On the Submodularity of Influence in Social Networks

Size: px
Start display at page:

Download "On the Submodularity of Influence in Social Networks"

Transcription

1 On he ubmodulariy o Inluence in ocial Neworks Elchanan Mossel & ebasien Roch OC07 peaker: Xinran He Xinranhe1990@gmail.com

2 ocial Nework ocial nework as a graph Nodes represen indiiduals. Edges are social relaions wih dieren srenghs: Neighbors, Coworkers relaion in real lie Virual Friship in Facebook Follower-Followee relaions in wier

3 iusion In ocial Nework he adopion o new producs can propagae in he social nework iusion in he social nework Inormaion, rumors, innoaion,...

4 Inluence Maximizaion Inluence maximizaion: Find k people ha generaes he larges inluence spread i.e. expeced number o aciaed nodes [KK 2003]

5 Linear hreshold Model Gien a social nework wih edge weigh w u and a se o Iniially acie indiiduals as seed. Eery indiidual indepenly chooses a hreshold Θ uniormly in [0,1]. any sep laer, sill inacie nodes become aciaed i u N wu where N is he se o aciaed direc neighbors o. he diusion s when no more nodes are aciaed. he inluence spread σ=e[ P ], is he expeced number o acie nodes when he diusion process s. θ

6 Linear hreshold Example Inacie Node cie Node hreshold 0.4 X 0.1 U cie neighbors op! w 0.5 ep 01 23

7 Inluence Maximizaion Find a seed se, k, σ is maximized. Inluence Maximizaion Problem is NP-hard under linear hreshold model[kempe e.al 2003]. We hae o sole i approximaely. Main ool or analysis heorem: he greedy algorihm is a 1-1/e approximaion or maximizing monoone and submodular se uncions[nemhauser/wolsey 1978].

8 ubmodular & Monoone se uncion : 2 V R is monoone i se uncion : 2 V R is submodular i or all, V V + +, all or

9 ubmodulariy uncion se is submodular i Or equialenly ubmodulariy can be considered as diminishing reurn propery. V + +, all or, V all or, } { } {

10 ubmodulariy: Examples Maximum coerage problem: Gien a collecion o ses ={ 1,, m } and a number k, ind ', ' k, maximize σ = σ is submodular. ' i i. he inluence spread σ under he linear hreshold model is submodular[kempe e.al 2003]. Inluence Maximizaion Problem under linear hreshold model can be soled approximaely.

11 General hreshold Model wu θ Linear hreshold Model: General hreshold Model: : aciaion uncion o node oer. is he se o already aciaed nodes. General hreshold model is generalizaion o many diusion models: = u N u wu u N Linear hreshold Model [KK 2003] 1 1 p u Indepen Cascade Model r i= 1 N 1-1- p ω i,i-1 θ [KK 2003] ecreasing Cascade Model [KK 2005]

12 General hreshold Model2 For Linear hreshold model, he inluence spread σ is submodular [KK 2003]. Conjecure: Under he general hreshold model wih monoone and submodular, σ is monoone and submodular [KK 2003].

13 Main Resul heorem: Under he general hreshold model wih monoone and submodular, σ is monoone and submodular [Mossel/Roch 2007]. Corollary: he greedy algorihm is a 1-1/e approximaion o sole he inluence maximizaion problem under general hreshold model.

14 Proo: General Idea1 y coupling our diusion process: ={ 0 =, 1, 2,, } ={ 0 =, 1, 2,, } C={C 0 =,C 1,C 2,,C } ={ 0 =, 1, 2,, } uch ha C and

15 Proo: General Idea2 we hae hen aking expecaion, hen and I C C σ σ σ σ

16 C Couple he our processes wih he same hresholds θ. how C, C ase Case: C = = ssume C. by inducion. 0 0 For a node sill inacie a sep, we hae C. hereore i is aciaed in sep +1 in C, i mus also be aciaed in. C C

17 :Firs emp Le s ry he same coupling mehod or Θ 3 =0.5 Θ 3 =0.5 Θ 3 =

18 nisense Coupling hen how could we keep? Inuiiely, using ϴ or aciaion o and 1- ϴ or aciaion o will maximize heir union.

19 Piecemeal Growh eine P = P 1 process, where,..., 1 k,..., k as he he piecemeal growh diusion is a pariion o seed se. Grow 1 Unil i s Grow 2 Unil i s Grow k Unil i s dd 1 dd 2 dd k Lemma: he disribuion oer he aciaed node se a he o original process wih seed se and he piecemeal growh process P 1,, k is idenical.

20 Piecemeal Growh: Proo y coupling hree piecemeal growh processes,, and original process wih same θ. Grow Grow nohing dd a sage 1 dd nohing a sage 2 Grow 1 Grow 2 dd 1 a sage 1 dd 2 a sage 2 Grow nohing Grow dd nohing a sage 1 dd a sage 2 '' s so ha s ' = s and ' = '' =

21 Need-o-know Represenaion1 Consider he diusion in a dieren way: Need-o-know Represenaion. Principle o eerred ecisions: We don decide all hresholds a he beginning; insead we reeal he alue o hresholds wheneer needed. For example: i node is inacie a sep -1, we only wan o know wheher i is aciaed a sep. Θ Θ -2-1

22 Need-o-know Represenaion2 Lemma: he ollowing process is equialen o he original one: 1.Iniialize 0 2. sep1 = - Wih probabiliy and we pick θ n 1, we iniialize 1 1 uniormly in [ 2 2 =, becomes aciaed 2 1, and or each sill inacie node - Oherwise we do nohing ]

23 nisense Coupling1 eine he anisense diusion P = P 1,..., k ; where 1,..., k is a pariion o seed se. Grow 1 Unil i s Grow k Unil i s Grow Unil i s K sage piecemeal growh dd a he beginning o sage k+1 ny sep in he inal sage, aciae nodes under he condiion. P P + 1 θ

24 nisense Coupling2 Grow 1 Grow k Grow Grow 1 Grow k Grow P θ θ Θ = P +1- Θ P P Θ θ ' P Q Q

25 nisense Coupling3 Grow 1 Grow k Grow Grow 1 Grow k Grow Lemma: he disribuions oer he aciaed node se a he o he piecemeal growh process P 1,, k ; and he anisense diusion process Q 1,, k ; are idenical.

26 nisense Coupling: Proo1 Grow 1 Grow k Grow Grow 1 Grow k Grow From Need-o-know Represenaion poin o iew: For any node sill inacie a ime =, we hae θ uniormly disribued in [ P,1] = [ Q,1]

27 nisense Coupling: Proo2 hen or any sill inacie node, we pick is Θ uniormly in [ P,1]. We deine Θ = Q +1- Θ. ince Θ and Θ hae he same disribuion, he inal sage in growing in P and Q is idenical. hereore P and Q hae he same disribuion.

28 Coupling: Oeriew Grow Unil i s Grow \ Unil i s Grow nohing Grow Unil i s Grow Nohing Grow \ Unil i s Grow Unil i s Grow \ Unil i s Grow \ Unil i s or any sep in all hree sages

29 Coupling: Firs wo sages = or all in he irs wo sages. hereore wo sages. We will show sage. or all seps in he irs or any sep in inal Grow Grow \ Grow nohing Grow Grow Nohing Grow \ Grow Grow \ Grow \ Firs wo sages Las sage

30 Coupling: nisense Coupling We irs proe \ \ or any sep in he inal sage by inducion on. ase case: \ \ ecause: = = \ \

31 Coupling: nisense Coupling ssume. We need o show ha. \ \ \ \ \ \ θ θ \ \ \, \ ', ', = = = = Lemma: For any and and submodular, we hae. ' ' ' ' '

32 Coupling: Wrapup hereore we hae: \ \ = or all in he inal sage, C Preiously proed Grow Grow \ Grow nohing Grow Grow Nohing Grow \ Grow Grow \ Grow \ Firs wo sages Las sage

33 Furher Generalizaion We hae deined σ=e[ P ]. We can inroduce a se uncion ω on P and deine he inluence spread as σ ω =E[ωP ] insead. heorem: Under he general hreshold model wih monoone and submodular and ω, σ ω is monoone and submodular. [Mossel/Roch 2007]

34 Furher Generalizaion: Proo. we hae aking expecaion,. hen. and ssume C C ω ω ω ω σ σ σ σ ω ω ω ω ω ω

35 Conclusion General hreshold Model generalizes many popular diusion models. heorem: Under he general hreshold model wih monoone and submodular and ω, σ ω is monoone and submodular. [Mossel/Roch 2007] Proo mehodology: Coupling piecemeal growh & anisense coupling

36 lgorihm or Inluence Maximizaion Corollary: he greedy algorihm is a 1-1/e approximaion o sole he inluence maximizaion problem under general hreshold model. lgorihm1: Greedyk 1: iniialize o empy se 2 :or i = 1o k do 3: 4 : selec u = = { u} arg max V \ σ { } σ 5 : or 6 : reurn

37 lgorihm or Inluence Maximizaion lgorihm1: Greedyk 1: 2 :or i = 1o k do 3: 4 : iniialize o empy se 5 : or 6 : reurn selec u = { u} = arg max V \ σ { } σ ime complexiy: OknCm Where n= V, m= E, C he imes o Mone- Carlo simulaion.

38 lgorihm or Inluence Maximizaion Name Main Idea Model Guaranee Reerence CELF Lazy Forward opimizaion ll 1-1/e CELF++ Furher opimizaion o CELF ll 1-1/e PMI Use direced ree srucure IC No LG Use G srucure L No IRIE Use PageRank o iniialize and updae locally CG Use communiy srucure IC IC No 1 + dθ 1 e 1 M imulaed nnealing ll No Leskoec e al Goyal e al Chen e al Chen e al Chen e al Wang e al Jiang e al. 2011

39 Open Quesions ieren classes o aciaion uncion. Local subaddiie se uncion Global subaddiie inluence spread σ? Find approximaion algorihm or soling he inluence maximizaion problem under diusion models wih non-submodular inluence spread σ.

40

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 7.1 Nework Flow Sovie Rail Nework, 19 Reerence: On he hiory o he ranporaion and maximum low problem. lexander Schrijver in Mah Programming, 91: 3, 00. (See Exernal Link ) Maximum Flow and Minimum Cu Max

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Maximum Flow and Minimum Cut

Maximum Flow and Minimum Cut // Sovie Rail Nework, Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy. Nework Flow Flow nework.

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Dynamic Programming 11/8/2009. Weighted Interval Scheduling. Weighted Interval Scheduling. Unweighted Interval Scheduling: Review

Dynamic Programming 11/8/2009. Weighted Interval Scheduling. Weighted Interval Scheduling. Unweighted Interval Scheduling: Review //9 Algorihms Dynamic Programming - Weighed Ineral Scheduling Dynamic Programming Weighed ineral scheduling problem. Insance A se of n jobs. Job j sars a s j, finishes a f j, and has weigh or alue j. Two

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Simulating models with heterogeneous agents

Simulating models with heterogeneous agents Simulaing models wih heerogeneous agens Wouer J. Den Haan London School of Economics c by Wouer J. Den Haan Individual agen Subjec o employmen shocks (ε i, {0, 1}) Incomplee markes only way o save is hrough

More information

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson CMP 6610/4610 Fall 2016 Flow Nework Carola Wenk lide adaped rom lide by Charle Leieron Max low and min c Fndamenal problem in combinaorial opimizaion Daliy beween max low and min c Many applicaion: Biparie

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Machine Learning 4771

Machine Learning 4771 ony Jebara, Columbia Universiy achine Learning 4771 Insrucor: ony Jebara ony Jebara, Columbia Universiy opic 20 Hs wih Evidence H Collec H Evaluae H Disribue H Decode H Parameer Learning via JA & E ony

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURES 17 Nework Flow Dualiy of Max Flow and Min Cu Algorihm: Ford-Fulkeron Capaciy Scaling Sofya Rakhodnikova S. Rakhodnikova; baed on lide by E. Demaine, C. Leieron, A. Smih,

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Speech and Language Processing

Speech and Language Processing Speech and Language rocessing Lecure 4 Variaional inference and sampling Informaion and Communicaions Engineering Course Takahiro Shinozaki 08//5 Lecure lan (Shinozaki s par) I gives he firs 6 lecures

More information

A NOTE ON THE STRUCTURE OF BILATTICES. A. Avron. School of Mathematical Sciences. Sackler Faculty of Exact Sciences. Tel Aviv University

A NOTE ON THE STRUCTURE OF BILATTICES. A. Avron. School of Mathematical Sciences. Sackler Faculty of Exact Sciences. Tel Aviv University A NOTE ON THE STRUCTURE OF BILATTICES A. Avron School of Mahemaical Sciences Sacler Faculy of Exac Sciences Tel Aviv Universiy Tel Aviv 69978, Israel The noion of a bilaice was rs inroduced by Ginsburg

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology Risk and Saey in Engineering Pro. Dr. Michael Havbro Faber ETH Zurich, Swizerland Conens o Today's Lecure Inroducion o ime varian reliabiliy analysis The Poisson process The ormal process Assessmen o he

More information

Dense Power-law Networks and Simplicial Complexes

Dense Power-law Networks and Simplicial Complexes Dense Power-law Neworks and Simplicial Complexes Courney, OT; Bianconi, G American Physical Sociey 2018 This is a pre-copyedied, auhor-produced version of an aricle acceped for publicaion in Physical Review

More information

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions Time discreizaion of quadraic and superquadraic Markovian BSDEs wih unbounded erminal condiions Adrien Richou Universié Bordeaux 1, INRIA équipe ALEA Oxford framework Le (Ω, F, P) be a probabiliy space,

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite American Journal of Operaions Research, 08, 8, 8-9 hp://wwwscirporg/journal/ajor ISSN Online: 60-8849 ISSN Prin: 60-8830 The Opimal Sopping Time for Selling an Asse When I Is Uncerain Wheher he Price Process

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Approximation Algorithms for Unique Games via Orthogonal Separators

Approximation Algorithms for Unique Games via Orthogonal Separators Approximaion Algorihms for Unique Games via Orhogonal Separaors Lecure noes by Konsanin Makarychev. Lecure noes are based on he papers [CMM06a, CMM06b, LM4]. Unique Games In hese lecure noes, we define

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Orientation. Connections between network coding and stochastic network theory. Outline. Bruce Hajek. Multicast with lost packets

Orientation. Connections between network coding and stochastic network theory. Outline. Bruce Hajek. Multicast with lost packets Connecions beween nework coding and sochasic nework heory Bruce Hajek Orienaion On Thursday, Ralf Koeer discussed nework coding: coding wihin he nework Absrac: Randomly generaed coded informaion blocks

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges.

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges. Sovie Rail Nework, haper Nework Flow Slide by Kevin Wayne. opyrigh Pearon-ddion Weley. ll righ reerved. Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming,

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Longest Common Prefixes

Longest Common Prefixes Longes Common Prefixes The sandard ordering for srings is he lexicographical order. I is induced by an order over he alphabe. We will use he same symbols (,

More information

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem.

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem. Maximum Flow and Minimum Cu CS lgorihm Deign Inrucor: rur Czumaj Lecure Nework Max and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy.

More information

Solutions for Assignment 2

Solutions for Assignment 2 Faculy of rs and Science Universiy of Torono CSC 358 - Inroducion o Compuer Neworks, Winer 218 Soluions for ssignmen 2 Quesion 1 (2 Poins): Go-ack n RQ In his quesion, we review how Go-ack n RQ can be

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 RL Lecure 7: Eligibiliy Traces R. S. Suon and A. G. Baro: Reinforcemen Learning: An Inroducion 1 N-sep TD Predicion Idea: Look farher ino he fuure when you do TD backup (1, 2, 3,, n seps) R. S. Suon and

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University CS 322: (Social and Inormation) Network Analysis Jure Leskovec Stanord University Initially some nodes S are active Each edge (a,b) has probability (weight) p ab b 0.4 0.4 0.2 a 0.4 0.2 0.4 g 0.2 Node

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel

Waveform Transmission Method, A New Waveform-relaxation Based Algorithm. to Solve Ordinary Differential Equations in Parallel Waveform Transmission Mehod, A New Waveform-relaxaion Based Algorihm o Solve Ordinary Differenial Equaions in Parallel Fei Wei Huazhong Yang Deparmen of Elecronic Engineering, Tsinghua Universiy, Beijing,

More information

Lecture 4: November 13

Lecture 4: November 13 Compuaional Learning Theory Fall Semeser, 2017/18 Lecure 4: November 13 Lecurer: Yishay Mansour Scribe: Guy Dolinsky, Yogev Bar-On, Yuval Lewi 4.1 Fenchel-Conjugae 4.1.1 Moivaion Unil his lecure we saw

More information

Wrap up: Weighted, directed graph shortest path Minimum Spanning Tree. Feb 25, 2019 CSCI211 - Sprenkle

Wrap up: Weighted, directed graph shortest path Minimum Spanning Tree. Feb 25, 2019 CSCI211 - Sprenkle Objecive Wrap up: Weighed, direced graph hore pah Minimum Spanning Tree eb, 1 SI - Sprenkle 1 Review Wha are greedy algorihm? Wha i our emplae for olving hem? Review he la problem we were working on: Single-ource,

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Kinematics and kinematic functions

Kinematics and kinematic functions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables and vice versa Direc Posiion

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 Sovie Rail Nework, 1 Reference: On he hiory of he ranporaion and maximum flow problem. Alexander Schrijver in Mah Programming, 1: 3,. Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic

More information

Planning in POMDPs. Dominik Schoenberger Abstract

Planning in POMDPs. Dominik Schoenberger Abstract Planning in POMDPs Dominik Schoenberger d.schoenberger@sud.u-darmsad.de Absrac This documen briefly explains wha a Parially Observable Markov Decision Process is. Furhermore i inroduces he differen approaches

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection Appendix o Online l -Dicionary Learning wih Applicaion o Novel Documen Deecion Shiva Prasad Kasiviswanahan Huahua Wang Arindam Banerjee Prem Melville A Background abou ADMM In his secion, we give a brief

More information

CMU-Q Lecture 3: Search algorithms: Informed. Teacher: Gianni A. Di Caro

CMU-Q Lecture 3: Search algorithms: Informed. Teacher: Gianni A. Di Caro CMU-Q 5-38 Lecure 3: Search algorihms: Informed Teacher: Gianni A. Di Caro UNINFORMED VS. INFORMED SEARCH Sraegy How desirable is o be in a cerain inermediae sae for he sake of (effecively) reaching a

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Ensemble Confidence Estimates Posterior Probability

Ensemble Confidence Estimates Posterior Probability Ensemble Esimaes Poserior Probabiliy Michael Muhlbaier, Aposolos Topalis, and Robi Polikar Rowan Universiy, Elecrical and Compuer Engineering, Mullica Hill Rd., Glassboro, NJ 88, USA {muhlba6, opali5}@sudens.rowan.edu

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Adaptation and Synchronization over a Network: stabilization without a reference model

Adaptation and Synchronization over a Network: stabilization without a reference model Adapaion and Synchronizaion over a Nework: sabilizaion wihou a reference model Travis E. Gibson (gibson@mi.edu) Harvard Medical School Deparmen of Pahology, Brigham and Women s Hospial 55 h Conference

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Supplementary Document

Supplementary Document Saisica Sinica (2013): Preprin 1 Supplemenary Documen for Funcional Linear Model wih Zero-value Coefficien Funcion a Sub-regions Jianhui Zhou, Nae-Yuh Wang, and Naisyin Wang Universiy of Virginia, Johns

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

Decentralized Stochastic Control with Partial History Sharing: A Common Information Approach

Decentralized Stochastic Control with Partial History Sharing: A Common Information Approach 1 Decenralized Sochasic Conrol wih Parial Hisory Sharing: A Common Informaion Approach Ashuosh Nayyar, Adiya Mahajan and Demoshenis Tenekezis arxiv:1209.1695v1 [cs.sy] 8 Sep 2012 Absrac A general model

More information

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 2, May 2013, pp. 209 227 ISSN 0364-765X (prin) ISSN 1526-5471 (online) hp://dx.doi.org/10.1287/moor.1120.0562 2013 INFORMS On Boundedness of Q-Learning Ieraes

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Supplementary Material

Supplementary Material Dynamic Global Games of Regime Change: Learning, Mulipliciy and iming of Aacks Supplemenary Maerial George-Marios Angeleos MI and NBER Chrisian Hellwig UCLA Alessandro Pavan Norhwesern Universiy Ocober

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Lecture 4 Notes (Little s Theorem)

Lecture 4 Notes (Little s Theorem) Lecure 4 Noes (Lile s Theorem) This lecure concerns one of he mos imporan (and simples) heorems in Queuing Theory, Lile s Theorem. More informaion can be found in he course book, Bersekas & Gallagher,

More information

Probabilistic learning

Probabilistic learning Probabilisic learning Charles Elkan November 8, 2012 Imporan: These lecure noes are based closely on noes wrien by Lawrence Saul. Tex may be copied direcly from his noes, or paraphrased. Also, hese ypese

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Lecture 12: Multiple Hypothesis Testing

Lecture 12: Multiple Hypothesis Testing ECE 830 Fall 00 Saisical Signal Processing insrucor: R. Nowak, scribe: Xinjue Yu Lecure : Muliple Hypohesis Tesing Inroducion In many applicaions we consider muliple hypohesis es a he same ime. Example

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2. THE BERNOULLI NUMBERS The Bernoulli numbers are defined here by he exponenial generaing funcion ( e The firs one is easy o compue: (2 and (3 B 0 lim 0 e lim, 0 e ( d B lim 0 d e +e e lim 0 (e 2 lim 0 2(e

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

Particle Swarm Optimization Combining Diversification and Intensification for Nonlinear Integer Programming Problems

Particle Swarm Optimization Combining Diversification and Intensification for Nonlinear Integer Programming Problems Paricle Swarm Opimizaion Combining Diversificaion and Inensificaion for Nonlinear Ineger Programming Problems Takeshi Masui, Masaoshi Sakawa, Kosuke Kao and Koichi Masumoo Hiroshima Universiy 1-4-1, Kagamiyama,

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri.

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri. UNIVERSIY OF RENO DEPARMEN OF INFORMAION AND COMMUNICAION ECHNOLOGY 385 Povo reno Ialy Via Sommarive 4 hp://www.di.unin.i MEASUREMENS OF RANSIEN PHENOMENA WIH DIGIAL OSCILLOSCOPES Anonio Moschia Fabrizio

More information

Information Geometry of Contrastive Divergence

Information Geometry of Contrastive Divergence Informaion Geomery of Conrasive Divergence hoaro Akaho AIT Tsukuba, 305-8568 Japan Kazuya Takabaake AIT Tsukuba, 305-8568 Japan Absrac The conrasive divergence(cd) mehod proposed by Hinon finds an approximae

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information