Spectrum-Revealing Matrix Factorizations Theory and Algorithms

Size: px
Start display at page:

Download "Spectrum-Revealing Matrix Factorizations Theory and Algorithms"

Transcription

1 Spectrum-Revealing Matrix Factorizations Theory and Algorithms Ming Gu Department of Mathematics University of California, Berkeley April 5, 2016 Joint work with D. Anderson, J. Deursch, C. Melgaard, J. Xiao

2 Content Low-rank matrix approximations Rank-revealing matrix factorizations vs. Spectrum-revealing matrix factorizations. Related new algorithms Numerical Experiments Future work

3 Background Applications: Bing Search Scientific Computing/Data Analysis Computer Vision Machine learning; kernel learning.

4 Google Search on Low-rank Approximation

5 Goals in Low-rank Matrix Approximations Highly efficient Minimum communication As accurate/reliable as truncated SVD Beyond SVD: preserve sparsity, structure, interpretability

6 Background: Low-Rank Approximation Methods Deterministic low-rank approximations Interpolative decomposition (ID) (Cheng et. al. 2005, Liberty et. al 2007) Deterministic CUR with various column selection algorithms Randomized low-rank approximations Using the subsampled fft technique, for l k: optimal complexity is O ( mn log(k) + l 2 (m + n) ) Several approximation algorithms (Halko et. al. 2010) Some of the first randomized algorithms. (Rokhlin et. al. 2008) Randomized LU decomposition for low-rank approximation (Shabat et. al. 2015) Spectrum-revealing factorizations stronger in theory and efficiency

7 Background: Other Data Analysis Methods Data Analysis: Low-rank matrix approximations that respect data sparsity, structure, and interpretability; more informative than truncated SVD. CX decomposition: for medical data, text data, etc A CX, where C consists of well-chosen columns of A. CUR decomposition: for recommendation systems, text data analysis A CUR, where C and R consist of well-chosen columns and rows of A. LHL T decomposition: Approximate kernel methods, independent component analysis A LHL T, where L consists of well-chosen columns of SPD matrix A.

8 Google Search on CUR Decomposition

9 Golden Standard: Truncated SVD Given matrix M R m n with m n, its SVD is M = UΣV T = ( u 1 ) u n σ 1... σ n ( v 1 v n ) T, where σ j is the j th largest singular value of M. The rank-k truncated SVD is M k = U k Σ k Vk T = ( u 1 u k ) σ 1... ( v 1 v k ) T. σ k Theorem: (Eckart & Young, 1936) Min rank(h) k M H 2 = M M k 2 = σ k+1 (M).

10 Review: Rank-revealing Matrix factorizations: QR Given: Matrix M C m n and 1 l min(m, n) = n, Existence: QR factorization with column permutation Π ( ) Al B MΠ = Q l with 0 C l σ j (M) 1 + l(n l) σ j (A l ) σ j (M), j = 1,, l, σ l+1 (M) C l 2 σ l+1 (M) 1 + l(n l), where σ j ( ) is the j th largest singular value. Rank-revealing: A l reveals numerical rank of M.

11 Example: Kahan Matrix For s, c > 0 and s 2 + c 2 1, Kahan Matrix K n = S n C n : 1 c c c 1 c c S n = diag(1, s,, s n 1 ), C n = 1 c Kahan Matrix not in rank revealed form: (( ) n ) s σ min (K n ) = O s n c Little consensus on definition of reveal.

12 New: Spectrum-revealing factorizations (I): QR/CX Given: Matrix M C m n and 1 k l min(m, n) = n, Existence: QR factorization with column permutation Π ( Al B MΠ = Q l 0 C l ) with τ j = σ l+1 (M) σ j (M) j = 1,, k + 1, σ j (M) ( ) σ (( j Al )) B l σj (M) 1 + O τj 2 σ k+1 (M) MΠ QM k σ k+1 (M) 1 + O ( ) τk+1 2 ( cf. σ j (M) σ j (A l ), C l 2 σ l+1 (M) ) 1 + l(n l). 1 + l(n l) ( ) Al B M k = truncated SVD of l ; σ 0 j ( ) = j th largest singular value. QM k well approximates MΠ and reveals its leading singular values.

13

14 New: Spectrum-revealing factorizations (II) Cholesky Given: SPD matrix M R n n and 1 k l n, Existence: Cholesky factorization with diagonal permutation ( ΠMΠ T = LL T Al 0, L = B l C l ) with τ j = σ l+1 (M) σ j (M) σ j (M) 1 + O (τ j ) σ2 j ( Al B l ) σ j (M), j = 1,, k, σ k+1 (M) ΠMΠ T L k L T k σ k+1 (M) (1 + O (τ k+1 )) L k = truncated SVD of ( Al B l ).

15 New: Spectrum-revealing factorizations (II) LHL T Given: SPD matrix M R n n and 1 k l n, Existence: LHL T factorization with diagonal permutation ( ) ΠMΠ T = LL T Al 0, L =, M = Π T ( Al B l σ j (M) ( 1 + O τ 2 j ) ( Al B l ( ) ) σ j M B l C l ) ( ΠMΠ T ) ( A l B l ) ( Al B l σ j (M), j = 1,, k σ k+1 (M) M M k σ k+1 (M) ) Π 1 + O ( ) τk+1 2 M k = truncated SVD of M; τj = σ l+1(m) σ j (M)

16 New: Spectrum-revealing factorizations (III) LU Given: Matrix M C m n and 1 k l min(m, n) = n, Existence: LU with row, column permutations Π l, Π r ( L11 0 Π l MΠ r = LU, L = L 21 L 22 ) ( U11 U, U = 12 0 U 22 ) with τ j = σ l+1 (M) σ j (M), j = 1,, l σ j (M) 1 + O (τ j ) σ j (( L11 L 21 ) ( U 11 U 12 ) ) σ j (M), σ k+1 (M) M M k σ k+1 (M) (1 + O (τ k+1 )) M k = truncated SVD of ( L11 L 21 ) ( U 11 U 12 ).

17 New: Spectrum-revealing factorizations (III) CUR Given: Matrix M C m n and 1 k l min(m, n) = n, Existence: CUR with row, column permutations Π l, Π r ( L11 0 Π l MΠ r = LU, L = L 21 L 22 ) ( U11 U, U = 12 0 U 22 ) Π l MΠr = ( L11 L 21 ) ( L11 L 21 ) (Π l MΠ r ) ( U 11 U 12 ) ( U11 U 12 ). σ j (M) ( 1 + O τ 2 j ( ) ) σ j M σ j (M), j = 1,, k σ k+1 (M) M M k σ k+1 (M) 1 + O ( ) τk+1 2 M k = truncated SVD of M; τj = σ l+1(m) σ j (M)

18 Talks: Spectrum-Revealing Matrix Factorizations and Randomized Algorithms

19 New Algorithms (Ia) Solving linear systems of equations Ax = b: Standard method: Gaussian Elimination with Partial Pivoting (GEPP): Π A = LU: most efficient, but can be unstable. New method: randomized Gaussian Elimination with Complete Pivoting (RGECP): Π l AΠ r = LU: almost as efficient, but is always stable. (joint work with C. Melgaard.) Communication-avoiding version would be numerically stable, in contrast to CA-LU with partial pivoting.

20 New Algorithms (Ib) Column pivots random: Successive Schur Sampling. RGECP is O(rn 2 ) more flops than GEPP: Theorem: Given δ (0, 1). If ( ) n(n + 1) r > 32 ln, 2δ then the pivot growth factor of RGECP satisfies ρ(a) 3 e(n + 1)n ln(n) with probability greater than 1 δ.

21 New Algorithms (IIa) Low-rank Matrix Approximations Randomized algorithm for computing a Spectrum-revealing LU Decomposition (joint work with D. Anderson): First of its kind. Computes ( ) L11 Π l AΠ r LU, L =, U = ( ) U L 11 U without ever computing the Schur complement. Likely the most efficient for low-rank matrix approximation. Non-classical communication patterns: Computing/Updating random projection. Both row and column swaps. No Schur updating.

22 New Algorithms (IIb)

23 New Algorithms (III) Low-rank Matrix Approximations Randomized algorithm for computing a Spectrum-revealing QR factorization (J. Duersch, Nov. 2015) ( ) R11 R AΠ Q Never need to update trailing submatrix in R. Up to twice as fast as truncated QR.

24 New Algorithms (IV) Low-rank Matrix Approximations Randomized algorithm for computing a Spectrum-revealing Cholesky factorization Randomized block left looking Cholesky. Much promise in quality and efficiency.

25 Numerical Experiments for RGECP (I) Fortran implementation, optimized BLAS. Randomized GECP: Execution Time Relative to GEPP

26 Numerical Experiments for RGECP (II) GEPP and Randomized GECP Element Growth GERCP Wilkinson GEPP Wilkinson GERCP Gen Wilkinson GEPP Gen Wilkinson GERCP Volterra GEPP Volterra Element growth Matrix size n

27 Numerical Experiments for RGECP (III) GEPP and Randomized GECP Residuals for random linear systems.

28 Numerical Experiments for Spectrum-revealing LU (I) SRLU vs. truncated LU, execution times.

29 Numerical Experiments for Spectrum-revealing LU (II) SRLU vs. truncated LU, Complexity comparison.

30 Numerical Experiments for Spectrum-revealing LU (III) SRLU vs. truncated SVD.

31 Numerical Experiments for Spectrum-revealing QR (I) Edison (12 core, shared memory machine). Matrix A is dgeqp2 (full decomposition), 75.84s dgeqrf (full decomposition), 5.91s truncated k=1200 randomized qrcp, 1.59s truncated k=600 randomized qrcp, 0.76s

32 Numerical Experiments for Spectrum-revealing QR (II)

33 Numerical Experiments for Spectrum-revealing QR (III)

34 Numerical Experiments for Spectrum-revealing QR (IV)

35 Conclusions A new suite of randomized algorithms for numerical linear algebra and low-rank matrix approximations, along with theoretical analysis. Codes in different stages of development. Communication-avoiding variants needed. Thank you

Low-Rank Approximations, Random Sampling and Subspace Iteration

Low-Rank Approximations, Random Sampling and Subspace Iteration Modified from Talk in 2012 For RNLA study group, March 2015 Ming Gu, UC Berkeley mgu@math.berkeley.edu Low-Rank Approximations, Random Sampling and Subspace Iteration Content! Approaches for low-rank matrix

More information

LU factorization with Panel Rank Revealing Pivoting and its Communication Avoiding version

LU factorization with Panel Rank Revealing Pivoting and its Communication Avoiding version 1 LU factorization with Panel Rank Revealing Pivoting and its Communication Avoiding version Amal Khabou Advisor: Laura Grigori Université Paris Sud 11, INRIA Saclay France SIAMPP12 February 17, 2012 2

More information

Solving linear equations with Gaussian Elimination (I)

Solving linear equations with Gaussian Elimination (I) Term Projects Solving linear equations with Gaussian Elimination The QR Algorithm for Symmetric Eigenvalue Problem The QR Algorithm for The SVD Quasi-Newton Methods Solving linear equations with Gaussian

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 208 LECTURE 3 need for pivoting we saw that under proper circumstances, we can write A LU where 0 0 0 u u 2 u n l 2 0 0 0 u 22 u 2n L l 3 l 32, U 0 0 0 l n l

More information

Rank revealing factorizations, and low rank approximations

Rank revealing factorizations, and low rank approximations Rank revealing factorizations, and low rank approximations L. Grigori Inria Paris, UPMC January 2018 Plan Low rank matrix approximation Rank revealing QR factorization LU CRTP: Truncated LU factorization

More information

Matrix decompositions

Matrix decompositions Matrix decompositions Zdeněk Dvořák May 19, 2015 Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ T. The

More information

LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version

LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version Amal Khabou James Demmel Laura Grigori Ming Gu Electrical Engineering and Computer Sciences University of California

More information

Rank revealing factorizations, and low rank approximations

Rank revealing factorizations, and low rank approximations Rank revealing factorizations, and low rank approximations L. Grigori Inria Paris, UPMC February 2017 Plan Low rank matrix approximation Rank revealing QR factorization LU CRTP: Truncated LU factorization

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Direct Methods Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) Linear Systems: Direct Solution Methods Fall 2017 1 / 14 Introduction The solution of linear systems is one

More information

Numerical Linear Algebra

Numerical Linear Algebra Chapter 3 Numerical Linear Algebra We review some techniques used to solve Ax = b where A is an n n matrix, and x and b are n 1 vectors (column vectors). We then review eigenvalues and eigenvectors and

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Linear Algebra Review 1 / 16 Midterm Exam Tuesday Feb

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation

An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation David Anderson * 1 Ming Gu * 1 Abstract Low-rank matrix approximation is a fundamental tool in data analysis for processing

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix EE507 - Computational Techniques for EE 7. LU factorization Jitkomut Songsiri factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

A fast randomized algorithm for approximating an SVD of a matrix

A fast randomized algorithm for approximating an SVD of a matrix A fast randomized algorithm for approximating an SVD of a matrix Joint work with Franco Woolfe, Edo Liberty, and Vladimir Rokhlin Mark Tygert Program in Applied Mathematics Yale University Place July 17,

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information

Introduction to communication avoiding algorithms for direct methods of factorization in Linear Algebra

Introduction to communication avoiding algorithms for direct methods of factorization in Linear Algebra Introduction to communication avoiding algorithms for direct methods of factorization in Linear Algebra Laura Grigori Abstract Modern, massively parallel computers play a fundamental role in a large and

More information

Subset Selection. Deterministic vs. Randomized. Ilse Ipsen. North Carolina State University. Joint work with: Stan Eisenstat, Yale

Subset Selection. Deterministic vs. Randomized. Ilse Ipsen. North Carolina State University. Joint work with: Stan Eisenstat, Yale Subset Selection Deterministic vs. Randomized Ilse Ipsen North Carolina State University Joint work with: Stan Eisenstat, Yale Mary Beth Broadbent, Martin Brown, Kevin Penner Subset Selection Given: real

More information

Continuous analogues of matrix factorizations NASC seminar, 9th May 2014

Continuous analogues of matrix factorizations NASC seminar, 9th May 2014 Continuous analogues of matrix factorizations NSC seminar, 9th May 2014 lex Townsend DPhil student Mathematical Institute University of Oxford (joint work with Nick Trefethen) Many thanks to Gil Strang,

More information

14.2 QR Factorization with Column Pivoting

14.2 QR Factorization with Column Pivoting page 531 Chapter 14 Special Topics Background Material Needed Vector and Matrix Norms (Section 25) Rounding Errors in Basic Floating Point Operations (Section 33 37) Forward Elimination and Back Substitution

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Decompositions, numerical aspects Gerard Sleijpen and Martin van Gijzen September 27, 2017 1 Delft University of Technology Program Lecture 2 LU-decomposition Basic algorithm Cost

More information

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects Numerical Linear Algebra Decompositions, numerical aspects Program Lecture 2 LU-decomposition Basic algorithm Cost Stability Pivoting Cholesky decomposition Sparse matrices and reorderings Gerard Sleijpen

More information

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 18th,

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 6 Matrix Models Section 6.2 Low Rank Approximation Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Edgar

More information

Communication Avoiding LU Factorization using Complete Pivoting

Communication Avoiding LU Factorization using Complete Pivoting Communication Avoiding LU Factorization using Complete Pivoting Implementation and Analysis Avinash Bhardwaj Department of Industrial Engineering and Operations Research University of California, Berkeley

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting

Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting James Demmel Laura Grigori Sebastien Cayrols Electrical Engineering and Computer Sciences University

More information

Algorithm 853: an Efficient Algorithm for Solving Rank-Deficient Least Squares Problems

Algorithm 853: an Efficient Algorithm for Solving Rank-Deficient Least Squares Problems Algorithm 853: an Efficient Algorithm for Solving Rank-Deficient Least Squares Problems LESLIE FOSTER and RAJESH KOMMU San Jose State University Existing routines, such as xgelsy or xgelsd in LAPACK, for

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-14 1. There was a goof in HW 2, problem 1 (now fixed) please re-download if you have already started looking at it. 2. CS colloquium (4:15 in Gates G01) this Thurs is Margaret

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 6 September 12, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 20 Table of Contents 1 Ming Zhong (JHU) AMS Fall 2018 2 / 20 Solving Linear Systems A

More information

Vector Spaces, Orthogonality, and Linear Least Squares

Vector Spaces, Orthogonality, and Linear Least Squares Week Vector Spaces, Orthogonality, and Linear Least Squares. Opening Remarks.. Visualizing Planes, Lines, and Solutions Consider the following system of linear equations from the opener for Week 9: χ χ

More information

Lecture 2 Decompositions, perturbations

Lecture 2 Decompositions, perturbations March 26, 2018 Lecture 2 Decompositions, perturbations A Triangular systems Exercise 2.1. Let L = (L ij ) be an n n lower triangular matrix (L ij = 0 if i > j). (a) Prove that L is non-singular if and

More information

c 2013 Society for Industrial and Applied Mathematics

c 2013 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 34, No. 3, pp. 1401 1429 c 2013 Society for Industrial and Applied Mathematics LU FACTORIZATION WITH PANEL RANK REVEALING PIVOTING AND ITS COMMUNICATION AVOIDING VERSION

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b AM 205: lecture 7 Last time: LU factorization Today s lecture: Cholesky factorization, timing, QR factorization Reminder: assignment 1 due at 5 PM on Friday September 22 LU Factorization LU factorization

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 A cautionary tale Notes for 2016-10-05 You have been dropped on a desert island with a laptop with a magic battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.

More information

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Lars Eldén Department of Mathematics, Linköping University 1 April 2005 ERCIM April 2005 Multi-Linear

More information

Notes on Solving Linear Least-Squares Problems

Notes on Solving Linear Least-Squares Problems Notes on Solving Linear Least-Squares Problems Robert A. van de Geijn The University of Texas at Austin Austin, TX 7871 October 1, 14 NOTE: I have not thoroughly proof-read these notes!!! 1 Motivation

More information

One Picture and a Thousand Words Using Matrix Approximtions October 2017 Oak Ridge National Lab Dianne P. O Leary c 2017

One Picture and a Thousand Words Using Matrix Approximtions October 2017 Oak Ridge National Lab Dianne P. O Leary c 2017 One Picture and a Thousand Words Using Matrix Approximtions October 2017 Oak Ridge National Lab Dianne P. O Leary c 2017 1 One Picture and a Thousand Words Using Matrix Approximations Dianne P. O Leary

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

Orthogonal Transformations

Orthogonal Transformations Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark DM559 Linear and Integer Programming LU Factorization Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides by Lieven Vandenberghe, UCLA] Outline

More information

V C V L T I 0 C V B 1 V T 0 I. l nk

V C V L T I 0 C V B 1 V T 0 I. l nk Multifrontal Method Kailai Xu September 16, 2017 Main observation. Consider the LDL T decomposition of a SPD matrix [ ] [ ] [ ] [ ] B V T L 0 I 0 L T L A = = 1 V T V C V L T I 0 C V B 1 V T, 0 I where

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME MS&E 38 (CME 338 Large-Scale Numerical Optimization Course description Instructor: Michael Saunders Spring 28 Notes : Review The course teaches

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

Rank Revealing QR factorization. F. Guyomarc h, D. Mezher and B. Philippe

Rank Revealing QR factorization. F. Guyomarc h, D. Mezher and B. Philippe Rank Revealing QR factorization F. Guyomarc h, D. Mezher and B. Philippe 1 Outline Introduction Classical Algorithms Full matrices Sparse matrices Rank-Revealing QR Conclusion CSDA 2005, Cyprus 2 Situation

More information

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM 33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM (UPDATED MARCH 17, 2018) The final exam will be cumulative, with a bit more weight on more recent material. This outline covers the what we ve done since the

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725 Consider Last time: proximal Newton method min x g(x) + h(x) where g, h convex, g twice differentiable, and h simple. Proximal

More information

LAPACK-Style Codes for Pivoted Cholesky and QR Updating. Hammarling, Sven and Higham, Nicholas J. and Lucas, Craig. MIMS EPrint: 2006.

LAPACK-Style Codes for Pivoted Cholesky and QR Updating. Hammarling, Sven and Higham, Nicholas J. and Lucas, Craig. MIMS EPrint: 2006. LAPACK-Style Codes for Pivoted Cholesky and QR Updating Hammarling, Sven and Higham, Nicholas J. and Lucas, Craig 2007 MIMS EPrint: 2006.385 Manchester Institute for Mathematical Sciences School of Mathematics

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0 GENE H GOLUB 1 What is Numerical Analysis? In the 1973 edition of the Webster s New Collegiate Dictionary, numerical analysis is defined to be the

More information

Solving Dense Linear Systems I

Solving Dense Linear Systems I Solving Dense Linear Systems I Solving Ax = b is an important numerical method Triangular system: [ l11 l 21 if l 11, l 22 0, ] [ ] [ ] x1 b1 = l 22 x 2 b 2 x 1 = b 1 /l 11 x 2 = (b 2 l 21 x 1 )/l 22 Chih-Jen

More information

Communication-avoiding LU and QR factorizations for multicore architectures

Communication-avoiding LU and QR factorizations for multicore architectures Communication-avoiding LU and QR factorizations for multicore architectures DONFACK Simplice INRIA Saclay Joint work with Laura Grigori INRIA Saclay Alok Kumar Gupta BCCS,Norway-5075 16th April 2010 Communication-avoiding

More information

Accurate and Efficient Matrix Computations with Totally Positive Generalized Vandermonde Matrices Using Schur Functions

Accurate and Efficient Matrix Computations with Totally Positive Generalized Vandermonde Matrices Using Schur Functions Accurate and Efficient Matrix Computations with Totally Positive Generalized Matrices Using Schur Functions Plamen Koev Department of Mathematics UC Berkeley Joint work with Prof. James Demmel Supported

More information

Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting

Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting Laura Grigori, Sebastien Cayrols, James W. Demmel To cite this version: Laura Grigori, Sebastien

More information

Lecture 5: Randomized methods for low-rank approximation

Lecture 5: Randomized methods for low-rank approximation CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 5: Randomized methods for low-rank approximation Gunnar Martinsson The University of Colorado at Boulder Research

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

Orthonormal Transformations and Least Squares

Orthonormal Transformations and Least Squares Orthonormal Transformations and Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 30, 2009 Applications of Qx with Q T Q = I 1. solving

More information

Accelerating linear algebra computations with hybrid GPU-multicore systems.

Accelerating linear algebra computations with hybrid GPU-multicore systems. Accelerating linear algebra computations with hybrid GPU-multicore systems. Marc Baboulin INRIA/Université Paris-Sud joint work with Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

More information

Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.)

Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.) page 121 Index (Page numbers set in bold type indicate the definition of an entry.) A absolute error...26 componentwise...31 in subtraction...27 normwise...31 angle in least squares problem...98,99 approximation

More information

Roundoff Error. Monday, August 29, 11

Roundoff Error. Monday, August 29, 11 Roundoff Error A round-off error (rounding error), is the difference between the calculated approximation of a number and its exact mathematical value. Numerical analysis specifically tries to estimate

More information

arxiv: v3 [math.na] 29 Aug 2016

arxiv: v3 [math.na] 29 Aug 2016 RSVDPACK: An implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures arxiv:1502.05366v3 [math.na]

More information

Bindel, Fall 2009 Matrix Computations (CS 6210) Week 8: Friday, Oct 17

Bindel, Fall 2009 Matrix Computations (CS 6210) Week 8: Friday, Oct 17 Logistics Week 8: Friday, Oct 17 1. HW 3 errata: in Problem 1, I meant to say p i < i, not that p i is strictly ascending my apologies. You would want p i > i if you were simply forming the matrices and

More information

BlockMatrixComputations and the Singular Value Decomposition. ATaleofTwoIdeas

BlockMatrixComputations and the Singular Value Decomposition. ATaleofTwoIdeas BlockMatrixComputations and the Singular Value Decomposition ATaleofTwoIdeas Charles F. Van Loan Department of Computer Science Cornell University Supported in part by the NSF contract CCR-9901988. Block

More information

Matrix Computations: Direct Methods II. May 5, 2014 Lecture 11

Matrix Computations: Direct Methods II. May 5, 2014 Lecture 11 Matrix Computations: Direct Methods II May 5, 2014 ecture Summary You have seen an example of how a typical matrix operation (an important one) can be reduced to using lower level BS routines that would

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Linear Least-Squares Data Fitting

Linear Least-Squares Data Fitting CHAPTER 6 Linear Least-Squares Data Fitting 61 Introduction Recall that in chapter 3 we were discussing linear systems of equations, written in shorthand in the form Ax = b In chapter 3, we just considered

More information

LAPACK-Style Codes for Pivoted Cholesky and QR Updating

LAPACK-Style Codes for Pivoted Cholesky and QR Updating LAPACK-Style Codes for Pivoted Cholesky and QR Updating Sven Hammarling 1, Nicholas J. Higham 2, and Craig Lucas 3 1 NAG Ltd.,Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, England, sven@nag.co.uk,

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

1 GSW Sets of Systems

1 GSW Sets of Systems 1 Often, we have to solve a whole series of sets of simultaneous equations of the form y Ax, all of which have the same matrix A, but each of which has a different known vector y, and a different unknown

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 12: Gaussian Elimination and LU Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Gaussian Elimination

More information

AM205: Assignment 2. i=1

AM205: Assignment 2. i=1 AM05: Assignment Question 1 [10 points] (a) [4 points] For p 1, the p-norm for a vector x R n is defined as: ( n ) 1/p x p x i p ( ) i=1 This definition is in fact meaningful for p < 1 as well, although

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

More information

Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices

Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices Jaehyun Park June 1 2016 Abstract We consider the problem of writing an arbitrary symmetric matrix as

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Estimating the Largest Elements of a Matrix

Estimating the Largest Elements of a Matrix Estimating the Largest Elements of a Matrix Samuel Relton samuel.relton@manchester.ac.uk @sdrelton samrelton.com blog.samrelton.com Joint work with Nick Higham nick.higham@manchester.ac.uk May 12th, 2016

More information

Randomized Numerical Linear Algebra: Review and Progresses

Randomized Numerical Linear Algebra: Review and Progresses ized ized SVD ized : Review and Progresses Zhihua Department of Computer Science and Engineering Shanghai Jiao Tong University The 12th China Workshop on Machine Learning and Applications Xi an, November

More information

A Tour of the Lanczos Algorithm and its Convergence Guarantees through the Decades

A Tour of the Lanczos Algorithm and its Convergence Guarantees through the Decades A Tour of the Lanczos Algorithm and its Convergence Guarantees through the Decades Qiaochu Yuan Department of Mathematics UC Berkeley Joint work with Prof. Ming Gu, Bo Li April 17, 2018 Qiaochu Yuan Tour

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 GENE H GOLUB Issues with Floating-point Arithmetic We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently

More information

forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms

forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms Christopher Engström November 14, 2014 Hermitian LU QR echelon Contents of todays lecture Some interesting / useful / important of matrices Hermitian LU QR echelon Rewriting a as a product of several matrices.

More information

Performance of Random Sampling for Computing Low-rank Approximations of a Dense Matrix on GPUs

Performance of Random Sampling for Computing Low-rank Approximations of a Dense Matrix on GPUs Performance of Random Sampling for Computing Low-rank Approximations of a Dense Matrix on GPUs Théo Mary, Ichitaro Yamazaki, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Jack Dongarra presenter 1 Low-Rank

More information

12. Cholesky factorization

12. Cholesky factorization L. Vandenberghe ECE133A (Winter 2018) 12. Cholesky factorization positive definite matrices examples Cholesky factorization complex positive definite matrices kernel methods 12-1 Definitions a symmetric

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU LU Factorization To further improve the efficiency of solving linear systems Factorizations of matrix A : LU and QR LU Factorization Methods: Using basic Gaussian Elimination (GE) Factorization of Tridiagonal

More information

Sparse BLAS-3 Reduction

Sparse BLAS-3 Reduction Sparse BLAS-3 Reduction to Banded Upper Triangular (Spar3Bnd) Gary Howell, HPC/OIT NC State University gary howell@ncsu.edu Sparse BLAS-3 Reduction p.1/27 Acknowledgements James Demmel, Gene Golub, Franc

More information

to be more efficient on enormous scale, in a stream, or in distributed settings.

to be more efficient on enormous scale, in a stream, or in distributed settings. 16 Matrix Sketching The singular value decomposition (SVD) can be interpreted as finding the most dominant directions in an (n d) matrix A (or n points in R d ). Typically n > d. It is typically easy to

More information

Pivoting. Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3

Pivoting. Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3 Pivoting Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3 In the previous discussions we have assumed that the LU factorization of A existed and the various versions could compute it in a stable manner.

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 1. qr and complete orthogonal factorization poor man s svd can solve many problems on the svd list using either of these factorizations but they

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information