Orthogonal Transformations

Size: px
Start display at page:

Download "Orthogonal Transformations"

Transcription

1 Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3

2 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations (today) 3. solving eigenvalue problems (next time) 4. finding the singular value decomposition Orthogonal Transformations p. 2/3

3 Stability of orthogonal transformations We recall: Suppose Q is an orthogonal matrix, that is Q T Q = I. If x = x + e is an approximation to x then Qx = Qx + Qe and Qe 2 = e 2. If A R m,n and A = A + E is an approximation to A then QA = QA + QE and QE 2 = E 2. Conculsion: when an orthogonal transformation is applied to a vector or a matrix the error will not grow. Orthogonal Transformations p. 3/3

4 QR-Decomposition and Factorization Definition 1. Let A R m,n with m n 1. We say that A = QR is a QR-decomposition of A if Q R m,m is square and orthogonal and R = R 1 0 with R 1 R n,n upper triangular and 0 R m n,n the zero matrix. We say that A = QR is a QR-factorization of A if Q R m,n has orthonormal columns and R = R 1 R n,n is upper triangular. Orthogonal Transformations p. 4/3

5 QR decomp QR fact It is easy to construct a QR-factorization from a QR-decomposition A = QR. We simply partition Q = [Q 1, Q 2 ] and R = and R 1 R n,n. R 1 0 where Q 1 R m,n Then A = Q 1 R 1 is a QR-factorization of A. Conversely we construct the QR-decomposition from the QR-factorization A = Q 1 R 1 by extending the columns of Q 1 to an orthonormal basis Q = [Q 1, Q 2 ] for R m and defining R = [ R 1 0 ] R m,n. If m = n then the two factorizations are the same. Orthogonal Transformations p. 5/3

6 example An example of a QR-decomposition is A = = = QR, while a QR-factorization A = Q 1 R 1 is obtained by dropping the last column of Q and the last row of R so that A = = Q 1 R Orthogonal Transformations p. 6/3

7 Existence of QR Factorization Lemma 2. A matrix A R m,n with linearly independent columns has a QR-decomposition and a QR-factorization. The QR-factorization is unique if R has positive diagonal entries. Proof. Existence Cholesky factorization A T A = R T 1 R 1, R 1 R n,n is upper triangular and nonsingular. Q 1 := AR 1 1 Q T 1 Q 1 = I. QR-factorization A = Q 1 R 1 Uniqueness A = Q 1 R 1 A T A = R T 1 R 1 Cholesky factorization unique implies R 1 unique and Q 1 = AR 1 1 unique. Orthogonal Transformations p. 7/3

8 QR and Gram-Schmidt If A R m,n has rank n, then the set of columns {a 1,...,a n } forms a basis for span(a) and the Gram-Schmidt orthogonalization process takes the form v 1 = a 1, v j = a j j 1 i=1 a T j v i v T i v v i, for j = 2,...,n. i {v 1,...,v n } is an orthogonal basis for span(a). a 1 = v 1, a j = j 1 i=1 ρ ij v i + v j, where ρ ij = at j v i v T i v i Orthogonal Transformations p. 8/3

9 GS=QR-factorization a 1 = v 1, a j = j 1 i=1 ρ ij v i + v j, A = V ˆR, where V := [v 1,...,v n ] R m,n and ˆR is unit upper triangular. Since {v 1,...,v n } is a basis for span(a) the matrix D := diag( v 1 2,..., v n 2 ) is nonsingular, the matrix Q 1 := V D 1 = [ v 1 v 1 2,..., v n v n 2 ] is orthogonal. Therefore, A = Q 1 R 1, with R 1 := D ˆR is a QR-factorization of A with positive diagonal entries in R 1. Orthogonal Transformations p. 9/3

10 QR and Least Squares Suppose A R m,n has rank n and let b R m. Consider the least squares problem min x R n Ax b 2. Suppose A = QR is a QR-decomposition of A. We partition Q and R as Q = [Q 1 Q 2 ] and R = [ ] R 1 0, where Q 1 R m,n and R 1 R n,n. [ ] Ax b 2 2 = QRx b 2 2 = Rx Q T b 2 R 1 x Q T 1 b 2 = Q T 2 b = R 1 x Q T 1 b QT 2 b 2 2. Thus Ax b 2 Q T 2 b 2 for all x R n with equality if R 1 x = Q T 1 b. 2 2 Orthogonal Transformations p. 10/3

11 Least Squares using QR 1. Find a QR-factorization A = Q 1 R 1 of A. 2. Solve R 1 x = Q T 1 b for the least squares solution x. Consider the least squares problem with [ ] A = and b = [ ]. The least squares solution x is found by solving the system [ ] [ x1 ] = 1 [ ] [ 11 ] [ 20 ] x = 1 0 and we find x = [1, 0, 0] T. Orthogonal Transformations p. 11/3

12 Finding QR Gram Schmidt is numerically unstable Use instead orthogonal transformations they are stable study Householder transformations and Givens rotations Orthogonal Transformations p. 12/3

13 Householder Transformations A matrix H R n,n of the form H := I uu T, where u R n and u T u = 2 is called a Householder transformation. For n = 2 we find H = [ 1 u 2 1 u 1u 2 u 2 u 1 1 u 2 2 A Householder transformation is symmetric and orthogonal. In particular, H T H = H 2 = (I uu T )(I uu T ) = I 2uu T + u(u T u)u T = I. ]. Orthogonal Transformations p. 13/3

14 Alternative representations Householder himself used I 2uu T, where u T u = 1. For any nonzero v R n the matrix H := I 2 vvt v T v is a Householder transformation. In fact H = I uu T, where u := 2 v v 2. Orthogonal Transformations p. 14/3

15 Transformation Lemma 3. Suppose x,y R n with x 2 = y 2 and v := x y 0. Then ( I 2 vvt v T v) x = y. Proof. Since x T x = y T y we have v T v = (x y) T (x y) = 2x T x 2y T x = 2v T x. (1) ( ) But then I 2 vvt v T v x = x 2v T x v T v v = x v = y. Orthogonal Transformations p. 15/3

16 Geometric Interpretation Hx = y Hx is the mirror image (reflection) of x H = I 2vvT v T v = P vvt vvt, where P := I v T v v T v Px is the orthogonal projection of x into span{x + y} Px = x vt x v T v v = (1) x 1 2 v = 1 (x + y) 2 x+y y=hx Px x Orthogonal Transformations p. 16/3

17 Zero out entries x R n \ 0 and y = αe 1. If α 2 = x T x then x 2 = y 2. Two solutions α = + x 2 and α = x 2 Choose α to have opposite sign of x 1. obtain y x so H exists even if x = e 1. Numerical stability since we avoid cancelation in the subtraction v 1 = x 1 α. Orthogonal Transformations p. 17/3

18 Formulas for an algorithm Lemma 1. For a nonzero vector x R n we define { x 2 if x 1 > 0 α := + x 2 otherwise, (2) and H := I uu T with u = x/α e 1 1 x1 /α. (3) Then H is a Householder transformation and Hx = αe 1. Orthogonal Transformations p. 18/3

19 Proof Let y := αe 1 and v = x y. By construction x T x = y T y and v 0. By Lemma 3 we have Hx = αe 1, where H = I 2 vvt v T v is a Householder transformation. Since 0 < v T v = (x αe 1 ) T (x αe 1 ) = x T x 2αx 1 +α 2 = 2α(α x 1 ), we find H = I 2(x αe 1)(x αe 1 ) T 2α(α x 1 ) = I (x/α e 1)(x/α e 1 ) T 1 x 1 /α = I uu T. Orthogonal Transformations p. 19/3

20 example For x := [1, 2, 2] T we have x 2 = 3 and since x 1 > 0 we choose α = 3. We find u = [2, 1, 1] T / 3 and H = I 1 2 [ ] = We see that Hx = 3e 1. Orthogonal Transformations p. 20/3

21 Algorithm housegen To given x R n the following algorithm computes a = α and the vector u so that (I uu T )x = αe 1. function [ u, a ]= housegen ( x ) a=norm( x ) ; u=x ; i f a==0 u (1)= sqrt ( 2 ) ; return ; end i f u(1)>0 a= a ; end u=u / a ; u (1)=u(1) 1; u=u / sqrt( u ( 1 ) ) ; Orthogonal Transformations p. 21/3

22 Zero only part of a vector Suppose y R k, z R n k and α 2 = z T z. Consider finding a Householder transformation H such that H [ y z ] = [ y αe 1 ]. Let [û, α] = housegen(z) and set u T = [0 T, û T ]. Then H = I uu T = I 0 0 I 0 [ ] 0 û û = I 0, 0 Ĥ where Ĥ = I ûût. Since u T u = û T û = 2 we see that H and transformations. Ĥ are Householder Orthogonal Transformations p. 22/3

23 Householder Triangulation x x x x x x x x x x x x H 1 r 11 r 12 r 13 0 x x 0 x x 0 x x H 2 r 11 r 12 r 13 0 r 22 r x 0 0 x A 1 = D 1 A 2 = B 2 C 2 A 3 = B 3 C 3 A 4 = 0 D 2 0 D 3 H 3 r 11 r 12 r 13 0 r 22 r r R 1 0 The transformation is applied to the lower right block. A = QR, where Q := H 1 H 2 H n and R := R 1 0. Orthogonal Transformations p. 23/3

24 Algorithm houselsq Suppose A R m,n has rank n and that b R m. This algorithm uses Householder transformations to solve the least squares problem min x Ax b 2 if m > n and the linear system Ax = b if m = n. It uses housegen and backsolve. function x = houselsq (A, b ) [m, n ]= size (A ) ; A=[A b ] ; for k =1:min ( n,m 1) [ v, A( k, k ) ] = housegen (A( k :m, k ) ) ; A( k :m, k +1: n+1)=a( k :m, k +1: n+1) v (v A( k :m, k +1: n + 1 ) ) ; end x=backsolve (A( 1 : n, 1 : n ),A ( 1 : n, n + 1 ) ) ; Orthogonal Transformations p. 24/3

25 QR without full rank Theorem 2. Suppose m n 1 and A R m,n. Then A has a QR-decomposition and a QR-factorization. Orthogonal Transformations p. 25/3

26 Compare with normal equations A = QR and R 1 x = Q T 1 b compared to A T Ax = A T b Flops: Householder 2mn 2 2n 3 /3, Normal eqn mn 2. Householder twice as expensive for large m Householder is numerically stable Normal equations often ill-conditioned Orthogonal Transformations p. 26/3

27 Squaring the condition number Recall that the 2-norm condition number of a matrix is the square root of the largest eigenvalue of A T A. It follows that the 2-norm condition number of A T A is the square of the 2-norm condition number of A. Thus if A is mildly ill-conditioned the normal equations can be quite ill-conditioned solving the normal equations can give inaccurate results. Orthogonal Transformations p. 27/3

28 What about linear systems? houselsq can be used to solve linear systems. If A is nonsingular and m = n then the output x will be the solution of Ax = b. This follows since the QR-decomposition and QR-factorization are the same when A is square. Therefore, if Rx = Q T b then Ax b 2 = QRx b 2 = Rx Q T b 2 = 0. So Algorithm 24 can be used as an alternative to Gaussian elimination. The two methods are similar since they both reduce A to upper triangular form using certain transformations. Orthogonal Transformations p. 28/3

29 Which method is better? Linear systems can be constructed where Gaussian elimination with partial pivoting will fail numerically. On the other hand the transformations used in Householder triangulation are orthogonal so the method is quite stable. So why is Gaussian elimination more popular than Householder triangulation? One reason is that the number of flops when m = n is given by 4n 3 /3, while the count for Gaussian elimination is half of that. Numerical stability can be a problem with Gaussian elimination, but years and years of experience shows that it works well for most practical problems and pivoting is often not necessary. Tradition might also play a role. Orthogonal Transformations p. 29/3

30 Rotations In some applications, the matrix we want to triangulate has a special structure. Suppose for example that A R n,n is square and upper Hessenberg as illustrated by a Wilkinson diagram for n = 4 x x x x x x x x A = 0 x x x. 0 0 x x Only one entry in each column needs to be annihilated and a full Householder transformation will be inefficient. In this case we can use a simpler transformation. Orthogonal Transformations p. 30/3

31 Givens Rotations Definition 3. A plane rotation (also called a Given s rotation) is an orthogonal matrix of the form P := [ ] c s, where c 2 + s 2 = 1. s c There is a unique angle θ [0, 2π) such that c = cos θ and s = sinθ. x θ y=px Figure 1: Clockwise rotation. Orthogonal Transformations p. 31/3

32 Zero in one component Suppose x = [ x 1 x 2 ] 0, c := x 1 r, s := x 2 r, r := x 2. Then Px = 1 r [ x 1 x 2 x 2 x 1 ] [ x 1 x 2 ] = 1 r [ x x2 2 0 ] = [ ] r 0, and we have introduced a zero in x. We can take P = I when x = 0. Orthogonal Transformations p. 32/3

33 Rotation in the i, j-plane For 1 i < j n we define a rotation in the i,j-plane as a matrix P ij = (p kl ) R n,n by p kl = δ kl except for positions ii,jj,ij,ji, which are given by [ ] [ ] p ii p ij c s =, where c 2 + s 2 = 1. s c p ji p jj P 23 = [ ] 0 c s 0 0 s c Orthogonal Transformations p. 33/3

34 Triangulating an upper Hessenberg ma A = [ ] x x x x 0 x x x 0 0 x x P 12 [ r11 r 12 r 13 r 14 0 x x x 0 x x x 0 0 x x ] P 23 [ r11 r 12 r 13 r 14 0 r 22 r 23 r x x 0 0 x x ] P 34 [ r11 r 12 r 13 0 r 22 r r Orthogonal Transformations p. 34/3

Orthonormal Transformations and Least Squares

Orthonormal Transformations and Least Squares Orthonormal Transformations and Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 30, 2009 Applications of Qx with Q T Q = I 1. solving

More information

Orthonormal Transformations

Orthonormal Transformations Orthonormal Transformations Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 25, 2010 Applications of transformation Q : R m R m, with Q T Q = I 1.

More information

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Lecture 8: QR Decomposition

More information

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 26, 2010 Linear system Linear system Ax = b, A C m,n, b C m, x C n. under-determined

More information

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition AM 205: lecture 8 Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition QR Factorization A matrix A R m n, m n, can be factorized

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

Linear Analysis Lecture 16

Linear Analysis Lecture 16 Linear Analysis Lecture 16 The QR Factorization Recall the Gram-Schmidt orthogonalization process. Let V be an inner product space, and suppose a 1,..., a n V are linearly independent. Define q 1,...,

More information

Numerical Linear Algebra Chap. 2: Least Squares Problems

Numerical Linear Algebra Chap. 2: Least Squares Problems Numerical Linear Algebra Chap. 2: Least Squares Problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation TUHH Heinrich Voss Numerical Linear Algebra

More information

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u MATH 434/534 Theoretical Assignment 7 Solution Chapter 7 (71) Let H = I 2uuT Hu = u (ii) Hv = v if = 0 be a Householder matrix Then prove the followings H = I 2 uut Hu = (I 2 uu )u = u 2 uut u = u 2u =

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 7: More on Householder Reflectors; Least Squares Problems Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 15 Outline

More information

This can be accomplished by left matrix multiplication as follows: I

This can be accomplished by left matrix multiplication as follows: I 1 Numerical Linear Algebra 11 The LU Factorization Recall from linear algebra that Gaussian elimination is a method for solving linear systems of the form Ax = b, where A R m n and bran(a) In this method

More information

The QR Factorization

The QR Factorization The QR Factorization How to Make Matrices Nicer Radu Trîmbiţaş Babeş-Bolyai University March 11, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) The QR Factorization March 11, 2009 1 / 25 Projectors A projector

More information

Matrix decompositions

Matrix decompositions Matrix decompositions Zdeněk Dvořák May 19, 2015 Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ T. The

More information

Least-Squares Systems and The QR factorization

Least-Squares Systems and The QR factorization Least-Squares Systems and The QR factorization Orthogonality Least-squares systems. The Gram-Schmidt and Modified Gram-Schmidt processes. The Householder QR and the Givens QR. Orthogonality The Gram-Schmidt

More information

Numerical Methods. Elena loli Piccolomini. Civil Engeneering. piccolom. Metodi Numerici M p. 1/??

Numerical Methods. Elena loli Piccolomini. Civil Engeneering.  piccolom. Metodi Numerici M p. 1/?? Metodi Numerici M p. 1/?? Numerical Methods Elena loli Piccolomini Civil Engeneering http://www.dm.unibo.it/ piccolom elena.loli@unibo.it Metodi Numerici M p. 2/?? Least Squares Data Fitting Measurement

More information

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky

Lecture 2 INF-MAT : , LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Lecture 2 INF-MAT 4350 2009: 7.1-7.6, LU, symmetric LU, Positve (semi)definite, Cholesky, Semi-Cholesky Tom Lyche and Michael Floater Centre of Mathematics for Applications, Department of Informatics,

More information

MATH 532: Linear Algebra

MATH 532: Linear Algebra MATH 532: Linear Algebra Chapter 5: Norms, Inner Products and Orthogonality Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2015 fasshauer@iit.edu MATH 532 1 Outline

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 1. qr and complete orthogonal factorization poor man s svd can solve many problems on the svd list using either of these factorizations but they

More information

Since the determinant of a diagonal matrix is the product of its diagonal elements it is trivial to see that det(a) = α 2. = max. A 1 x.

Since the determinant of a diagonal matrix is the product of its diagonal elements it is trivial to see that det(a) = α 2. = max. A 1 x. APPM 4720/5720 Problem Set 2 Solutions This assignment is due at the start of class on Wednesday, February 9th. Minimal credit will be given for incomplete solutions or solutions that do not provide details

More information

Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices

Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 9, 2008 Today

More information

3 QR factorization revisited

3 QR factorization revisited LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 2, 2000 30 3 QR factorization revisited Now we can explain why A = QR factorization is much better when using it to solve Ax = b than the A = LU factorization

More information

The Singular Value Decomposition and Least Squares Problems

The Singular Value Decomposition and Least Squares Problems The Singular Value Decomposition and Least Squares Problems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 27, 2009 Applications of SVD solving

More information

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m Eigensystems We will discuss matrix diagonalization algorithms in umerical Recipes in the context of the eigenvalue problem in quantum mechanics, A n = λ n n, (1) where A is a real, symmetric Hamiltonian

More information

Lecture 6, Sci. Comp. for DPhil Students

Lecture 6, Sci. Comp. for DPhil Students Lecture 6, Sci. Comp. for DPhil Students Nick Trefethen, Thursday 1.11.18 Today II.3 QR factorization II.4 Computation of the QR factorization II.5 Linear least-squares Handouts Quiz 4 Householder s 4-page

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Householder reflectors are matrices of the form. P = I 2ww T, where w is a unit vector (a vector of 2-norm unity)

Householder reflectors are matrices of the form. P = I 2ww T, where w is a unit vector (a vector of 2-norm unity) Householder QR Householder reflectors are matrices of the form P = I 2ww T, where w is a unit vector (a vector of 2-norm unity) w Px x Geometrically, P x represents a mirror image of x with respect to

More information

5.6. PSEUDOINVERSES 101. A H w.

5.6. PSEUDOINVERSES 101. A H w. 5.6. PSEUDOINVERSES 0 Corollary 5.6.4. If A is a matrix such that A H A is invertible, then the least-squares solution to Av = w is v = A H A ) A H w. The matrix A H A ) A H is the left inverse of A and

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

Cheat Sheet for MATH461

Cheat Sheet for MATH461 Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

More information

Gaussian Elimination without/with Pivoting and Cholesky Decomposition

Gaussian Elimination without/with Pivoting and Cholesky Decomposition Gaussian Elimination without/with Pivoting and Cholesky Decomposition Gaussian Elimination WITHOUT pivoting Notation: For a matrix A R n n we define for k {,,n} the leading principal submatrix a a k A

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

Linear Least squares

Linear Least squares Linear Least squares Method of least squares Measurement errors are inevitable in observational and experimental sciences Errors can be smoothed out by averaging over more measurements than necessary to

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

5 Selected Topics in Numerical Linear Algebra

5 Selected Topics in Numerical Linear Algebra 5 Selected Topics in Numerical Linear Algebra In this chapter we will be concerned mostly with orthogonal factorizations of rectangular m n matrices A The section numbers in the notes do not align with

More information

Lecture # 5 The Linear Least Squares Problem. r LS = b Xy LS. Our approach, compute the Q R decomposition, that is, n R X = Q, m n 0

Lecture # 5 The Linear Least Squares Problem. r LS = b Xy LS. Our approach, compute the Q R decomposition, that is, n R X = Q, m n 0 Lecture # 5 The Linear Least Squares Problem Let X R m n,m n be such that rank(x = n That is, The problem is to find y LS such that We also want Xy =, iff y = b Xy LS 2 = min y R n b Xy 2 2 (1 r LS = b

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Problem 1. CS205 Homework #2 Solutions. Solution

Problem 1. CS205 Homework #2 Solutions. Solution CS205 Homework #2 s Problem 1 [Heath 3.29, page 152] Let v be a nonzero n-vector. The hyperplane normal to v is the (n-1)-dimensional subspace of all vectors z such that v T z = 0. A reflector is a linear

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

Applied Numerical Linear Algebra. Lecture 8

Applied Numerical Linear Algebra. Lecture 8 Applied Numerical Linear Algebra. Lecture 8 1/ 45 Perturbation Theory for the Least Squares Problem When A is not square, we define its condition number with respect to the 2-norm to be k 2 (A) σ max (A)/σ

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b AM 205: lecture 7 Last time: LU factorization Today s lecture: Cholesky factorization, timing, QR factorization Reminder: assignment 1 due at 5 PM on Friday September 22 LU Factorization LU factorization

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

More information

Linear Algebra, part 3 QR and SVD

Linear Algebra, part 3 QR and SVD Linear Algebra, part 3 QR and SVD Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2012 Going back to least squares (Section 1.4 from Strang, now also see section 5.2). We

More information

lecture 2 and 3: algorithms for linear algebra

lecture 2 and 3: algorithms for linear algebra lecture 2 and 3: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 27, 2018 Solving a system of linear equations

More information

Basic Concepts in Linear Algebra

Basic Concepts in Linear Algebra Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University February 2, 2015 Grady B Wright Linear Algebra Basics February 2, 2015 1 / 39 Numerical Linear Algebra Linear

More information

Q T A = R ))) ) = A n 1 R

Q T A = R ))) ) = A n 1 R Q T A = R As with the LU factorization of A we have, after (n 1) steps, Q T A = Q T A 0 = [Q 1 Q 2 Q n 1 ] T A 0 = [Q n 1 Q n 2 Q 1 ]A 0 = (Q n 1 ( (Q 2 (Q 1 A 0 }{{} A 1 ))) ) = A n 1 R Since Q T A =

More information

AM205: Assignment 2. i=1

AM205: Assignment 2. i=1 AM05: Assignment Question 1 [10 points] (a) [4 points] For p 1, the p-norm for a vector x R n is defined as: ( n ) 1/p x p x i p ( ) i=1 This definition is in fact meaningful for p < 1 as well, although

More information

Review of Basic Concepts in Linear Algebra

Review of Basic Concepts in Linear Algebra Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra

More information

Orthogonalization and least squares methods

Orthogonalization and least squares methods Chapter 3 Orthogonalization and least squares methods 31 QR-factorization (QR-decomposition) 311 Householder transformation Definition 311 A complex m n-matrix R = [r ij is called an upper (lower) triangular

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

Math 407: Linear Optimization

Math 407: Linear Optimization Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

Solution of Linear Equations

Solution of Linear Equations Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

More information

Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices

Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 8, 2009 Today

More information

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist.

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist. MAE 9A / FALL 3 Maurício de Oliveira MIDTERM Instructions: You have 75 minutes This exam is open notes, books No computers, calculators, phones, etc There are 3 questions for a total of 45 points and bonus

More information

L2-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 2015

L2-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 2015 L-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 015 Marty McFly: Wait a minute, Doc. Ah... Are you telling me you built a time machine... out of a DeLorean? Doc Brown: The way I see

More information

14.2 QR Factorization with Column Pivoting

14.2 QR Factorization with Column Pivoting page 531 Chapter 14 Special Topics Background Material Needed Vector and Matrix Norms (Section 25) Rounding Errors in Basic Floating Point Operations (Section 33 37) Forward Elimination and Back Substitution

More information

ACM106a - Homework 2 Solutions

ACM106a - Homework 2 Solutions ACM06a - Homework 2 Solutions prepared by Svitlana Vyetrenko October 7, 2006. Chapter 2, problem 2.2 (solution adapted from Golub, Van Loan, pp.52-54): For the proof we will use the fact that if A C m

More information

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg Linear Algebra, part 3 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2010 Going back to least squares (Sections 1.7 and 2.3 from Strang). We know from before: The vector

More information

COMPUTER SCIENCE 515 Numerical Linear Algebra SPRING 2006 ASSIGNMENT # 4 (39 points) February 27

COMPUTER SCIENCE 515 Numerical Linear Algebra SPRING 2006 ASSIGNMENT # 4 (39 points) February 27 Due Friday, March 1 in class COMPUTER SCIENCE 1 Numerical Linear Algebra SPRING 26 ASSIGNMENT # 4 (9 points) February 27 1. (22 points) The goal is to compare the effectiveness of five different techniques

More information

Lecture 4 Eigenvalue problems

Lecture 4 Eigenvalue problems Lecture 4 Eigenvalue problems Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Lecture 3: QR-Factorization

Lecture 3: QR-Factorization Lecture 3: QR-Factorization This lecture introduces the Gram Schmidt orthonormalization process and the associated QR-factorization of matrices It also outlines some applications of this factorization

More information

Linear least squares problem: Example

Linear least squares problem: Example Linear least squares problem: Example We want to determine n unknown parameters c,,c n using m measurements where m n Here always denotes the -norm v = (v + + v n) / Example problem Fit the experimental

More information

Class notes: Approximation

Class notes: Approximation Class notes: Approximation Introduction Vector spaces, linear independence, subspace The goal of Numerical Analysis is to compute approximations We want to approximate eg numbers in R or C vectors in R

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers.

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers. MATH 434/534 Theoretical Assignment 3 Solution Chapter 4 No 40 Answer True or False to the following Give reasons for your answers If a backward stable algorithm is applied to a computational problem,

More information

1 Inner Product and Orthogonality

1 Inner Product and Orthogonality CSCI 4/Fall 6/Vora/GWU/Orthogonality and Norms Inner Product and Orthogonality Definition : The inner product of two vectors x and y, x x x =.., y =. x n y y... y n is denoted x, y : Note that n x, y =

More information

Decomposition. bq (m n) R b (n n) r 11 r 1n

Decomposition. bq (m n) R b (n n) r 11 r 1n The QR Decomposition Lab Objective: The QR decomposition is a fundamentally important matrix factorization. It is straightforward to implement, is numerically stable, and provides the basis of several

More information

Notes on Solving Linear Least-Squares Problems

Notes on Solving Linear Least-Squares Problems Notes on Solving Linear Least-Squares Problems Robert A. van de Geijn The University of Texas at Austin Austin, TX 7871 October 1, 14 NOTE: I have not thoroughly proof-read these notes!!! 1 Motivation

More information

CS 322 Homework 4 Solutions

CS 322 Homework 4 Solutions CS 322 Homework 4 Solutions out: Thursday 1 March 2007 due: Wednesday 7 March 2007 Problem 1: QR mechanics 1 Prove that a Householder reflection is symmetric and orthogonal. Answer: Symmetry: H T = (I

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

Lecture Notes for Inf-Mat 3350/4350, Tom Lyche

Lecture Notes for Inf-Mat 3350/4350, Tom Lyche Lecture Notes for Inf-Mat 3350/4350, 2007 Tom Lyche August 5, 2007 2 Contents Preface vii I A Review of Linear Algebra 1 1 Introduction 3 1.1 Notation............................... 3 2 Vectors 5 2.1 Vector

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Decompositions, numerical aspects Gerard Sleijpen and Martin van Gijzen September 27, 2017 1 Delft University of Technology Program Lecture 2 LU-decomposition Basic algorithm Cost

More information

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects Numerical Linear Algebra Decompositions, numerical aspects Program Lecture 2 LU-decomposition Basic algorithm Cost Stability Pivoting Cholesky decomposition Sparse matrices and reorderings Gerard Sleijpen

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm

Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 13, 2009 Today

More information

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6 Chapter 6 Orthogonality 6.1 Orthogonal Vectors and Subspaces Recall that if nonzero vectors x, y R n are linearly independent then the subspace of all vectors αx + βy, α, β R (the space spanned by x and

More information

lecture 3 and 4: algorithms for linear algebra

lecture 3 and 4: algorithms for linear algebra lecture 3 and 4: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 30, 2016 Solving a system of linear equations

More information

1. Search Directions In this chapter we again focus on the unconstrained optimization problem. lim sup ν

1. Search Directions In this chapter we again focus on the unconstrained optimization problem. lim sup ν 1 Search Directions In this chapter we again focus on the unconstrained optimization problem P min f(x), x R n where f : R n R is assumed to be twice continuously differentiable, and consider the selection

More information

Linear Least-Squares Data Fitting

Linear Least-Squares Data Fitting CHAPTER 6 Linear Least-Squares Data Fitting 61 Introduction Recall that in chapter 3 we were discussing linear systems of equations, written in shorthand in the form Ax = b In chapter 3, we just considered

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2017) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 12 1 / 18 Overview

More information

Dot product and linear least squares problems

Dot product and linear least squares problems Dot product and linear least squares problems Dot Product For vectors u,v R n we define the dot product Note that we can also write this as u v = u,,u n u v = u v + + u n v n v v n = u v + + u n v n The

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Gábor P. Nagy and Viktor Vígh University of Szeged Bolyai Institute Winter 2014 1 / 262 Table of contents I 1 Introduction, review Complex numbers Vectors and matrices Determinants

More information

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems AMS 209, Fall 205 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems. Overview We are interested in solving a well-defined linear system given

More information

Solving linear equations with Gaussian Elimination (I)

Solving linear equations with Gaussian Elimination (I) Term Projects Solving linear equations with Gaussian Elimination The QR Algorithm for Symmetric Eigenvalue Problem The QR Algorithm for The SVD Quasi-Newton Methods Solving linear equations with Gaussian

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

Vector and Matrix Norms. Vector and Matrix Norms

Vector and Matrix Norms. Vector and Matrix Norms Vector and Matrix Norms Vector Space Algebra Matrix Algebra: We let x x and A A, where, if x is an element of an abstract vector space n, and A = A: n m, then x is a complex column vector of length n whose

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information