3. APLICATION OF GIBBS-DUHEM EQUATION

Size: px
Start display at page:

Download "3. APLICATION OF GIBBS-DUHEM EQUATION"

Transcription

1 3. APLICATION OF GIBBS-DUHEM EQUATION Gibbs-Duhem Equation When extensive property of a solution is given by; Q' = Q'(T,P,n,n...) The change in extensive property with composition was; dq Q n dn Q n dn T, P, n,.. n j T, P, n,.. n j () Partial molar value of an extensive property of component i was defined as; Q Qi T, P, n n j i () i Combination of equations () and () yields; dq' = Q dn + Q dn +... (3) But, Q' = n Q + n Q + (4) Differentiation of equation (4) gives dq' = Q dn+ Q dn ndq + ndq +... (5) Subtraction of equation (3) from equation (5) yields ndq + ndq +... = 0 In general, ni dq i = 0 (6) Dividing by n, total number of moles of all the components, gives i dq i = 0 (7) Equations (6) and (7) are equivalent expressions of the Gibbs- Duhem equation.

2 3.. Integration of Gibbs-Duhem Equation It is performed to calculate partial properties from each other. Consider a component system, say Q is given. Q is asked. Gibbs-Duhem equation: dq + dq = 0 equivalents can be written for mixing (relative molar) and excess properties. Rearrangement of Gibbs-Duhem equation yields: dq dq Integration of both sides Q ( at ) Q ( at ) dq Integration yields: - Q ( at ) Q ( at ) Q ( at ) Q ( at ) - dq Q ( at ) Q ( at ) dq The value of Q must be known as boundary condition to integrate this function. Usually properties of pure substances are easier to find. Say property at = is known. Then let ' as = and " to any ; Q ( at ) Q o - Q ( at ) Q ( ) dq The value of integral may be determined graphically or analytically (if analytical dependence of Q to composition is given). Analytical determination involves the following steps: i. Organize Q as a function of only one composition variable ( or ). ii. Take the derrivative of Q and replace it into the integral. iii. Organize the function inside the integral in such a way to leave only one variable. At the same time, change, if and when necessary,

3 the limits of the integral to make it in accord with the derrivative of the integral. Use the relationship d = -d when necessary. iv. Integrate the function, replace the limits to determine the value of the integral. Analytical integration with relative partial and partial excess properties are also possible. The same steps can be used, by replacing Q with Q M and/or Q in the case of relative partial molar properties and partial excess properties respectively. Graphical determination requires plot of / vs. Q. The value of the integral is the area under the curve between the specified limits. However there are some problems with this integration: i. the value of Q becomes plus or -, if Q has logarithmic composition terms. ii. / becomes, when becomes zero. Therefore, the area under the curve may not be bounded well with the given limits. To determine the area under the curve properly; either alternative limits may be given or ways to resolve the problems of tails to infinity should be found. Furthermore, Gibbs- Duhem integration with partial molar properties can only be used for entropy and volume. For other properties Gibbs-Duhem integrations involving relative partial and/or excess properties have to be used. Then with relative partial molar properties, Gibbs-Duhem integration is (in general form): M M Q ( at ) Q ( at ) - Q M ( at ) Q M ( at ) d Q By setting the lower limit ' as = and " to any, Q M (at =) is zero, then Q M (at ) = - Q M ( at ) Q M ( ) d Q M M

4 Therefore, area under / vs. Q M curve gives the value of integral. Two of the above problems are still valid in this case (for some properties), but this form of the integral may be used with any thermodynamic property. To illustrate the problem, consider the following data for Fe-Ni alloys at 600oC. Ni ani G Ni M cal/mol Ni/Fe Ni / Fe -G Ni M The value of G NiM at lower limit (i.e. Fe=) is -, results in an unbounded area under the curve. Therefore, to get precise value for G M Fe (at Fe); either G M Fe at a composition other than Fe= should be given (known) or other alternatives should be considered. Use of excess properties: (in general form) Gibbs-Duhem integration with excess properties are: Q ( at ) Q ( at ) - Q ( at ) Q ( at ) dq By setting the lower limit ' as = and " to any, Q (at =) is zero, then

5 Q ( at ) - Q ( at ) Q ( at ) dq Area under / vs. Q curve gives the value of integral. One of the above problems is solved; by using excess properties, a finite value is assigned to the value of Q (at =). Therefore the area is bounded from the lower end of the integral. The problem of tail to infinity for / at =0 is still valid in this case. Then, previous problem for Fe-Ni alloys at 600oC requires integration of; Ni ani G Ni RT ln Ni cal/mol Ni/Fe log Ni log Ni G Fe ( at ) - Fe G ( at Ni Fe ) G ( at Ni Fe ) Ni Fe dg Ni Ni / Fe RT ln o Ni G Ni This is good for values Fe= to Fe > 0. As Fe 0; Ni/Fe. Therefore, GFe( at Fe 0 ) is mathematically indeterminate with excess properties.

6 The use of -Function: Problems arising from / as 0 may be resolved using this function. For any component i, i is defined as: i Qi ( ) i For - binary solution from previous relationships Q ( at ) - Q ( at ) Q ( at ) dq From above relationship Q Then dq d d Replacing into the integral yields Q ( at ) - ( at ) ( at ) d - d Q ( ) - at ( at ) ( at ) d - d By virtue of identity d(xy) = y dx + x dy, the first integral ( at ) ( at ) Then, Q d = d( ) d( ) - ( at ) - d( ) + d( ) - d = - + d + d - d = - - ( ) d = - - d

7 Numerical value for - can be determined, then the value of the integral can be determined graphically or analytically (if an analytical expression for the composition dependence of or other properties that leads to determine given). Analytical integration with -function can be done by replacing into the equation and integrating it between the given limits. Graphical determination can be done from the area under vs. graph. Then, previous problem for Fe-Ni alloys at 600oC requires determination of; G Fe ( at ) = - Fe Ni Fe Ni Fe - Fe Ni dfe Ni Ni 0/ ln Ni G Ni RT ln Ni cal/mol Ni/Fe log Ni log Ni Ni Fe

8 .5.5 For Fe = 0.7 ln Fe = -0.3 x 0.7 (-0.76) - (0.3 x x 0.3 x 0.5) = ln Fe = ; Fe = 0.985; afe = Direct Calculation of the Integral Property Consider a component system, say Q is given. Q is asked. Indirect method involves determination of Q by Gibbs-Duhem integration, then computation of the integral property from Q = Q + Q but Q = Q + ( - ) (dq/d) multiply both sides by d and divide by, then Q d Qd ( ) dq Replacing ( - ) = and d = - d Q d Qd dq d Q ( ) Integration of both sides

9 Q Q ( at ) d( Q ) = 0 Q d Q Q d Q o = 0 Using relative partial molar properties and setting QM at = to zero; M M Q Q d = 0 or Q M = 0 Q d M Equivalent relationship from partial excess properties and setting Q at = to zero; Q = 0 Q d Values of integrals can be obtained either analytically (if analytical dependence of Q or Q M or Q to composition is given) or graphically. Analytical integration involves the following steps: i. The replacement of the property (Q or Q M or Q ) into the integral. ii. Organization of the function inside the integral in such a way to leave only one variable. iii. Integration and replacement of the limits. Graphical integration involves the determination of the area under the curve (Q M or Q or Q vs. between the limits

10 G G RT ln RT ln G

11

12

13

MME 2010 METALLURGICAL THERMODYNAMICS II. Partial Properties of Solutions

MME 2010 METALLURGICAL THERMODYNAMICS II. Partial Properties of Solutions MME 2010 METALLURGICAL THERMODYNAMICS II Partial Properties of Solutions A total property of a system consisting of multiple substances is represented as nm = n i M i If the system consists of a liquid

More information

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Subect Chemistry Paper No and Title Module No and Title Module Tag 0, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) 0, Free energy

More information

Concept of the chemical potential and the activity of elements

Concept of the chemical potential and the activity of elements Concept of the chemical potential and the activity of elements Gibb s free energy, G is function of temperature, T, pressure, P and amount of elements, n, n dg G G (T, P, n, n ) t particular temperature

More information

MATSCI 204 Thermodynamics and Phase Equilibria Winter Chapter #4 Practice problems

MATSCI 204 Thermodynamics and Phase Equilibria Winter Chapter #4 Practice problems MATSCI 204 Thermodynamics and Phase Equilibria Winter 2013 Chapter #4 Practice problems Problem: 1-Show that for any extensive property Ω of a binary system A-B: d ( "# ) "# B, = "# + 1$ x B 2- If "# has

More information

Mixtures. Partial Molar Quantities

Mixtures. Partial Molar Quantities CHEM 331 Physical Chemistry Fall 2017 Mixtures Our current discussion takes up some general results for systems that are mixtures and/or open. The former involve systems that contain multiple components;

More information

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation.

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. The Euler Equation Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. Let us differentiate this extensivity condition with respect to

More information

Thermodynamics of Solutions Partial Molar Properties

Thermodynamics of Solutions Partial Molar Properties MME3: Lecture 6 Thermodynamics of Solutions Partial Molar Properties A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka omposition of solutions Partial molar properties Introduction Materials

More information

Lecture 28. Uniformity of Chemical Potential at Equilibrium

Lecture 28. Uniformity of Chemical Potential at Equilibrium MIT 3.00 Fall 2002 c W.C Carter 183 Lecture 28 Uniformity of Chemical Potential at Equilibrium Last Time Single Component Phase Diagrams: ibbs Phase Rule Single Component Phase Diagrams: Behavior of Freezing

More information

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions.

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions. Chemical Thermodynamics S.Y.BSc. Concept of Gibb s free energy and Helmholtz free energy a) Gibb s free energy: 1) It was introduced by J.Willard Gibb s to account for the work of expansion due to volume

More information

Thermodynamics of Reactive Systems The Equilibrium Constant

Thermodynamics of Reactive Systems The Equilibrium Constant Lecture 27 Thermodynamics of Reactive Systems The Equilibrium Constant A. K. M. B. Rashid rofessor, Department of MME BUET, Dhaka Today s Topics The Equilibrium Constant Free Energy and Equilibrium Constant

More information

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Module No. # 04 Thermodynamics of Solutions Lecture No. # 25

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

Lecture 6 Free energy and its uses

Lecture 6 Free energy and its uses Lecture 6 Free energy and its uses dg = VdP G - G o = PoP VdP G = G o (T) + RT ln P/P o for gases and G = G o (T) + V (P-P o ) for solids and liquids µ = µ o + RT ln P (for one mole) G = G o + RT ln Q

More information

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap ) NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap. 5.3-5.4) Learning objectives for Chapter 7 At the end of this chapter you will be able to: Understand the general features of a unary

More information

More on phase diagram, chemical potential, and mixing

More on phase diagram, chemical potential, and mixing More on phase diagram, chemical potential, and mixing Narayanan Kurur Department of Chemistry IIT Delhi 13 July 2013 Melting point changes with P ( ) Gα P T = V α V > 0 = G α when P Intersection point

More information

We can see from the gas phase form of the equilibrium constant that pressure of species depend on pressure. For the general gas phase reaction,

We can see from the gas phase form of the equilibrium constant that pressure of species depend on pressure. For the general gas phase reaction, Pressure dependence Equilibrium constant We can see from the gas phase form of the equilibrium constant that the equilibrium concentrations of species depend on pressure. This dependence is inside the

More information

Phase Diagrams: Conditions for Equilibrium (CfE)

Phase Diagrams: Conditions for Equilibrium (CfE) Phase Equilibrium: Conditions for Equilibrium (CfE) Phase Diagrams: Conditions for Equilibrium (CfE) Write down the conditions for equilibrium for: a pure single phase system, a pure multi-phase system,

More information

MECH6661 lectures 6/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University. Fe3C (cementite)

MECH6661 lectures 6/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University. Fe3C (cementite) Outline Solid solution Gibbs free energy of binary solutions Ideal solution Chemical potential of an ideal solution Regular solutions Activity of a component Real solutions Equilibrium in heterogeneous

More information

The Chemical Potential

The Chemical Potential CHEM 331 Physical Chemistry Fall 2017 The Chemical Potential Here we complete our pivot towards chemical thermodynamics with the introduction of the Chemical Potential ( ). This concept was first introduced

More information

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 9 Solutions 1. McQuarrie and Simon, 9-4. Paraphrase: Given expressions

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

Chemical Equilibria. Chapter Extent of Reaction

Chemical Equilibria. Chapter Extent of Reaction Chapter 6 Chemical Equilibria At this point, we have all the thermodynamics needed to study systems in ulibrium. The first type of uilibria we will examine are those involving chemical reactions. We will

More information

Remember next exam is 1 week from Friday. This week will be last quiz before exam.

Remember next exam is 1 week from Friday. This week will be last quiz before exam. Lecture Chapter 3 Extent of reaction and equilibrium Remember next exam is week from Friday. his week will be last quiz before exam. Outline: Extent of reaction Reaction equilibrium rxn G at non-standard

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Module No. # 02 Additional Thermodynamic Functions Lecture No.

More information

HOMOGENEOUS CLOSED SYSTEM

HOMOGENEOUS CLOSED SYSTEM CHAE II A closed system is one that does not exchange matter with its surroundings, although it may exchange energy. W n in = 0 HOMOGENEOUS CLOSED SYSEM System n out = 0 Q dn i = 0 (2.1) i = 1, 2, 3,...

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III. Name KEY Rec. TA/time

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III. Name KEY Rec. TA/time Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III Name KEY Rec. TA/time 1. (8 pts) For the following reaction K P = 0.0752 at 480.0 EC. 2 Cl 2 (g) + 2 H 2 O

More information

Lecture 11: Models of the chemical potential

Lecture 11: Models of the chemical potential Lecture 11: 10.15.05 Models of the chemical potential Today: LAST TIME... 2 MORE ON THE RELATIONSHIP BETWEEN CHEMICAL POTENTIAL AND GIBBS FREE ENERGY... 3 Chemical potentials in multicomponent systems

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy Chapter 4 Free Energies The second law allows us to determine the spontaneous direction of of a process with constant (E, V, n). Of course, there are many processes for which we cannot control (E, V, n)

More information

Thermodynamic parameters in a binary system

Thermodynamic parameters in a binary system Thermodynamic parameters in a binary system Previously, we considered one element only. Now we consider interaction between two elements. This is not straightforward since elements can interact differently

More information

3.012 PS 7 Thermo solutions Issued: Fall 2003 Graded problems due:

3.012 PS 7 Thermo solutions Issued: Fall 2003 Graded problems due: 3.012 PS 7 Thermo solutions 3.012 Issued: 11.17.03 Fall 2003 Graded problems due: 11.26.03 Graded problems: 1. Analysis of equilibrium phases with a binary phase diagram. Shown below is the phase diagram

More information

Thermodynamic and Stochiometric Principles in Materials Balance

Thermodynamic and Stochiometric Principles in Materials Balance Thermodynamic and Stochiometric Principles in Materials Balance Typical metallurgical engineering problems based on materials and energy balance NiO is reduced in an open atmosphere furnace by excess carbon

More information

rate of reaction forward conc. reverse time P time Chemical Equilibrium Introduction Dynamic Equilibrium Dynamic Equilibrium + RT ln f p

rate of reaction forward conc. reverse time P time Chemical Equilibrium Introduction Dynamic Equilibrium Dynamic Equilibrium + RT ln f p Chemical Equilibrium Chapter 9 of Atkins: Sections 9.1-9.2 Spontaneous Chemical Reactions The Gibbs Energy Minimum The reaction Gibbs energy Exergonic and endergonic reactions The Description of Equilibrium

More information

Thermodynamics (Classical) for Biological Systems. Prof. G. K. Suraishkumar. Department of Biotechnology. Indian Institute of Technology Madras

Thermodynamics (Classical) for Biological Systems. Prof. G. K. Suraishkumar. Department of Biotechnology. Indian Institute of Technology Madras Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Module No. #04 Thermodynamics of solutions Lecture No. #22 Partial

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

The Equilibrium State

The Equilibrium State Materials Science & Metallurgy Part III Course M16 Computation of Phase Diagrams (Revision) H. K. D. H. Bhadeshia The Equilibrium State Equilibrium is a state in which no further change is perceptible,

More information

From what we know now (i.e, ΔH and ΔS) How do we determine whether a reaction is spontaneous?

From what we know now (i.e, ΔH and ΔS) How do we determine whether a reaction is spontaneous? pontaneous Rxns A&G-1 From what we know now (i.e, Δ and Δ) ow do we determine whether a reaction is spontaneous? But Δ and Δ are not enough... here is competition between lowering energy and raising entropy!

More information

Chemistry 2000 Lecture 15: Electrochemistry

Chemistry 2000 Lecture 15: Electrochemistry Chemistry 2000 Lecture 15: Electrochemistry Marc R. Roussel February 21, 2018 Marc R. Roussel Chemistry 2000 Lecture 15: Electrochemistry February 21, 2018 1 / 33 Electrochemical cells Electrochemical

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 2017 Spring Semester MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 Byungha Shin ( 신병하 ) Dept. of MSE, KAIST Largely based on lecture notes of Prof. Hyuck-Mo Lee and Prof. WooChul

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 13 leksey Kocherzhenko pril 7, 2015" Last time " Phase diagrams" Maps showing the thermodynamically stable phases for each and," phase regions in a phase diagram are

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Appendix A. Common Mathematical Operations in Chemistry

Appendix A. Common Mathematical Operations in Chemistry Appendix A Common Mathematical Operations in Chemistry In addition to basic arithmetic and algebra, four mathematical operations are used frequently in general chemistry: manipulating logarithms, using

More information

Exponential and. Logarithmic Functions. Exponential Functions. Logarithmic Functions

Exponential and. Logarithmic Functions. Exponential Functions. Logarithmic Functions Chapter Five Exponential and Logarithmic Functions Exponential Functions Logarithmic Functions Properties of Logarithms Exponential Equations Exponential Situations Logarithmic Equations Exponential Functions

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 19 John D. Bookstaver St. Charles Community College Cottleville, MO First Law of You will

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due:

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due: 3.012 PS 6 THERMODYANMICS SOLUTIONS 3.012 Issued: 11.28.05 Fall 2005 Due: THERMODYNAMICS 1. Building a binary phase diagram. Given below are data for a binary system of two materials A and B. The two components

More information

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Mierm Examination: Thermodynamics and Kinetics Name: October 10, 2013 Constants and Conversion Factors Gas Constants: 8.314 J mol 1 K 1 ; 8.314

More information

Lecture 20. Chemical Potential

Lecture 20. Chemical Potential Lecture 20 Chemical Potential Reading: Lecture 20, today: Chapter 10, sections A and B Lecture 21, Wednesday: Chapter 10: 10 17 end 3/21/16 1 Pop Question 7 Boltzmann Distribution Two systems with lowest

More information

At this point, we've developed the tools and basic concepts necessary to apply

At this point, we've developed the tools and basic concepts necessary to apply 18 Lecture 0 At this point, we've developed the tools and basic concepts necessary to apply thermodynamics to a number of different systems, with the ultimate goal of describing chemically reacting systems.

More information

Chapter 3 - First Law of Thermodynamics

Chapter 3 - First Law of Thermodynamics Chapter 3 - dynamics The ideal gas law is a combination of three intuitive relationships between pressure, volume, temp and moles. David J. Starling Penn State Hazleton Fall 2013 When a gas expands, it

More information

Affinity, Work, and Heat

Affinity, Work, and Heat Affinity, Work, and Heat Introduction 1 The fundamental equation of thermodynamics comes in two forms. First, after defining entropy and limiting the number of ways that a system can exchange energy with

More information

What s free about Gibbs free energy?

What s free about Gibbs free energy? What s free about Gibbs free energy? The change in free energy for a process equals the maximum work that can be done by the system on the surroundings in a spontaneous process occurring at constant temperature

More information

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014 NAME: CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014 Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader

More information

Chapter 11 Solution Thermodynamics: Theory

Chapter 11 Solution Thermodynamics: Theory Chapter 11 Solution Thermodynamics: Theory Chapter 6: constant composition fluids. Most commonly in chemical engineering application multi component mixtures of gases or liquids undergo (composition change).

More information

I.G Approach to Equilibrium and Thermodynamic Potentials

I.G Approach to Equilibrium and Thermodynamic Potentials I.G Approach to Equilibrium and Thermodynamic otentials Evolution of non-equilibrium systems towards equilibrium is governed by the second law of thermodynamics. For eample, in the previous section we

More information

Chapter 10. Chemical Calculations and Chemical Equations

Chapter 10. Chemical Calculations and Chemical Equations Chapter 10 Chemical Calculations and Chemical Equations Chapter 10 Equation Stoichiometry Tip-off - The calculation calls for you to convert from amount of one substance to amount of another, both of which

More information

Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions

Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions NAME : DATE: PERIOD: Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions Students need to complete the following assignment, which will aid in review for the end of course exam. Look back

More information

Reacting Masses 1 of 24 Boardworks Ltd 2016

Reacting Masses 1 of 24 Boardworks Ltd 2016 Reacting Masses 1 of 24 Boardworks Ltd 2016 Reacting Masses 2 of 24 Boardworks Ltd 2016 What is a mole? 3 of 24 Boardworks Ltd 2016 A mole is an SI unit that is used to denote the number of atoms or molecules

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

We now turn to the subject of central importance in thermodynamics, equilibrium. Since

We now turn to the subject of central importance in thermodynamics, equilibrium. Since 18 Lecture 28 We now turn to the subect of central importance in thermodynamics, equilibrium. Since we are interested in equilibria under chemically interesting conditions and for chemical reactions, we

More information

X B1 X B Quiz Fall points total. 1. Thermodynamics. (50 points)

X B1 X B Quiz Fall points total. 1. Thermodynamics. (50 points) 3.012 Quiz 4 3.012 12.15.03 Fall 2003 100 points total 1. Thermodynamics. (50 points) a. Shown below is a portion of the nickel-titanium binary phase diagram. Using the diagram, answer the questions below.

More information

Courtesy of Marc De Graef. Used with permission.

Courtesy of Marc De Graef. Used with permission. Courtesy of Marc De Graef. Used with permission. 3.01 PS 5 3.01 Issued: 10.31.04 Fall 005 Due: 10..04 1. Electrochemistry. a. What voltage is measured across the electrodes of a Zn/Cu Daniell galvanic

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Chemistry 163B. Concluding Factoids. and. Comments

Chemistry 163B. Concluding Factoids. and. Comments Chemistry 163B Concluding Factoids and Comments 1 neuron, resting potential http://projects.gw.utwente.nl/pi/sim/bovt/concep4.gif http://www.uta.edu/biology/westmoreland/classnotes/144/chapter_48_files/image009.jpg

More information

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success College Algebra Chapter 5 Review Created by: Lauren Atkinson Math Coordinator, Mary Stangler Center for Academic Success Note: This review is composed of questions from the chapter review at the end of

More information

1. Heterogeneous Systems and Chemical Equilibrium

1. Heterogeneous Systems and Chemical Equilibrium 1. Heterogeneous Systems and Chemical Equilibrium The preceding section involved only single phase systems. For it to be in thermodynamic equilibrium, a homogeneous system must be in thermal equilibrium

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES We have: Seen how to interpret derivatives as slopes and rates of change Seen how to estimate derivatives of functions given by tables of values Learned how

More information

temperature begins to change noticeably. Feedback D. Incorrect. Putting an object on a hot plate will always cause the temperature to increase.

temperature begins to change noticeably. Feedback D. Incorrect. Putting an object on a hot plate will always cause the temperature to increase. SAT Chemistry - Problem Drill 22: Thermodynamics No. 1 of 10 1. A metal with a high heat capacity is placed on top of a hot plate that is turned on. What will happen to the temperature of the piece of

More information

Phase Equilibrium: Preliminaries

Phase Equilibrium: Preliminaries Phase Equilibrium: Preliminaries Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between two phases.

More information

CHEM 254 EXPERIMENT 4. Partial Molar Properties of Solutions

CHEM 254 EXPERIMENT 4. Partial Molar Properties of Solutions CHEM 254 EXPERIMENT 4 Partial Molar Properties of Solutions A solution is a homogeneous mixture forming a one phase system with more than one component. Just as the behavior of gases is discussed in terms

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

Thermodynamics: Lecture 6

Thermodynamics: Lecture 6 Thermodynamics: Lecture 6 Chris Glosser March 14, 2001 1 OUTLINE I. Chemical Thermodynamics (A) Phase equilibrium (B) Chemical Reactions (C) Mixing and Diffusion (D) Lead-Acid Batteries 2 Chemical Thermodynamics

More information

I.G Approach to Equilibrium and Thermodynamic Potentials

I.G Approach to Equilibrium and Thermodynamic Potentials I.G Approach to Equilibrium and Thermodynamic Potentials Evolution of non-equilibrium systems towards equilibrium is governed by the second law of thermodynamics. For eample, in the previous section we

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Physics I Lecture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ 1st & 2nd Laws of Thermodynamics The 1st law specifies that we cannot get more energy

More information

This is important to know that the P total is different from the initial pressure (1bar) because of the production of extra molecules!!! = 0.

This is important to know that the P total is different from the initial pressure (1bar) because of the production of extra molecules!!! = 0. Question 1: N O 4 (g) NO (g) Amounts of material at the initial state: n 0 0 Amounts of material at equilibrium: (1 α)n 0 αn 0 Where α equals 0.0488 at 300 K and α equals 0.141 at 400K. Step 1: Calculate

More information

( g mol 1 )( J mol 1 K 1

( g mol 1 )( J mol 1 K 1 Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 11 Solutions 1. McQuarrie and Simon, 11-27. Paraphrase: If a solution

More information

Recitation: 12 12/04/03

Recitation: 12 12/04/03 Recitation: 12 12/4/3 Regular Solution Solution: In an ideal solution, the only contribution to the Gibbs free energy of ing is the configurational entropy due to a random ture: ΔG id G id = x + x µ µ

More information

Geological Sciences 4550: Geochemistry

Geological Sciences 4550: Geochemistry 1. a.) Using the enthalpies of formation given in able 2.02, find H in Joules for the reaction: albite jadite + quartz NaAl2Si2O8 NaAl2SiO6+ SiO2 b.) Which assemblage (side of the equation) is stable at

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 13 I. PHASE DIAGRAMS The different phases of substances are characterized by different ranges of thermodynamic variables in which these phasesarethestablephases.

More information

Thermodynamic ProperDes for Fluids

Thermodynamic ProperDes for Fluids SKF2213: CHEMICAL ENGINEERING THERMODYNAMICS Thermodynamic roperdes for Fluids Mohammad Fadil Abdul Wahab ObjecDves To develop fundamental property relations (FR) of U,H,S,G,A,V,,T from 1st and 2nd Law

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Physical Chemistry Chapter 4 The Properties of Mixtures

Physical Chemistry Chapter 4 The Properties of Mixtures Physical Chemistry Chapter 4 The Properties of Mixtures by Izirwan Bin Izhab FKKSA izirwan@ump.edu.my Chapter Description Aims Determine the fugacity and fugacity coefficients for pure species using generic

More information

Partial molar volumes

Partial molar volumes Related concepts Principles of thermodynamics, ideal and non-ideal behaviour of gases and liquids, volume contraction, molar and partial molar quantities. Principle Due to intermolecular interactions,

More information

Chapter 7: Logarithmic Functions

Chapter 7: Logarithmic Functions Chapter 7: Logarithmic Functions Section 7.1 Chapter 7: Logarithmic Functions Section 7.1: Eploring Characteristics of Logarithmic Functions Terminology: Logarithmic Functions: A function of the form:

More information

Phase Diagrams. NC State University

Phase Diagrams. NC State University Chemistry 433 Lecture 18 Phase Diagrams NC State University Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function of temperature

More information

For an incompressible β and k = 0, Equations (6.28) and (6.29) become:

For an incompressible β and k = 0, Equations (6.28) and (6.29) become: Internal Energy and Entropy as Functions of T and V These are general equations relating the internal energy and entropy of homogeneous fluids of constant composition to temperature and volume. Equation

More information

(10/03/01) Univ. Washington. Here are some examples of problems where equilibrium calculations are useful.

(10/03/01) Univ. Washington. Here are some examples of problems where equilibrium calculations are useful. Chpt. 5 - Chemical Equilibrium James W. Murray (10/03/01) Univ. Washington Why do we need to study chemical equilibria? The material in this lecture comes from the field of of chemical thermodynamics.

More information

CH10007/87. Thermodynamics. Dr Toby Jenkins

CH10007/87. Thermodynamics. Dr Toby Jenkins CH10007/87 Thermodynamics Dr Toby Jenkins 1 Objectives To introduce the basic concepts of thermodynamics To apply them to chemical systems To develop competence in thermodynamics calculations 2 Equilibrium

More information