CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Size: px
Start display at page:

Download "CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University"

Transcription

1 CS 322: (Social and Inormation) Network Analysis Jure Leskovec Stanord University

2 Initially some nodes S are active Each edge (a,b) has probability (weight) p ab b a g 0.2 Node a becomes active: c e i activates t node b with prob. p ab Activations spread through the network 0.4 d 0.2 h 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 2

3 I S is initial active set, let (S) denote expected size o inal active set S is more inluential i (S) is larger 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 3

4 Blogs inormation epidemics Which are the inluential/inectious blogs? Viral marketing Who arethe trendsetters? Inluential people? Disease spreading Where to place monitoring stations to detect epidemics? 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 4

5 Most inluential set o size k: set S o k nodes producing largest expected cascade size (S) i activated [Domingos Richardson 01] 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 5

6 Optimization problem: max S o size k ( S) How hard is this problem? NP HARD! Showthat inding most inluential set is at least as hard as set cover 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 6

7 Set cover: Given U={u 1,,u n } and sets S 1,, S m U Are there k sets among S 1,, S m such that their union is U? Goal: Encode set cover as an instance o max S o size k ( S) 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 7

8 Given a set cover instance with sets S 1,, S m Build a graph: Create edge (S i, u) S i us i. Directed edge rom all sets to elements. Put weight 1 on each edge There exists a set S o size k with (S)=k+n i there exists a size k set cover 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 8

9 Bad news: Inluence maximization is NP hard Good news: There exists an approximation algorithm! Consider: Greedy hill climbing to ind a good set S 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 9

10 Start with S 0 ={} For i=1 k Choose node v that max (S i 1 {v}) Let S i = S i 1 {v} What is the runtime? Each step just runs n time steps or each node v b c d a e (S i 1 {v}) a b c d e 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 10

11 Hill climbing produces a solution S where (s) (1 1/e) o optimal value (~63%) [Hemhauser, Fisher, Wolsey 78, Kempe, Kleinberg, Tardos 03] Claim holds or unctions with 2 properties: is monotone: i S T then (S) (T) and ({})=0 is submodular: adding element to a set gives less improvement than adding to one o subsets 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 11

12 Diminishing returns: size o set (S {u}) (S) (T {u}) (T) Gain o adding a node to a small set Gain o adding a node to a large set 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 12

13 Show 2 things: 1) Our (S) () is submodular 2) Hill climbing works well or monotone submodular unctions 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 13

14 Keep adding nodes that give the largest gain Start with S 0 ={}, produce sets S 1, S 2,,S k Add elements one by one Marginal gain: i = (S i ) (S i 1 ) Let T={t 1 t k } be the best set o size k We need to show: (S) (1 1/e) (T) 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 14

15 Claim: (AB) (A) (A) k j (A {b j }) (A) where: B = {b 1,,b k } and is submodular, Proo: Let B i = {b 1, b i } (AB) (A) = 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 15

16 (T) () (S i T) ) T={t 1 t k } = (S i T) (S i ) + (S i ) jk [(S i {t j }) (S i )] + (S i ) jk i+1 + (S i ) = Thus: (T) () (S i ) + k i+1 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 16

17 We know: i+1 1/k ((T) (S (S i )) What is (S i+1 )= What is (S k )? 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 17

18 Claim: ( S ) 1 1 ( T ) Proo by induction: i=0: i 1 k i 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 18

19 Claim: ) ( ) ( T S i Claim: Induction: At i+1: ) ( 1 1 ) ( T k S i At i+1: 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 19

20 Thus: ) ( ) ( ) ( T S S k Thus: Then: ) ( 1 1 ) ( ) ( T k S S k Then: (S ) = (S k ) = 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 20

21 Next, we must show is submodular: S T F(S {u}) (S) (T {u}) (T) Gain o adding a node to a small set Gain o adding a node to a large set Basic act: I 1,, K are submodular, and c 1,,c k 0 then is also submodular 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 21

22 (S {u}) (S) (T {u}) (T) A simple submodular unction: Sets S 1,,S k (S) = i S i 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 22

23 Principle o deerred decision: Generate randomness ahead o time a b e g c 0.4 d 0.2 h i Flip a coin or each edge to decide whether it will succeed when (i ever) it attempts to transmit Edges on which h activation will succeed are live (S i ) = size o the set reachable by live edge paths 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 23

24 Fix outcome i o coin lips Let i (S) be size o cascade rom S given these coin lips a b e g c 0.4 d 0.2 h i Let i (v) = set o nodes reachable rom v on live edge paths i (S) () = size o union i (v) () i is submodular = i is submodular 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 24

25 Hill climbing l reward a b b d a What do we know about optimizing submodular unctions? A hill climbing (i.e., greedy) is near optimal (1-1/e (~63%) o optimal) But c d e c e Hill climbing algorithm is slow At each iteration we need to re evaluate marginal gains It scales as O(n k) Add sensor with highest marginal gain 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 25

26 [Leskovec et al., KDD 07] Observation: Submodularity guarantees that marginal beneits decrease with the solution size Marginal gain (S i {x}) x Idea: exploit submodularity, doing lazy evaluations! 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis Part 2 26

27 [Leskovec et al., KDD 07] Lazy hill climbing: Keep an ordered list o marginal beneits b i romprevious iteration Re evaluate evaluate b i only or top node Re sortand prune Marginal gain a b c d e b c d a e 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis Part 2 27

28 [Leskovec et al., KDD 07] Lazy hill climbing: Keep an ordered list o marginal beneits b i romprevious iteration Re evaluate evaluate b i only or top node Re sortand prune Marginal gain a b c d e b c d a e 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis Part 2 28

29 [Leskovec et al., KDD 07] Lazy hill climbing: Keep an ordered list o marginal beneits b i romprevious iteration Re evaluate evaluate b i only or top node Re sortand prune Marginal gain a d b e c b c d a e 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis Part 2 29

30 [Leskovec et al., KDD 07] Given a real city water distribution network And ddt data on how contaminants spread in the network Problem posed by US Environmental Protection Agency S 10/29/2009 Jure Leskovec, Stanord CS322: Network Analysis 30

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Find most influential set S of size k: largest expected cascade size f(s) if set S is activated

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/24/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Maximizing the Spread of Influence through a Social Network David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Influence and Social Networks Economics, sociology, political science, etc. all have studied

More information

9. Submodular function optimization

9. Submodular function optimization Submodular function maximization 9-9. Submodular function optimization Submodular function maximization Greedy algorithm for monotone case Influence maximization Greedy algorithm for non-monotone case

More information

CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24

CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24 CSCI 3210: Computational Game Theory Cascading Behavior in Networks Ref: [AGT] Ch 24 Mohammad T. Irfan Email: mirfan@bowdoin.edu Web: www.bowdoin.edu/~mirfan Course Website: www.bowdoin.edu/~mirfan/csci-3210.html

More information

Diffusion of Innovation and Influence Maximization

Diffusion of Innovation and Influence Maximization Diffusion of Innovation and Influence Maximization Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network Maximizing the Spread of Influence through a Social Network David Kempe Dept. of Computer Science Cornell University, Ithaca NY kempe@cs.cornell.edu Jon Kleinberg Dept. of Computer Science Cornell University,

More information

Greedy Maximization Framework for Graph-based Influence Functions

Greedy Maximization Framework for Graph-based Influence Functions Greedy Maximization Framework for Graph-based Influence Functions Edith Cohen Google Research Tel Aviv University HotWeb '16 1 Large Graphs Model relations/interactions (edges) between entities (nodes)

More information

Probability Models of Information Exchange on Networks Lecture 6

Probability Models of Information Exchange on Networks Lecture 6 Probability Models of Information Exchange on Networks Lecture 6 UC Berkeley Many Other Models There are many models of information exchange on networks. Q: Which model to chose? My answer good features

More information

Influence Maximization in Continuous Time Diffusion Networks

Influence Maximization in Continuous Time Diffusion Networks Manuel Gomez-Rodriguez 1,2 Bernhard Schölkopf 1 1 MPI for Intelligent Systems and 2 Stanford University MANUELGR@STANFORD.EDU BS@TUEBINGEN.MPG.DE Abstract The problem of finding the optimal set of source

More information

On the Submodularity of Influence in Social Networks

On the Submodularity of Influence in Social Networks On the Submodularity of Influence in Social Networks Elchanan Mossel Dept. of Statistics U.C. Berkeley mossel@stat.berkeley.edu Sebastien Roch Dept. of Statistics U.C. Berkeley sroch@stat.berkeley.edu

More information

Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process

Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process Wei Chen Microsoft Research Asia Beijing, China weic@microsoft.com Wei Lu University of British Columbia Vancouver,

More information

Cascading Behavior in Networks: Algorithmic and Economic Issues

Cascading Behavior in Networks: Algorithmic and Economic Issues CHAPTER 24 Cascading Behavior in Networks: Algorithmic and Economic Issues Jon Kleinberg Abstract The flow of information or influence through a large social network can be thought of as unfolding with

More information

Tractable Models for Information Diffusion in Social Networks

Tractable Models for Information Diffusion in Social Networks Tractable Models for Information Diffusion in Social Networks Masahiro Kimura 1 and Kazumi Saito 2 1 Department of Electronics and Informatics, Ryukoku University Otsu, Shiga 520-2194, Japan 2 NTT Communication

More information

Submodular Functions Properties Algorithms Machine Learning

Submodular Functions Properties Algorithms Machine Learning Submodular Functions Properties Algorithms Machine Learning Rémi Gilleron Inria Lille - Nord Europe & LIFL & Univ Lille Jan. 12 revised Aug. 14 Rémi Gilleron (Mostrare) Submodular Functions Jan. 12 revised

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 13 Submodularity (cont d) CS 101.2 Andreas Krause Announcements Homework 2: Due Thursday Feb 19 Project milestone due: Feb 24 4 Pages, NIPS format:

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University Announcements: Please fill HW Survey Weekend Office Hours starting this weekend (Hangout only) Proposal: Can use 1 late period CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

More information

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm Tasuku Soma TASUKU SOMA@MIST.I.U-TOKYO.AC.JP Graduate School of Information Science and Technology, The University of Tokyo, Tokyo,

More information

Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization

Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization Journal of Artificial Intelligence Research 42 (2011) 427-486 Submitted 1/11; published 11/11 Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization Daniel Golovin

More information

1 Submodular functions

1 Submodular functions CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: November 16, 2010 1 Submodular functions We have already encountered submodular functions. Let s recall

More information

Monotone Submodular Maximization over a Matroid

Monotone Submodular Maximization over a Matroid Monotone Submodular Maximization over a Matroid Yuval Filmus January 31, 2013 Abstract In this talk, we survey some recent results on monotone submodular maximization over a matroid. The survey does not

More information

arxiv: v4 [cs.si] 21 May 2017

arxiv: v4 [cs.si] 21 May 2017 Submitted to manuscript 2017 No Time to Observe: Adaptive Influence Maximization with Partial Feedback Jing Yuan Shaojie Tang The University of Texas at Dallas arxiv:1609.00427v4 [cs.si] 21 May 2017 Although

More information

The Ties that Bind Characterizing Classes by Attributes and Social Ties

The Ties that Bind Characterizing Classes by Attributes and Social Ties The Ties that Bind WWW April, 2017, Bryan Perozzi*, Leman Akoglu Stony Brook University *Now at Google. Introduction Outline Our problem: Characterizing Community Differences Proposed Method Experimental

More information

Diffusion of Innovation

Diffusion of Innovation Diffusion of Innovation Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network Analysis

More information

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap ECS 253 / MAE 253, Lecture 15 May 17, 2016 I. Probability generating function recap Part I. Ensemble approaches A. Master equations (Random graph evolution, cluster aggregation) B. Network configuration

More information

Time sensitive influence maximization in social networks

Time sensitive influence maximization in social networks Time sensitive influence maximization in social networks Mohammadi, A, Saraee, MH and Mirzaei, A http://dx.doi.org/10.1177/0165551515602808 Title Authors Type URL Time sensitive influence maximization

More information

Time Constrained Influence Maximization in Social Networks

Time Constrained Influence Maximization in Social Networks Time Constrained Influence Maximization in Social Networks Bo Liu Facebook Menlo Park, CA, USA bol@fb.com Gao Cong, Dong Xu School of Computer Engineering Nanyang Technological University, Singapore {gaocong,

More information

Jure Leskovec Stanford University

Jure Leskovec Stanford University Jure Leskovec Stanford University 2 Part 1: Models for networks Part 2: Information flows in networks Information spread in social media 3 Information flows through networks Analyzing underlying mechanisms

More information

Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization

Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization Daniel Golovin California Institute of Technology Pasadena, CA 91125 dgolovin@caltech.edu Andreas Krause California

More information

Profit Maximization for Viral Marketing in Online Social Networks

Profit Maximization for Viral Marketing in Online Social Networks Maximization for Viral Marketing in Online Social Networks Jing TANG Interdisciplinary Graduate School Nanyang Technological University Email: tang0311@ntu.edu.sg Xueyan TANG School of Comp. Sci. & Eng.

More information

On Multiset Selection with Size Constraints

On Multiset Selection with Size Constraints On Multiset Selection with Size Constraints Chao Qian, Yibo Zhang, Ke Tang 2, Xin Yao 2 Anhui Province Key Lab of Big Data Analysis and Application, School of Computer Science and Technology, University

More information

1 Maximizing a Submodular Function

1 Maximizing a Submodular Function 6.883 Learning with Combinatorial Structure Notes for Lecture 16 Author: Arpit Agarwal 1 Maximizing a Submodular Function In the last lecture we looked at maximization of a monotone submodular function,

More information

Approximability of Adaptive Seeding under Knapsack Constraints

Approximability of Adaptive Seeding under Knapsack Constraints Approximability of Adaptive Seeding under Knapsack Constraints Aviad Rubinstein UC Berkeley aviad@cs.berkeley.edu Lior Seeman Cornell Univeristy lseeman@cs.cornell.edu May 6, 2015 Yaron Singer Harvard

More information

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence ECS 289 F / MAE 298, Lecture 15 May 20, 2014 Diffusion, Cascades and Influence Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic thresholds

More information

Simultaneous Influencing and Mapping for Health Interventions

Simultaneous Influencing and Mapping for Health Interventions The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence Expanding the Boundaries of Health Informatics Using AI: Technical Report WS-16-8 Simultaneous Influencing and Mapping for Health

More information

Performance Evaluation. Analyzing competitive influence maximization problems with partial information: An approximation algorithmic framework

Performance Evaluation. Analyzing competitive influence maximization problems with partial information: An approximation algorithmic framework Performance Evaluation ( ) Contents lists available at ScienceDirect Performance Evaluation journal homepage: www.elsevier.com/locate/peva Analyzing competitive influence maximization problems with partial

More information

Influence Spreading Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond

Influence Spreading Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond 1 ing Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond Bo Liu, Gao Cong, Yifeng Zeng, Dong Xu,and Yeow Meng Chee Abstract Influence maximization is a fundamental

More information

ECS 253 / MAE 253, Lecture 13 May 15, Diffusion, Cascades and Influence Mathematical models & generating functions

ECS 253 / MAE 253, Lecture 13 May 15, Diffusion, Cascades and Influence Mathematical models & generating functions ECS 253 / MAE 253, Lecture 13 May 15, 2018 Diffusion, Cascades and Influence Mathematical models & generating functions Last week: spatial flows and game theory on networks Optimal location of facilities

More information

Learning to Predict Opinion Share in Social Networks

Learning to Predict Opinion Share in Social Networks Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence AAAI-10 Learning to Predict Opinion Share in Social Networks Masahiro Kimura Department of Electronics and Informatics Ryukoku

More information

A Fast Approximation for Influence Maximization in Large Social Networks

A Fast Approximation for Influence Maximization in Large Social Networks A Fast Approximation for Influence Maximization in Large Social Networks ABSTRACT Jong-Ryul Lee Dept. of Computer Science, KAIST 29 Daehak-ro, Yuseong-gu, Daejeon, Korea jrlee@islab.kaist.ac.kr This paper

More information

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks Osman Yağan Department of ECE Carnegie Mellon University Joint work with Y. Zhuang and V. Gligor (CMU) Alex

More information

Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context

Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context Anand Narasimhamurthy, Pádraig Cunningham, and Derek Greene School

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions Instructor: Shaddin Dughmi Announcements Introduction We saw how matroids form a class of feasible

More information

Influence Maximization in Big Networks: An Incremental Algorithm for Streaming Subgraph Influence Spread Estimation

Influence Maximization in Big Networks: An Incremental Algorithm for Streaming Subgraph Influence Spread Estimation Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015 Influence Maximization in Big etworks: An Incremental Algorithm for Streaming Subgraph Estimation

More information

Multi-Round Influence Maximization

Multi-Round Influence Maximization Multi-Round Influence Maximization Lichao Sun 1, Weiran Huang 2, Philip S. Yu 1,2, Wei Chen 3, 1 University of Illinois at Chicago, 2 Tsinghua University, 3 Microsoft Research lsun29@uic.edu, huang.inbox@outlook.com,

More information

Analytically tractable processes on networks

Analytically tractable processes on networks University of California San Diego CERTH, 25 May 2011 Outline Motivation 1 Motivation Networks Random walk and Consensus Epidemic models Spreading processes on networks 2 Networks Motivation Networks Random

More information

CSC 373: Algorithm Design and Analysis Lecture 12

CSC 373: Algorithm Design and Analysis Lecture 12 CSC 373: Algorithm Design and Analysis Lecture 12 Allan Borodin February 4, 2013 1 / 16 Lecture 12: Announcements and Outline Announcements Term test 1 in tutorials. Need to use only two rooms due to sickness

More information

Robust Optimization for Non-Convex Objectives

Robust Optimization for Non-Convex Objectives Robust Optimization for Non-Convex Objectives Robert Chen Computer Science Harvard University Brendan Lucier Microsoft Research New England Yaron Singer Computer Science Harvard University Vasilis Syrgkanis

More information

A Note on Maximizing the Spread of Influence in Social Networks

A Note on Maximizing the Spread of Influence in Social Networks A Note on Maximizing the Spread of Influence in Social Networks Eyal Even-Dar 1 and Asaf Shapira 2 1 Google Research, Email: evendar@google.com 2 Microsoft Research, Email: asafico@microsoft.com Abstract.

More information

Lecture 11 October 11, Information Dissemination through Social Networks

Lecture 11 October 11, Information Dissemination through Social Networks CS 284r: Incentives and Information in Networks Fall 2013 Prof. Yaron Singer Lecture 11 October 11, 2013 Scribe: Michael Tingley, K. Nathaniel Tucker 1 Overview In today s lecture we will start the second

More information

Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network

Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network Peng Zhang Purdue University zhan1456@purdue.edu Yajun Wang Microsoft yajunw@microsoft.com Wei Chen Microsoft weic@microsoft.com

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

Monitoring Stealthy Diffusion

Monitoring Stealthy Diffusion Monitoring Stealthy Diffusion Nika Haghtalab, Aron Laszka, Ariel D. Procaccia, Yevgeniy Vorobeychik and Xenofon Koutsoukos Carnegie Mellon University {nhaghtal,arielpro}@cs.cmu.edu Vanderbilt University

More information

Submodularity of Infuence in Social. Networks: From Local to Global

Submodularity of Infuence in Social. Networks: From Local to Global Submodularity of Infuence in Social Networks: From Local to Global arxiv:math/0612046v2 [math.pr] 28 Jul 2009 Elchanan Mossel and Sebastien Roch July 28, 2009 Abstract Social networks are often represented

More information

From Competition to Complementarity: Comparative Influence Diffusion and Maximization

From Competition to Complementarity: Comparative Influence Diffusion and Maximization From Competition to Complementarity: Comparative Influence Diffusion and Maximization ei Lu University of British Columbia Vancouver, B.C., Canada welu@cs.ubc.ca ei Chen Microsoft Research Beijing, China

More information

WITH the recent advancements of information technologies,

WITH the recent advancements of information technologies, i Distributed Rumor Blocking with Multiple Positive Cascades Guangmo (Amo) Tong, Student Member, IEEE, Weili Wu, Member, IEEE, and Ding-Zhu Du, arxiv:1711.07412 [cs.si] 1 Dec 2017 Abstract Misinformation

More information

Information Dissemination in Social Networks under the Linear Threshold Model

Information Dissemination in Social Networks under the Linear Threshold Model Information Dissemination in Social Networks under the Linear Threshold Model Srinivasan Venkatramanan and Anurag Kumar Department of Electrical Communication Engineering, Indian Institute of Science,

More information

Least cost influence propagation in (social) networks

Least cost influence propagation in (social) networks Least cost influence propagation in (social) networks Matteo Fischetti 1, Michael Kahr 2, Markus Leitner 2, Michele Monaci 3 and Mario Ruthmair 2 1 DEI, University of Padua, Italy. matteo.fischetti@unipd.it

More information

Influence Maximization in Dynamic Social Networks

Influence Maximization in Dynamic Social Networks Influence Maximization in Dynamic Social Networks Honglei Zhuang, Yihan Sun, Jie Tang, Jialin Zhang and Xiaoming Sun Department of Computer Science and Technology, Tsinghua University Department of Computer

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2

More information

Influence Maximization in Undirected Networks

Influence Maximization in Undirected Networks Influence Maximization in Undirected Networs Saneev Khanna Brendan Lucier Abstract We consider the problem of finding a set of vertices of maximal total influence in a given undirected networ, under the

More information

CSE541 Class 22. Jeremy Buhler. November 22, Today: how to generalize some well-known approximation results

CSE541 Class 22. Jeremy Buhler. November 22, Today: how to generalize some well-known approximation results CSE541 Class 22 Jeremy Buhler November 22, 2016 Today: how to generalize some well-known approximation results 1 Intuition: Behavior of Functions Consider a real-valued function gz) on integers or reals).

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

A Note on the Budgeted Maximization of Submodular Functions

A Note on the Budgeted Maximization of Submodular Functions A Note on the udgeted Maximization of Submodular Functions Andreas Krause June 2005 CMU-CALD-05-103 Carlos Guestrin School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Many

More information

Influence Maximization with ε-almost Submodular Threshold Functions

Influence Maximization with ε-almost Submodular Threshold Functions Influence Maximization with ε-almost Submodular Threshold Functions Qiang Li, Wei Chen, Xiaoming Sun, Jialin Zhang CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology,

More information

ECS 289 / MAE 298, Lecture 16 May 22, Diffusion, Cascades and Influence, Part II

ECS 289 / MAE 298, Lecture 16 May 22, Diffusion, Cascades and Influence, Part II ECS 289 / MAE 298, Lecture 16 May 22, 2014 Diffusion, Cascades and Influence, Part II Announcements Homeworks HW3 and HW3b now due Tues May 27 HW3a (project progress report) due Fri May 30 NetSci 2014

More information

A Submodular Framework for Graph Comparison

A Submodular Framework for Graph Comparison A Submodular Framework for Graph Comparison Pinar Yanardag Department of Computer Science Purdue University West Lafayette, IN, 47906, USA ypinar@purdue.edu S.V.N. Vishwanathan Department of Computer Science

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 0, Winter 08 Design and Analysis of Algorithms Lecture 8: Consolidation # (DP, Greed, NP-C, Flow) Class URL: http://vlsicad.ucsd.edu/courses/cse0-w8/ Followup on IGO, Annealing Iterative Global Optimization

More information

Robust Influence Maximization

Robust Influence Maximization Robust Influence Maximization Wei Chen Microsoft Research weic@microsoft.com Mingfei Zhao IIIS, Tsinghua University mingfeizhao@hotmail.com Tian Lin Tsinghua University lint0@mails.tsinghua.edu.cn Xuren

More information

Viral Marketing and the Diffusion of Trends on Social Networks

Viral Marketing and the Diffusion of Trends on Social Networks University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science May 2008 Viral Marketing and the Diffusion of Trends on Social Networks Jennifer Wortman

More information

On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities

On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities Dimitris Fotakis and Paris Siminelakis School of Electrical and Computer Engineering, National

More information

Subset Selection under Noise

Subset Selection under Noise Subset Selection under Noise Chao Qian Jing-Cheng Shi 2 Yang Yu 2 Ke Tang 3, Zhi-Hua Zhou 2 Anhui Province Key Lab of Big Data Analysis and Application, USTC, China 2 National Key Lab for Novel Software

More information

WITH the popularity of online social networks, viral. Boosting Information Spread: An Algorithmic Approach. arxiv: v3 [cs.

WITH the popularity of online social networks, viral. Boosting Information Spread: An Algorithmic Approach. arxiv: v3 [cs. 1 Boosting Information Spread: An Algorithmic Approach Yishi Lin, Wei Chen Member, IEEE, John C.S. Lui Fellow, IEEE arxiv:1602.03111v3 [cs.si] 26 Jun 2017 Abstract The majority of influence maximization

More information

Discrete Optimization in Machine Learning. Colorado Reed

Discrete Optimization in Machine Learning. Colorado Reed Discrete Optimization in Machine Learning Colorado Reed [ML-RCC] 31 Jan 2013 1 Acknowledgements Some slides/animations based on: Krause et al. tutorials: http://www.submodularity.org Pushmeet Kohli tutorial:

More information

On Subset Selection with General Cost Constraints

On Subset Selection with General Cost Constraints On Subset Selection with General Cost Constraints Chao Qian, Jing-Cheng Shi 2, Yang Yu 2, Ke Tang UBRI, School of Computer Science and Technology, University of Science and Technology of China, Hefei 23002,

More information

Subset Selection under Noise

Subset Selection under Noise Subset Selection under Noise Chao Qian 1 Jing-Cheng Shi 2 Yang Yu 2 Ke Tang 3,1 Zhi-Hua Zhou 2 1 Anhui Province Key Lab of Big Data Analysis and Application, USTC, China 2 National Key Lab for Novel Software

More information

Monitoring Stealthy Diffusion

Monitoring Stealthy Diffusion Knowledge and Information Systems (2000) xxx: 1 30 c 2000 Springer-Verlag London Ltd. Monitoring Stealthy Diffusion Nika Haghtalab 1, Aron Laszka 2, Ariel D. Procaccia 1, Yevgeniy Vorobeychik 2 and Xenofon

More information

Stochastic Submodular Cover with Limited Adaptivity

Stochastic Submodular Cover with Limited Adaptivity Stochastic Submodular Cover with Limited Adaptivity Arpit Agarwal Sepehr Assadi Sanjeev Khanna Abstract In the submodular cover problem, we are given a non-negative monotone submodular function f over

More information

Efficient Information Planning in Graphical Models

Efficient Information Planning in Graphical Models Efficient Information Planning in Graphical Models computational complexity considerations John Fisher & Giorgos Papachristoudis, MIT VITALITE Annual Review 2013 September 9, 2013 J. Fisher (VITALITE Annual

More information

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process Social Influence in Online Social Networks Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Dr. Zesheng Chen Viral marketing ( word-of-mouth ) Blog information cascading Rumor

More information

Info-Cluster Based Regional Influence Analysis in Social Networks

Info-Cluster Based Regional Influence Analysis in Social Networks Info-Cluster Based Regional Influence Analysis in Social Networks Chao Li,2,3, Zhongying Zhao,2,3,JunLuo, and Jianping Fan Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen

More information

Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions

Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions Ashwinumar Badanidiyuru Google ashwinumarbv@gmail.com Aviad Rubinstein UC Bereley aviad@cs.bereley.edu Lior Seeman Cornell

More information

Friends or Foes: Detecting Dishonest Recommenders in Online Social Networks

Friends or Foes: Detecting Dishonest Recommenders in Online Social Networks Friends or Foes: Detecting Dishonest Recommenders in Online Social Networks Yongkun Li, John C.S. Lui Department of Computer Science & Engineering, The Chinese University of Hong Kong Email: {ykli, cslui}@cse.cuhk.edu.hk

More information

IS-ZC444: ARTIFICIAL INTELLIGENCE

IS-ZC444: ARTIFICIAL INTELLIGENCE IS-ZC444: ARTIFICIAL INTELLIGENCE Lecture-07: Beyond Classical Search Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031,

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

Using first-order logic, formalize the following knowledge:

Using first-order logic, formalize the following knowledge: Probabilistic Artificial Intelligence Final Exam Feb 2, 2016 Time limit: 120 minutes Number of pages: 19 Total points: 100 You can use the back of the pages if you run out of space. Collaboration on the

More information

Streaming Algorithms for Submodular Function Maximization

Streaming Algorithms for Submodular Function Maximization Streaming Algorithms for Submodular Function Maximization Chandra Chekuri Shalmoli Gupta Kent Quanrud University of Illinois at Urbana-Champaign October 6, 2015 Submodular functions f : 2 N R if S T N,

More information

Two is a Crowd - Optimal Trend Adoption in Social Networks

Two is a Crowd - Optimal Trend Adoption in Social Networks Two is a Crowd - Optimal Trend Adoption in Social Networs Lilin Zhang, Peter Marbach Department of Computer Science University of Toronto {llzhang, marbach}@cs.toronto.edu Abstract In this paper, we study

More information

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 )

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 ) Algorithms Chapter 5: The Tree Searching Strategy - Examples 1 / 11 Chapter 5: The Tree Searching Strategy 1. Ex 5.1Determine the satisfiability of the following Boolean formulas by depth-first search

More information

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria 12. LOCAL SEARCH gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley h ttp://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Submodular Functions and Their Applications

Submodular Functions and Their Applications Submodular Functions and Their Applications Jan Vondrák IBM Almaden Research Center San Jose, CA SIAM Discrete Math conference, Minneapolis, MN June 204 Jan Vondrák (IBM Almaden) Submodular Functions and

More information

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Wei Chen Microsoft Research Asia, Beijing, China Yajun Wang Microsoft Research Asia, Beijing, China Yang Yuan Computer Science

More information

Detecting Anti-majority Opinionists Using Value-weighted Mixture Voter Model

Detecting Anti-majority Opinionists Using Value-weighted Mixture Voter Model Detecting Anti-majority Opinionists Using Value-weighted Mixture Voter Model Masahiro Kimura, Kazumi Saito 2, Kouzou Ohara 3, and Hiroshi Motoda 4 Department of Electronics and Informatics, Ryukoku University

More information

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun 1 Probabilistic Method Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun Turning the MaxCut proof into an algorithm. { Las Vegas Algorithm Algorithm

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Influence Maximization in Social Networks: An Ising-model-based Approach

Influence Maximization in Social Networks: An Ising-model-based Approach Influence Maximization in Social etworks: An Ising-model-based Approach Shihuan Liu, Lei Ying, and Srinivas Shakkottai Department of Electrical and Computer Engineering, Iowa State University Email: {liush08,

More information

Online Social Networks and Media. Opinion formation on social networks

Online Social Networks and Media. Opinion formation on social networks Online Social Networks and Media Opinion formation on social networks Diffusion of items So far we have assumed that what is being diffused in the network is some discrete item: E.g., a virus, a product,

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

Sparsification of Influence Networks

Sparsification of Influence Networks Sparsification of Influence Networks Michael Mathioudakis 1 mathiou@cs.toronto.edu Francesco Bonchi 2 bonchi@yahoo-inc.com Carlos Castillo 2 chato@yahoo-inc.com Aristides Gionis 2 gionis@yahoo-inc.com

More information