-Moore coalgebras for the comonad X given a classical object (X, δ, ɛ)?

55 A M X A A M 1 X M M λa X A δ 1 A X X A X A ɛ 1 A I A = =

56 λ A A M X A 1 X M I A η X 1 A X X A =

57 Thm. Self-adjoint Eilenberg-Moore coalgebras for X : FdHilb FdHilb are in 1-1 correspondence with dim(x)-outcome quantum measurements where X := i C and δ := X.

58 Thm. Self-adjoint Eilenberg-Moore coalgebras for X : FdHilb FdHilb are in 1-1 correspondence with dim(x)-outcome quantum measurements where X := i C and δ := X. Coalg-square idempotence P 2 i = P i mutual orthogonality P i P j i = 0 Coalg-triangle Completeness of spectrum Self-adjointness Orthogonality of projectors i P i = 1 H P i = P i PROJECTOR SPECTRUM

59 The classical world Thm. [Tom Fox, 1976] The category C of commutative comonoids and corresponding morphisms of a symmetric monoidal category with the forgetful functor C C, is final among all cartesian categories with a monoidal functor to C, mapping the cartesian product to the monoidal tensor. FdHilb = FSet

60 The classical world Thm. [Tom Fox, 1976] The category C of commutative comonoids and corresponding morphisms of a symmetric monoidal category with the forgetful functor C C, is final among all cartesian categories with a monoidal functor to C, mapping the cartesian product to the monoidal tensor. FdHilb = FSet ɛ-morphisms stochastic maps C C stoch C

61 A A = = A A = =

62 Full quantum teleportation Alice Bob Correction A A = = = = AX Measurement A Bell state A

63 POVMs and Naimark s theorem A A f f A A X X = auxiliary input C A A projective measurement Trace C h h A A 1 X X C C B.C. & Eric Paquette (2006) POVMs & Naimark s thm without sums.

64 Infinite behaviours? Hilb is NOT compact closed! since i i i diverges,...

65 Infinite behaviours? Hilb is NOT compact closed! since i i i diverges,... But we don t really care!

66 Infinite behaviours? Hilb is NOT compact closed! since i i i diverges,... But we don t really care! What is dimension anyway? Do there exit -Bell states mr. Popper? Capturing infinite behaviours via recursive types,...

Physics, Language, Maths & Music

Physics, Language, Maths & Music Physics, Language, Maths & Music (partly in arxiv:1204.3458) Bob Coecke, Oxford, CS-Quantum SyFest, Vienna, July 2013 ALICE f f = f f = f f = ALICE BOB BOB meaning vectors of words does not Alice not like

More information

Picturing Quantum Processes,

Picturing Quantum Processes, Bob Coecke & Aleks Kissinger, Picturing Quantum Processes, Cambridge University Press, to appear. Bob: Ch. 01 Processes as diagrams Ch. 02 String diagrams Ch. 03 Hilbert space from diagrams Ch. 04 Quantum

More information

Baby's First Diagrammatic Calculus for Quantum Information Processing

Baby's First Diagrammatic Calculus for Quantum Information Processing Baby's First Diagrammatic Calculus for Quantum Information Processing Vladimir Zamdzhiev Department of Computer Science Tulane University 30 May 2018 1 / 38 Quantum computing ˆ Quantum computing is usually

More information

Selling Category Theory to the Masses

Selling Category Theory to the Masses Selling Category Theory to the Masses Bob Coecke Quantum Group - Computer Science - Oxford University ALICE f f = f f = f f = ALICE BOB BOB does not Alice not like Bob = Alice like not Bob Samson Abramsky

More information

Categorical Models for Quantum Computing

Categorical Models for Quantum Computing Categorical odels for Quantum Computing Linde Wester Worcester College University of Oxford thesis submitted for the degree of Sc in athematics and the Foundations of Computer Science September 2013 cknowledgements

More information

Connecting the categorical and the modal logic approaches to Quantum Mech

Connecting the categorical and the modal logic approaches to Quantum Mech Connecting the categorical and the modal logic approaches to Quantum Mechanics based on MSc thesis supervised by A. Baltag Institute for Logic, Language and Computation University of Amsterdam 30.11.2013

More information

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, A qubit: a sphere of values, which is spanned in projective sense by two quantum

More information

Mix Unitary Categories

Mix Unitary Categories 1/31 Mix Unitary Categories Robin Cockett, Cole Comfort, and Priyaa Srinivasan CT2018, Ponta Delgada, Azores Dagger compact closed categories Dagger compact closed categories ( -KCC) provide a categorical

More information

Quantum information processing: a new light on the Q-formalism and Q-foundations

Quantum information processing: a new light on the Q-formalism and Q-foundations Bob Coecke - Oxford University Computing Laboratory Quantum information processing: a new light on the Q-formalism and Q-foundations ASL 2010 North American Annual Meeting The George Washington University

More information

Endomorphism Semialgebras in Categorical Quantum Mechanics

Endomorphism Semialgebras in Categorical Quantum Mechanics Endomorphism Semialgebras in Categorical Quantum Mechanics Kevin Dunne University of Strathclyde November 2016 Symmetric Monoidal Categories Definition A strict symmetric monoidal category (A,, I ) consists

More information

Quantum Quandaries: A Category Theoretic Perspective

Quantum Quandaries: A Category Theoretic Perspective Quantum Quandaries: A Category Theoretic Perspective John C. Baez Les Treilles April 24, 2007 figures by Aaron Lauda for more, see http://math.ucr.edu/home/baez/quantum/ The Big Idea Once upon a time,

More information

Design and Analysis of Quantum Protocols and Algorithms

Design and Analysis of Quantum Protocols and Algorithms Design and Analysis of Quantum Protocols and Algorithms Krzysztof Bar University College MMathCompSci May 20, 2012 Acknowledgements I would like to thank my supervisor prof. Bob Coecke for all the help

More information

Categorical relativistic quantum theory. Chris Heunen Pau Enrique Moliner Sean Tull

Categorical relativistic quantum theory. Chris Heunen Pau Enrique Moliner Sean Tull Categorical relativistic quantum theory Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15 Idea Hilbert modules: naive quantum field theory Idempotent subunits: base space in any category Support: where

More information

Quantum information-flow, concretely, abstractly

Quantum information-flow, concretely, abstractly Proc. QPL 2004, pp. 57 73 Quantum information-flow, concretely, abstractly Bob Coecke Oxford University Computing Laboratory Abstract These lecture notes are based on joint work with Samson Abramsky. I

More information

Categorical quantum mechanics

Categorical quantum mechanics Categorical quantum mechanics Chris Heunen 1 / 76 Categorical Quantum Mechanics? Study of compositional nature of (physical) systems Primitive notion: forming compound systems 2 / 76 Categorical Quantum

More information

Categories and Quantum Informatics: Hilbert spaces

Categories and Quantum Informatics: Hilbert spaces Categories and Quantum Informatics: Hilbert spaces Chris Heunen Spring 2018 We introduce our main example category Hilb by recalling in some detail the mathematical formalism that underlies quantum theory:

More information

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

More information

CHAPTER 0: A (VERY) BRIEF TOUR OF QUANTUM MECHANICS, COMPUTATION, AND CATEGORY THEORY.

CHAPTER 0: A (VERY) BRIEF TOUR OF QUANTUM MECHANICS, COMPUTATION, AND CATEGORY THEORY. CHPTER 0: (VERY) BRIEF TOUR OF QUNTUM MECHNICS, COMPUTTION, ND CTEGORY THEORY. This chapter is intended to be a brief treatment of the basic mechanics, framework, and concepts relevant to the study of

More information

Causal categories: a backbone for a quantumrelativistic universe of interacting processes

Causal categories: a backbone for a quantumrelativistic universe of interacting processes Causal categories: a backbone for a quantumrelativistic universe of interacting processes ob Coecke and Ray Lal Oxford University Computing Laboratory bstract We encode causal space-time structure within

More information

Linear Algebra and Dirac Notation, Pt. 1

Linear Algebra and Dirac Notation, Pt. 1 Linear Algebra and Dirac Notation, Pt. 1 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, 2017 1 / 13

More information

A Categorical Quantum Logic

A Categorical Quantum Logic Under consideration for publication in Math. Struct. in Comp. Science A Categorical Quantum Logic SAMSON ABRAMSKY ROSS DUNCAN Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,

More information

A Graph Theoretic Perspective on CPM(Rel)

A Graph Theoretic Perspective on CPM(Rel) A Graph Theoretic Perspective on CPM(Rel) Daniel Marsden Mixed states are of interest in quantum mechanics for modelling partial information. More recently categorical approaches to linguistics have also

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

Categorical quantum channels

Categorical quantum channels Attacking the quantum version of with category theory Ian T. Durham Department of Physics Saint Anselm College 19 March 2010 Acknowledgements Some of this work has been the result of some preliminary collaboration

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

arxiv: v2 [quant-ph] 12 Oct 2009

arxiv: v2 [quant-ph] 12 Oct 2009 Categories for the practising physicist arxiv:0905.3010v2 [quant-ph] 12 Oct 2009 Bob Coecke and Éric Oliver Paquette OUCL, University of Oxford coecke/eop@comlab.ox.ac.uk Summary. In this chapter we survey

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

Types in categorical linguistics (& elswhere)

Types in categorical linguistics (& elswhere) Types in categorical linguistics (& elswhere) Peter Hines Oxford Oct. 2010 University of York N. V. M. S. Research Topic of the talk: This talk will be about: Pure Category Theory.... although it might

More information

A categorical model for a quantum circuit description language

A categorical model for a quantum circuit description language A categorical model for a quantum circuit description language Francisco Rios (joint work with Peter Selinger) Department of Mathematics and Statistics Dalhousie University CT July 16th 22th, 2017 What

More information

Copy-Cat Strategies and Information Flow in Physics, Geometry, Logic and Computation

Copy-Cat Strategies and Information Flow in Physics, Geometry, Logic and Computation Copy-Cat Strategies and Information Flow in Physics, Geometry, and Computation Samson Abramsky Oxford University Computing Laboratory Copy-Cat Strategies and Information Flow CQL Workshop August 2007 1

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

REVERSIBLE MONADIC COMPUTING

REVERSIBLE MONADIC COMPUTING REVERSILE MONDIC COMPUTING CHRIS HEUNEN ND MRTTI KRVONEN bstract. We extend categorical semantics of monadic programming to reversible computing, by considering monoidal closed dagger categories: the dagger

More information

Categories for the practising physicist

Categories for the practising physicist Categories for the practising physicist Bob Coecke 1 and Éric Oliver Paquette2 1 OUCL, University of Oxford Bob.Coecke@comlab.ox.ac.uk 2 DIRO, Université de Montréal eopaquette@inexistant.net Summary.

More information

arxiv:quant-ph/ v5 5 Mar 2007

arxiv:quant-ph/ v5 5 Mar 2007 categorical semantics of quantum protocols Samson bramsky and Bob Coecke arxiv:quant-ph/0402130v5 5 Mar 2007 Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK. bstract

More information

Reversible Monadic Computing

Reversible Monadic Computing MFPS 2015 Reversible Monadic Computing Chris Heunen 1,2 Department of Computer Science University of Oxford United Kingdom Martti Karvonen 3 Department of Mathematics and Systems nalysis alto University

More information

Custom Hypergraph Categories via Generalized Relations

Custom Hypergraph Categories via Generalized Relations Custom Hypergraph Categories via Generalized Relations Dan Marsden and Fabrizio Genovese November 30, 2016 Outline Compact closed categories and diagrammatic calculi Some ad-hoc procedures for constructing

More information

The Logic of Quantum Mechanics - take II Bob Coecke Oxford Univ. Computing Lab. Quantum Group

The Logic of Quantum Mechanics - take II Bob Coecke Oxford Univ. Computing Lab. Quantum Group The Logic of Quantum Mechanics - take II Bob Coecke Oxford Univ. Computing Lab. Quantum Group ALICE f f BOB = f f = f f = ALICE BOB does not Alice not like BC (2010) Quantum picturalism. Contemporary physics

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

Topological quantum computation with anyons

Topological quantum computation with anyons p. 1/6 Topological quantum computation with anyons Éric Oliver Paquette (Oxford) p. 2/6 Outline: 0. Quantum computation 1. Anyons 2. Modular tensor categories in a nutshell 3. Topological quantum computation

More information

The Elements for Logic In Compositional Distributional Models of Meaning

The Elements for Logic In Compositional Distributional Models of Meaning The Elements for Logic In Compositional Distributional Models of Meaning Joshua Steves: 1005061 St Peter s College University of Oxford A thesis submitted for the degree of MSc Mathematics and Foundations

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

Unitary evolution: this axiom governs how the state of the quantum system evolves in time.

Unitary evolution: this axiom governs how the state of the quantum system evolves in time. CS 94- Introduction Axioms Bell Inequalities /7/7 Spring 7 Lecture Why Quantum Computation? Quantum computers are the only model of computation that escape the limitations on computation imposed by the

More information

Short Course in Quantum Information Lecture 2

Short Course in Quantum Information Lecture 2 Short Course in Quantum Information Lecture Formal Structure of Quantum Mechanics Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture

More information

Stochastic Histories. Chapter Introduction

Stochastic Histories. Chapter Introduction Chapter 8 Stochastic Histories 8.1 Introduction Despite the fact that classical mechanics employs deterministic dynamical laws, random dynamical processes often arise in classical physics, as well as in

More information

DECAY OF SINGLET CONVERSION PROBABILITY IN ONE DIMENSIONAL QUANTUM NETWORKS

DECAY OF SINGLET CONVERSION PROBABILITY IN ONE DIMENSIONAL QUANTUM NETWORKS DECAY OF SINGLET CONVERSION PROBABILITY IN ONE DIMENSIONAL QUANTUM NETWORKS SCOTT HOTTOVY Abstract. Quantum networks are used to transmit and process information by using the phenomena of quantum mechanics.

More information

A Linear/Producer/Consumer model of Classical Linear Logic

A Linear/Producer/Consumer model of Classical Linear Logic A Linear/Producer/Consumer model of Classical Linear Logic Jennifer Paykin Steve Zdancewic February 14, 2014 Abstract This paper defines a new proof- and category-theoretic framework for classical linear

More information

A categorical quantum logic

A categorical quantum logic Proc QPL 2004, pp 3 20 A categorical quantum logic Samson Abramsky Ross Duncan Oxford University Computing Laboratory Abstract We define a sequent calculus corresponding to the logic of strongly compact

More information

Bases as Coalgebras. Bart Jacobs

Bases as Coalgebras. Bart Jacobs Bases as Coalgebras Bart Jacobs Institute for Computing and Information Sciences (icis), Radboud University Nijmegen, The Netherlands. Webaddress: www.cs.ru.nl/b.jacobs Abstract. The free algebra adjunction,

More information

MONADS ON DAGGER CATEGORIES

MONADS ON DAGGER CATEGORIES MONDS ON DGGER CTEGORIES CHRIS HEUNEN ND MRTTI KRVONEN bstract. The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when everything

More information

Some Quantum Logic and a few Categories

Some Quantum Logic and a few Categories Some Quantum Logic and a few Categories John Harding New Mexico State University www.math.nmsu.edu/johnharding.html jharding@nmsu.edu Workshop on Categorical Quantum Logic Oxford, August 2007 Organization

More information

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2 Quantum decoherence p. 1/2 Quantum decoherence Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, 2007 Quantum decoherence p. 2/2 Outline Quantum decoherence: 1. Basics of quantum

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 6 Postulates of Quantum Mechanics II (Refer Slide Time: 00:07) In my last lecture,

More information

Tensor product Take two tensors, get together enough inputs to feed into both, and take the product of their results.

Tensor product Take two tensors, get together enough inputs to feed into both, and take the product of their results. 1 Tensors Tensors are a representation of linear operators. Much like with bra-ket notation, we want a notation which will suggest correct operations. We can represent a tensor as a point with n legs radiating

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

Operational Theories and Categorical Quantum Mechanics

Operational Theories and Categorical Quantum Mechanics Operational Theories and Categorical Quantum Mechanics Samson Abramsky and Chris Heunen Department of Computer Science University of Oxford June 7, 2013 Abstract A central theme in current work in quantum

More information

MONADS ON DAGGER CATEGORIES

MONADS ON DAGGER CATEGORIES MONDS ON DGGER CTEGORIES CHRIS HEUNEN ND MRTTI KRVONEN bstract. The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when all

More information

Involutive Categories and Monoids, with a GNS-correspondence

Involutive Categories and Monoids, with a GNS-correspondence nvolutive Categories and Monoids, with a GNS-correspondence Bart Jacobs Radboud University, Nijmegen, The Netherlands Abstract This paper develops the basics of the theory of involutive categories and

More information

Entanglement Manipulation

Entanglement Manipulation Entanglement Manipulation Steven T. Flammia 1 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the

More information

Quantum information and quantum computing

Quantum information and quantum computing Middle East Technical University, Department of Physics January 7, 009 Outline Measurement 1 Measurement 3 Single qubit gates Multiple qubit gates 4 Distinguishability 5 What s measurement? Quantum measurement

More information

On Paradoxes in Proof-Theoretic Semantics

On Paradoxes in Proof-Theoretic Semantics Quantum Group Dept. of Computer Science Oxford University 2nd PTS Conference, Tübingen, March 8, 2013 Outline 1 Categorical Harmony Logical Constants as Adjoint Functors Comparison with Other Concepts

More information

Quantum computing with relations. Outline. Dusko Pavlovic. Quantum. programs. Quantum. categories. Classical interfaces.

Quantum computing with relations. Outline. Dusko Pavlovic. Quantum. programs. Quantum. categories. Classical interfaces. Outline Wat do quantum prorammers do? Cateories or quantum prorammin Kestrel Institute and Oxord University or cateorical quantum QI 009 Saarbrücken, Marc 009 ll tat in te cateory o Outline Wat do quantum

More information

Ambiguity in Categorical Models of Meaning

Ambiguity in Categorical Models of Meaning mbiguity in Categorical Models of Meaning Robin Piedeleu Balliol College University of Oxford thesis submitted for the degree of MSc in Computer Science Trinity 2014 bstract Building on existing categorical

More information

Computational Algebraic Topology Topic B Lecture III: Quantum Realizability

Computational Algebraic Topology Topic B Lecture III: Quantum Realizability Computational Algebraic Topology Topic B Lecture III: Quantum Realizability Samson Abramsky Department of Computer Science The University of Oxford Samson Abramsky (Department of Computer ScienceThe Computational

More information

Conservation of Information

Conservation of Information Conservation of Information Amr Sabry (in collaboration with Roshan P. James) School of Informatics and Computing Indiana University May 8, 2012 Amr Sabry (in collaboration with Roshan P. James) (IU SOIC)

More information

Decay of the Singlet Conversion Probability in One Dimensional Quantum Networks

Decay of the Singlet Conversion Probability in One Dimensional Quantum Networks Decay of the Singlet Conversion Probability in One Dimensional Quantum Networks Scott Hottovy shottovy@math.arizona.edu Advised by: Dr. Janek Wehr University of Arizona Applied Mathematics December 18,

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

GENERATORS FOR COMONOIDS AND UNIVERSAL CONSTRUCTIONS

GENERATORS FOR COMONOIDS AND UNIVERSAL CONSTRUCTIONS GENERATORS FOR COMONOIDS AND UNIVERSAL CONSTRUCTIONS Adnan H Abdulwahid University of Iowa Third Conference on Geometric Methods in Representation Theory University of Iowa Department of Mathematics November

More information

Dual Adjunctions Between Algebras and Coalgebras

Dual Adjunctions Between Algebras and Coalgebras Dual Adjunctions Between Algebras and Coalgebras Hans E. Porst Department of Mathematics University of Bremen, 28359 Bremen, Germany porst@math.uni-bremen.de Abstract It is shown that the dual algebra

More information

Bob Coecke (Oxford, Quantum measurements as Eilenberg-Moore coalgebras

Bob Coecke (Oxford, Quantum measurements as Eilenberg-Moore coalgebras Jirí Adámek (Braunschweig, adamek@iti.cs.tu-bs.de) A logic of injectivity Injectivity is an important concept in algebra, homotopy theory and elsewhere. We study the injectivity consequence of morphisms

More information

Diagrammatic Methods for the Specification and Verification of Quantum Algorithms

Diagrammatic Methods for the Specification and Verification of Quantum Algorithms Diagrammatic Methods or the Speciication and Veriication o Quantum lgorithms William Zeng Quantum Group Department o Computer Science University o Oxord Quantum Programming and Circuits Workshop IQC, University

More information

Category Theory. Categories. Definition.

Category Theory. Categories. Definition. Category Theory Category theory is a general mathematical theory of structures, systems of structures and relationships between systems of structures. It provides a unifying and economic mathematical modeling

More information

The Framework of Quantum Mechanics

The Framework of Quantum Mechanics The Framework of Quantum Mechanics We now use the mathematical formalism covered in the last lecture to describe the theory of quantum mechanics. In the first section we outline four axioms that lie at

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Construction of Physical Models from Category Theory. Master Thesis in Theoretical Physics. Marko Marjanovic

Construction of Physical Models from Category Theory. Master Thesis in Theoretical Physics. Marko Marjanovic Construction of Physical Models from Category Theory Master Thesis in Theoretical Physics Marko Marjanovic Department of Physics University of Gothenburg Gothenburg, Sweden 2017 Construction of Physical

More information

Quantum Sets. Andre Kornell. University of California, Davis. SYCO September 21, 2018

Quantum Sets. Andre Kornell. University of California, Davis. SYCO September 21, 2018 Quantum Sets Andre Kornell University of California, Davis SYCO September 21, 2018 Andre Kornell (UC Davis) Quantum Sets SYCO September 21, 2018 1 / 15 two categories Fun: sets and functions qfun: quantum

More information

Denotational semantics of linear logic

Denotational semantics of linear logic Denotational semantics of linear logic Lionel Vaux I2M, Université d Aix-Marseille, France LL2016, Lyon school: 7 and 8 November 2016 L. Vaux (I2M) Denotational semantics of linear logic LL2016 1 / 31

More information

Infinite-dimensional Categorical Quantum Mechanics

Infinite-dimensional Categorical Quantum Mechanics Infinite-dimensional Categorical Quantum Mechanics A talk for CLAP Scotland Stefano Gogioso and Fabrizio Genovese Quantum Group, University of Oxford 5 Apr 2017 University of Strathclyde, Glasgow S Gogioso,

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

Categories and Quantum Informatics

Categories and Quantum Informatics Categories and Quantum Informatics Week 6: Frobenius structures Chris Heunen 1 / 41 Overview Frobenius structure: interacting co/monoid, self-duality Normal forms: coherence theorem Frobenius law: coherence

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Categories, Proofs and Programs

Categories, Proofs and Programs Categories, Proofs and Programs Samson Abramsky and Nikos Tzevelekos Lecture 4: Curry-Howard Correspondence and Cartesian Closed Categories In A Nutshell Logic Computation 555555555555555555 5 Categories

More information

)j > Riley Tipton Perry University of New South Wales, Australia. World Scientific CHENNAI

)j > Riley Tipton Perry University of New South Wales, Australia. World Scientific CHENNAI Riley Tipton Perry University of New South Wales, Australia )j > World Scientific NEW JERSEY LONDON. SINGAPORE BEIJING SHANSHAI HONG K0N6 TAIPEI» CHENNAI Contents Acknowledgments xi 1. Introduction 1 1.1

More information

Lecture Notes 2: Review of Quantum Mechanics

Lecture Notes 2: Review of Quantum Mechanics Quantum Field Theory for Leg Spinners 18/10/10 Lecture Notes 2: Review of Quantum Mechanics Lecturer: Prakash Panangaden Scribe: Jakub Závodný This lecture will briefly review some of the basic concepts

More information

Maximal vectors in Hilbert space and quantum entanglement

Maximal vectors in Hilbert space and quantum entanglement Maximal vectors in Hilbert space and quantum entanglement William Arveson arveson@math.berkeley.edu UC Berkeley Summer 2008 arxiv:0712.4163 arxiv:0801.2531 arxiv:0804.1140 Overview Quantum Information

More information

Monoidal Categories, Bialgebras, and Automata

Monoidal Categories, Bialgebras, and Automata Monoidal Categories, Bialgebras, and Automata James Worthington Mathematics Department Cornell University Binghamton University Geometry/Topology Seminar October 29, 2009 Background: Automata Finite automata

More information

arxiv: v1 [cs.lo] 6 Jun 2014

arxiv: v1 [cs.lo] 6 Jun 2014 The dagger lambda calculus Philip Atzemoglou Department of Computer Science, University of Oxford, Oxford, UK arxiv:1406.1633v1 [cs.lo] 6 Jun 2014 We present a novel lambda calculus that casts the categorical

More information

RESEARCH ARTICLE. Quantum picturalism

RESEARCH ARTICLE. Quantum picturalism Contemporary Physics Vol. 00, No. 00, February 2009, 1 25 RESEARCH ARTICLE Quantum picturalism Bob Coecke Oxord University Computing Laboratory, Wolson Building, Parks Road, OX1 3QD Oxord, UK (Received

More information

Fourier transforms from strongly complementary observables

Fourier transforms from strongly complementary observables Fourier transforms from strongly complementary observables Stefano Gogioso William Zeng Quantum Group, Department of Computer Science University of Oxford, UK stefano.gogioso@cs.ox.ac.uk william.zeng@cs.ox.ac.uk

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2014 Mika Hirvensalo Basics on quantum information 1 of 49 Brief

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

1 Measurements, Tensor Products, and Entanglement

1 Measurements, Tensor Products, and Entanglement Stanford University CS59Q: Quantum Computing Handout Luca Trevisan September 7, 0 Lecture In which we describe the quantum analogs of product distributions, independence, and conditional probability, and

More information

Towards a quantum calculus

Towards a quantum calculus QPL 2006 Preliminary Version Towards a quantum calculus (work in progress, extended abstract) Philippe Jorrand 1 Simon Perdrix 2 Leibniz Laboratory IMAG-INPG Grenoble, France Abstract The aim of this paper

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

The dagger lambda calculus

The dagger lambda calculus The dagger lambda calculus Philip Atzemoglou University of Oxford Quantum Physics and Logic 2014 Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 1 / 20 Why higher-order? Teleportation

More information

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03 Page 5 Lecture : Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 008/10/0 Date Given: 008/10/0 Inner Product Spaces: Definitions Section. Mathematical Preliminaries: Inner

More information

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction Tutorial on Quantum Computing Vwani P. Roychowdhury Lecture 1: Introduction 1 & ) &! # Fundamentals Qubits A single qubit is a two state system, such as a two level atom we denote two orthogonal states

More information

INTRODUCTORY NOTES ON QUANTUM COMPUTATION

INTRODUCTORY NOTES ON QUANTUM COMPUTATION INTRODUCTORY NOTES ON QUANTUM COMPUTATION Keith Hannabuss Balliol College, Oxford Hilary Term 2009 Notation. In these notes we shall often use the physicists bra-ket notation, writing ψ for a vector ψ

More information