9. Submodular function optimization

Size: px
Start display at page:

Download "9. Submodular function optimization"

Transcription

1 Submodular function maximization 9-9. Submodular function optimization Submodular function maximization Greedy algorithm for monotone case Influence maximization Greedy algorithm for non-monotone case

2 Combinatorial optimization problems Knapsack problem given n items each with cost c i and value v i, and a budget B, the goal of the knapsack problem is to find a subset of items S such that the value is maximized while cost does not exceed the budget, i.e. maximize subject to v T x c T x B x i 2 f0; g; 8i 2 [n] MaxCover problem consider a set of n elements [n] = f; : : : ; ng, and m subsets T ; : : : ; T m [n], and the goal of MaxCover problem is to find K subsets whose union has the largest cardinality, i.e. maximize T z subject to z j X i:j 2T i x i T x K z j ; x i 2 f0; g; 8j 2 [n] 8i 2 [m]

3 Maximizing submodular functions consider a set of elements [n] = f; : : : ; ng and a real-valued function over a subset of the elements f : 2 n! R X [n] 7! f (X ) a function f is monotone if for all S T, f (S) f (T ) the marginal contribution of a function f of an element i to a set S is defined as f S (i) = f (S [ fig) f (S) a function f is submodular if for any i 2 [n] and any S T we have f S (i) f T (i) and we are interested in the following optimization problem for a submordular objective function f maximize subject to f (S) S 2 F for a subset S [n] that satisfy a certain constraint represented by the feasible set F

4 Submodular function maximization 9-4 equivalently, a function is submodular if and only if for all S ; T [n], f (S) + f (T ) f (S [ T ) + f (S \ T ) knapsack problem is a submodular maximization with f (S) = P i2s v i and F = fs [n] : c(s) Bg where c(s) = P i2s c i, and f is submodular and monotone MaxCover problem is a submodular maximization with f (S) = j [ i2s T i j and F = fs [n] : jsj K g, and f is submodular and monotone many interesting problems can be formulated as submordular function maximization problem

5 Greedy algorithm with approximation guarantee first, consider a special case of monotone and submodular f, and the constraint is cardinality constraint with F = fs [n] : jsj K g Greedy algorithm. set S = ; 2. while jsj K add to S an element i that maximizes f (S [ fig) 3. end while. surprisingly, this greedy algorithm gives a good approximate solution as proved by Fisher, Nemhauser and Wolsey in 978 theorem. (approximation) If f monotone, submodular and f (;) = 0, then the greedy algorithm returns a solution that achieves f (S) OPT e where OPT = max S:jS jk f (S) theorem. (converse result by Feige 998) it is NP-hard to get a ( e ) + approximation for any > 0 for MaxCover problem (proof is beyond the scope of this lecture)

6 proof of the approximation guarantee. let S i be the set after i iterations of the greedy algorithm, then by monotonicity f (S ) f (S i [ S ), where S is the optimal set by submodularity, f (S ) f (S i [ S ) f (S i ) + (f (S i [ fx g) f (S i )) + (f (S i [ fx ; x 2 g) f (S i [ fx g)) + f (S i ) + (f (S i [ fx g) f (S i )) + f Si (x 2 ) + + f Si (x k ) f (S i ) + K (f (S i+ ) f (S i )) for S = fx ; : : : ; x k g, and this gives f (S i+) f (S i) OPT f (Si) K now we use induction to prove that f (S i) i OPT K it is trivially true for i = 0 and we write f (S i+ ) f (S i ) + K OPT f (S i ) = K K = f (S i ) + K OPT K K i+ OPT i OPT + K OPT [by induction hypothesis] this implies f (S) ( ( =K ) K )OPT ( =e)opt Submodular function maximization 9-6

7 Submodular function maximization 9-7 data-dependent bound suppose S is the output of the greedy algorithm and S is the optimal solution let i = f S (i) and suppose i s are sorted such that 2 3 : : : then similar argument shows that f (S ) f (S [ S ) f (S) k gain is significant if f (S)

8 next, we consider a more general case where f is still monotone and submodular, but the constraint is the budget constraint with F = fs [n] : C (S) Bg where C (S) = P i2s c i for some elementwise cost c i Cost-benefit greedy algorithm. set S = ; 2. while there exists an i 2 [n] such that C (S [ fig) B add to S an element i that maximizes f (S [ fig) f (S) subject to C (S [ fig) B 3. end while. c i performance of the above algorithm can be arbitrarily bad, for example if B = and f (f; 2g) = f () + f (2) with item : f () = 2"; c = " item 2 : f (2) = ; c 2 = Cost-benefit greedy algorithm chooses S = fg with F (S) = 2", whereas the optimal solution is F (f2g) =

9 Submodular function maximization 9-9 theorem. [Leskovec et al KDD 07] let S CB be the solution of Cost-benefit greedy algorithm and let S UC be the output of the greedy algorithm treating the costs as equal, then maxff (S CB ); f (S UC )g 2 e OPT

10 Examples of submodular function maximization Influence maximization motivation: given a target customers in a social network, how can we choose a set S of early adopters and market them in order to generate a cascade of adoptions? define influence function f (S) as the expected number of influenced nodes at the end of the process starting with S in a finite network G(V ; E) (to be formally defined below) maximize subject to f (S) c(s) B theorem. [Kempe et al. 03] under general cascade model, influence maximization is NP-hard ro approximate to a factor of n " for any " > 0

11 Submodular function maximization 9- independent cascade model for each edge (i ; j ) there is a probability p ij such that if i is activated then it has one chance to activate j with probability p ij theorem. [Kempe et al 03] f is submodular under independent cascade model proof. consider an equivalent scenario where a biased coin is flipped for each edge in the beginning to determine whether the edge is active or not, then a node i is active if there exists a path of active edges from the node i to set S for a given instance of the active edges, the function of influence is submodular, since for all S T, the (deterministic) function f (S [ fig) f (S) is the number of nodes that are reachable from i using active edges that is not already reachable from S and if T includes S, this number only gets smallet for T, i.e. f (S [ fig) f (S) f (T [ fig) f (T ) since the function is submodular for each instance of the random trial, it is submodular in expectation as well, from the linearity of expectation f (S) = fz (S)P(Z ) PZ

12 linear threshold model for each edge (i ; j ) there is a nonnegative weight w ij such that Pi w ij each node i has threshold i uniformly a trandom in [0; ] such that i becomes active if X w ij j activei theorem. [Kempe et al 03] f is submodular under linear threshold model

13 Submodular function maximization 9-3 feature selection given random variables Y ; X ; : : : ; X n, want to predict Y from subset X A = fx i ; : : : ; X ik g Y : patient is sick X : patient has fever X 2 : patient has rash X 3 : patient is male how do we find k most informative features? f (S) = I (Y ; X S ) = H (Y ) H (Y jx S ) f monotonic and submodular if X i s are conditionally independent given Y [Krause, Guestrin UAI 05]

14 Maximizing non-monotone but submodular function f Now we slightly relax the previous assumptions and suppose that f is submodular, but not necessarily monotone, and there is no constraint on f this problem is NP-hard in general, if f can take negative values, hard to even approximate, i.e. O(n ) approximation is NP-hard however, when f is non-negative, there is an efficient greedy algorithm: Non-negative greedy algorithm. set S = fig where i maximizes f (fig) 2. while there exists an i 2 [n] n S such that f (S [ fig) f (S) add to S an element i return to while there exists an i 2 S such that f (S n fig) f (S) remove i from S return to 2. and achieves good approximation guarantee theorem. [Feige 07] for non-negative and submodular f, Non-negative greedy algorithm achieves 3 -approximation. Submodular function maximization 9-4

15 proof. let S be the optimal solution and S be the output of the greedy algorithm, then f (S ) f (S ) + f (;) + f ([n]) [by non-negativity] this proves that f (S \ S) + f (S \ S c ) + f ([n]) [by sub-modularity] f (S \ S) + f (S [ S) + f (S c ) [by submodularity] f (S) + f (S) + f (S c ) [by the following lemma] maxfs ; S c g 3 OPT lemma. for any subset T of S, i.e. T S or a superset T of S, i.e. S T, we have f (S) f (T ) proof. consider any sequence of increasing sets ; = T 0 T T k = S T k+ T n = [n] where jt i+ n T ij = and a i t i+ n T i for i < k, f (T i+) f (T i) f (S) f (S n fa ig) [by submodularity] 0 [by greedy search]

16 Submodular function maximization 9-6 for i > k, f (T i) f (T i ) f (S [ fa ig) f (S) [by submodularity] 0 [by greedy search]

17 further reading submodular function maximization with matroid constraints greedy algorithm achieves ( =e) approximation robust optimization max S min i f i(s) for a class of submoduular functions f i s [Krause et al 07] does not admit any approximation unless P=NP minimizing submodular function

18 Minimizing submodular functions example: factoring distributions given random variables X ; : : : ; X n, partition the variables into two sets S and [n] n S as independent as possible minimize subject to f (S) c(s) B where f (S) = I (X S ; X [n]ns ) = H (X [n]ns ) H (X [n]ns jx S ) f is submodular and symmetric where a sub modular function is symmetries if and only if for all S [n] f (S) = f (S c ) another example of a symmetric submodular set function is graph cut

19 Submodular function maximization 9-9 remark. a symmetric submodular function is (trivially) minimized at f (;) = f ([n]) proof. f (S) = 2 (f (S) + f (S c )) (f (;) + f ([n])) = f (;) 2 we are interested in the following unconstrained minimization problem: minimize ;S [n] f (S) theorem. [Queyranne 98] for symmetric submodular f, there is an algorithm with runtime O(n 3 )for solving the unconstrained minimization problem.

1 Submodular functions

1 Submodular functions CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: November 16, 2010 1 Submodular functions We have already encountered submodular functions. Let s recall

More information

Optimization of Submodular Functions Tutorial - lecture I

Optimization of Submodular Functions Tutorial - lecture I Optimization of Submodular Functions Tutorial - lecture I Jan Vondrák 1 1 IBM Almaden Research Center San Jose, CA Jan Vondrák (IBM Almaden) Submodular Optimization Tutorial 1 / 1 Lecture I: outline 1

More information

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University CS 322: (Social and Inormation) Network Analysis Jure Leskovec Stanord University Initially some nodes S are active Each edge (a,b) has probability (weight) p ab b 0.4 0.4 0.2 a 0.4 0.2 0.4 g 0.2 Node

More information

CSE541 Class 22. Jeremy Buhler. November 22, Today: how to generalize some well-known approximation results

CSE541 Class 22. Jeremy Buhler. November 22, Today: how to generalize some well-known approximation results CSE541 Class 22 Jeremy Buhler November 22, 2016 Today: how to generalize some well-known approximation results 1 Intuition: Behavior of Functions Consider a real-valued function gz) on integers or reals).

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Find most influential set S of size k: largest expected cascade size f(s) if set S is activated

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 13 Submodularity (cont d) CS 101.2 Andreas Krause Announcements Homework 2: Due Thursday Feb 19 Project milestone due: Feb 24 4 Pages, NIPS format:

More information

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Maximizing the Spread of Influence through a Social Network David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Influence and Social Networks Economics, sociology, political science, etc. all have studied

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions Instructor: Shaddin Dughmi Announcements Introduction We saw how matroids form a class of feasible

More information

Diffusion of Innovation and Influence Maximization

Diffusion of Innovation and Influence Maximization Diffusion of Innovation and Influence Maximization Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

A Note on the Budgeted Maximization of Submodular Functions

A Note on the Budgeted Maximization of Submodular Functions A Note on the udgeted Maximization of Submodular Functions Andreas Krause June 2005 CMU-CALD-05-103 Carlos Guestrin School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Many

More information

Submodular Functions Properties Algorithms Machine Learning

Submodular Functions Properties Algorithms Machine Learning Submodular Functions Properties Algorithms Machine Learning Rémi Gilleron Inria Lille - Nord Europe & LIFL & Univ Lille Jan. 12 revised Aug. 14 Rémi Gilleron (Mostrare) Submodular Functions Jan. 12 revised

More information

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts? A. A. Ageev and M. I. Sviridenko Sobolev Institute of Mathematics pr. Koptyuga 4, 630090, Novosibirsk, Russia fageev,svirg@math.nsc.ru

More information

Symmetry and hardness of submodular maximization problems

Symmetry and hardness of submodular maximization problems Symmetry and hardness of submodular maximization problems Jan Vondrák 1 1 Department of Mathematics Princeton University Jan Vondrák (Princeton University) Symmetry and hardness 1 / 25 Submodularity Definition

More information

1 Maximizing a Submodular Function

1 Maximizing a Submodular Function 6.883 Learning with Combinatorial Structure Notes for Lecture 16 Author: Arpit Agarwal 1 Maximizing a Submodular Function In the last lecture we looked at maximization of a monotone submodular function,

More information

Monotone Submodular Maximization over a Matroid

Monotone Submodular Maximization over a Matroid Monotone Submodular Maximization over a Matroid Yuval Filmus January 31, 2013 Abstract In this talk, we survey some recent results on monotone submodular maximization over a matroid. The survey does not

More information

arxiv: v1 [math.oc] 1 Jun 2015

arxiv: v1 [math.oc] 1 Jun 2015 NEW PERFORMANCE GUARANEES FOR HE GREEDY MAXIMIZAION OF SUBMODULAR SE FUNCIONS JUSSI LAIILA AND AE MOILANEN arxiv:1506.00423v1 [math.oc] 1 Jun 2015 Abstract. We present new tight performance guarantees

More information

Minimization of Symmetric Submodular Functions under Hereditary Constraints

Minimization of Symmetric Submodular Functions under Hereditary Constraints Minimization of Symmetric Submodular Functions under Hereditary Constraints J.A. Soto (joint work with M. Goemans) DIM, Univ. de Chile April 4th, 2012 1 of 21 Outline Background Minimal Minimizers and

More information

Maximization of Submodular Set Functions

Maximization of Submodular Set Functions Northeastern University Department of Electrical and Computer Engineering Maximization of Submodular Set Functions Biomedical Signal Processing, Imaging, Reasoning, and Learning BSPIRAL) Group Author:

More information

Submodular and Linear Maximization with Knapsack Constraints. Ariel Kulik

Submodular and Linear Maximization with Knapsack Constraints. Ariel Kulik Submodular and Linear Maximization with Knapsack Constraints Ariel Kulik Submodular and Linear Maximization with Knapsack Constraints Research Thesis Submitted in partial fulfillment of the requirements

More information

Streaming Algorithms for Submodular Function Maximization

Streaming Algorithms for Submodular Function Maximization Streaming Algorithms for Submodular Function Maximization Chandra Chekuri Shalmoli Gupta Kent Quanrud University of Illinois at Urbana-Champaign October 6, 2015 Submodular functions f : 2 N R if S T N,

More information

Discrete Optimization in Machine Learning. Colorado Reed

Discrete Optimization in Machine Learning. Colorado Reed Discrete Optimization in Machine Learning Colorado Reed [ML-RCC] 31 Jan 2013 1 Acknowledgements Some slides/animations based on: Krause et al. tutorials: http://www.submodularity.org Pushmeet Kohli tutorial:

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions

Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions Ashwinumar Badanidiyuru Google ashwinumarbv@gmail.com Aviad Rubinstein UC Bereley aviad@cs.bereley.edu Lior Seeman Cornell

More information

On Multiset Selection with Size Constraints

On Multiset Selection with Size Constraints On Multiset Selection with Size Constraints Chao Qian, Yibo Zhang, Ke Tang 2, Xin Yao 2 Anhui Province Key Lab of Big Data Analysis and Application, School of Computer Science and Technology, University

More information

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 17 March 30th 1 Overview In the previous lecture, we saw examples of combinatorial problems: the Maximal Matching problem and the Minimum

More information

Greedy Maximization Framework for Graph-based Influence Functions

Greedy Maximization Framework for Graph-based Influence Functions Greedy Maximization Framework for Graph-based Influence Functions Edith Cohen Google Research Tel Aviv University HotWeb '16 1 Large Graphs Model relations/interactions (edges) between entities (nodes)

More information

Revisiting the Greedy Approach to Submodular Set Function Maximization

Revisiting the Greedy Approach to Submodular Set Function Maximization Submitted to manuscript Revisiting the Greedy Approach to Submodular Set Function Maximization Pranava R. Goundan Analytics Operations Engineering, pranava@alum.mit.edu Andreas S. Schulz MIT Sloan School

More information

Constrained Maximization of Non-Monotone Submodular Functions

Constrained Maximization of Non-Monotone Submodular Functions Constrained Maximization of Non-Monotone Submodular Functions Anupam Gupta Aaron Roth September 15, 2009 Abstract The problem of constrained submodular maximization has long been studied, with near-optimal

More information

Approximability of Adaptive Seeding under Knapsack Constraints

Approximability of Adaptive Seeding under Knapsack Constraints Approximability of Adaptive Seeding under Knapsack Constraints Aviad Rubinstein UC Berkeley aviad@cs.berkeley.edu Lior Seeman Cornell Univeristy lseeman@cs.cornell.edu May 6, 2015 Yaron Singer Harvard

More information

Probability Models of Information Exchange on Networks Lecture 6

Probability Models of Information Exchange on Networks Lecture 6 Probability Models of Information Exchange on Networks Lecture 6 UC Berkeley Many Other Models There are many models of information exchange on networks. Q: Which model to chose? My answer good features

More information

On the Submodularity of Influence in Social Networks

On the Submodularity of Influence in Social Networks On the Submodularity of Influence in Social Networks Elchanan Mossel Dept. of Statistics U.C. Berkeley mossel@stat.berkeley.edu Sebastien Roch Dept. of Statistics U.C. Berkeley sroch@stat.berkeley.edu

More information

Network Design and Game Theory Spring 2008 Lecture 2

Network Design and Game Theory Spring 2008 Lecture 2 Network Design and Game Theory Spring 2008 Lecture 2 Instructor: Mohammad T. Hajiaghayi Scribe: Imdadullah Khan February 04, 2008 MAXIMUM COVERAGE In this lecture we review Maximum Coverage and Unique

More information

Submodular Secretary Problem and Extensions

Submodular Secretary Problem and Extensions Submodular Secretary Problem and Extensions MohammadHossein Bateni MohammadTaghi Hajiaghayi Morteza Zadimoghaddam Abstract Online auction is the essence of many modern markets, particularly networked markets,

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/24/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture 12 http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/ Prof. Jeff Bilmes University

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Stochastic Submodular Cover with Limited Adaptivity

Stochastic Submodular Cover with Limited Adaptivity Stochastic Submodular Cover with Limited Adaptivity Arpit Agarwal Sepehr Assadi Sanjeev Khanna Abstract In the submodular cover problem, we are given a non-negative monotone submodular function f over

More information

Approximation Basics

Approximation Basics Approximation Basics, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Fall 2012 Special thanks is given to Dr. Guoqiang Li for

More information

Submodular Functions and Their Applications

Submodular Functions and Their Applications Submodular Functions and Their Applications Jan Vondrák IBM Almaden Research Center San Jose, CA SIAM Discrete Math conference, Minneapolis, MN June 204 Jan Vondrák (IBM Almaden) Submodular Functions and

More information

NETS 412: Algorithmic Game Theory March 28 and 30, Lecture Approximation in Mechanism Design. X(v) = arg max v i (a)

NETS 412: Algorithmic Game Theory March 28 and 30, Lecture Approximation in Mechanism Design. X(v) = arg max v i (a) NETS 412: Algorithmic Game Theory March 28 and 30, 2017 Lecture 16+17 Lecturer: Aaron Roth Scribe: Aaron Roth Approximation in Mechanism Design In the last lecture, we asked how far we can go beyond the

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture 13 http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/ Prof. Jeff Bilmes University

More information

CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24

CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24 CSCI 3210: Computational Game Theory Cascading Behavior in Networks Ref: [AGT] Ch 24 Mohammad T. Irfan Email: mirfan@bowdoin.edu Web: www.bowdoin.edu/~mirfan Course Website: www.bowdoin.edu/~mirfan/csci-3210.html

More information

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network Maximizing the Spread of Influence through a Social Network David Kempe Dept. of Computer Science Cornell University, Ithaca NY kempe@cs.cornell.edu Jon Kleinberg Dept. of Computer Science Cornell University,

More information

1 Overview. 2 Multilinear Extension. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Multilinear Extension. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 26 Prof. Yaron Singer Lecture 24 April 25th Overview The goal of today s lecture is to see how the multilinear extension of a submodular function that we introduced

More information

Optimizing Ratio of Monotone Set Functions

Optimizing Ratio of Monotone Set Functions Optimizing Ratio of Monotone Set Functions Chao Qian, Jing-Cheng Shi 2, Yang Yu 2, Ke Tang, Zhi-Hua Zhou 2 UBRI, School of Computer Science and Technology, University of Science and Technology of China,

More information

Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization

Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization Journal of Artificial Intelligence Research 42 (2011) 427-486 Submitted 1/11; published 11/11 Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization Daniel Golovin

More information

Solutions to Exercises

Solutions to Exercises 1/13 Solutions to Exercises The exercises referred to as WS 1.1(a), and so forth, are from the course book: Williamson and Shmoys, The Design of Approximation Algorithms, Cambridge University Press, 2011,

More information

1 The Knapsack Problem

1 The Knapsack Problem Comp 260: Advanced Algorithms Prof. Lenore Cowen Tufts University, Spring 2018 Scribe: Tom Magerlein 1 Lecture 4: The Knapsack Problem 1 The Knapsack Problem Suppose we are trying to burgle someone s house.

More information

On Constrained Boolean Pareto Optimization

On Constrained Boolean Pareto Optimization On Constrained Boolean Pareto Optimization Chao Qian and Yang Yu and Zhi-Hua Zhou National Key Laboratory for Novel Software Technology, Nanjing University Collaborative Innovation Center of Novel Software

More information

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding Motivation Make a social choice that (approximately) maximizes the social welfare subject to the economic constraints

More information

Stochastic Submodular Cover with Limited Adaptivity

Stochastic Submodular Cover with Limited Adaptivity Stochastic Submodular Cover with Limited Adaptivity Arpit Agarwal Sepehr Assadi Sanjeev Khanna University of Pennsylvania {aarpit,sassadi,sanjeev}@cis.upenn.edu arxiv:1810.13351v1 [cs.ds] 31 Oct 2018 Abstract

More information

Maximizing Submodular Set Functions Subject to Multiple Linear Constraints

Maximizing Submodular Set Functions Subject to Multiple Linear Constraints Maximizing Submodular Set Functions Subject to Multiple Linear Constraints Ariel Kulik Hadas Shachnai Tami Tamir Abstract The concept of submodularity plays a vital role in combinatorial optimization.

More information

Pareto Optimization for Subset Selection with Dynamic Cost Constraints

Pareto Optimization for Subset Selection with Dynamic Cost Constraints Pareto Optimization for Subset Selection with Dynamic Cost Constraints Vahid Roostapour 1, Aneta Neumann 1, Frank Neumann 1, Tobias Friedrich 2 1 Optimisation and Logistics, School of Computer Science,

More information

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm Tasuku Soma TASUKU SOMA@MIST.I.U-TOKYO.AC.JP Graduate School of Information Science and Technology, The University of Tokyo, Tokyo,

More information

Lecture 11 October 7, 2013

Lecture 11 October 7, 2013 CS 4: Advanced Algorithms Fall 03 Prof. Jelani Nelson Lecture October 7, 03 Scribe: David Ding Overview In the last lecture we talked about set cover: Sets S,..., S m {,..., n}. S has cost c S. Goal: Cover

More information

Lecture 11 October 11, Information Dissemination through Social Networks

Lecture 11 October 11, Information Dissemination through Social Networks CS 284r: Incentives and Information in Networks Fall 2013 Prof. Yaron Singer Lecture 11 October 11, 2013 Scribe: Michael Tingley, K. Nathaniel Tucker 1 Overview In today s lecture we will start the second

More information

K-center Hardness and Max-Coverage (Greedy)

K-center Hardness and Max-Coverage (Greedy) IOE 691: Approximation Algorithms Date: 01/11/2017 Lecture Notes: -center Hardness and Max-Coverage (Greedy) Instructor: Viswanath Nagarajan Scribe: Sentao Miao 1 Overview In this lecture, we will talk

More information

Maximizing a Submodular Function with Viability Constraints

Maximizing a Submodular Function with Viability Constraints Maximizing a Submodular Function with Viability Constraints Wolfgang Dvořák, Monika Henzinger, and David P. Williamson 2 Universität Wien, Fakultät für Informatik, Währingerstraße 29, A-090 Vienna, Austria

More information

Intractable Problems Part Two

Intractable Problems Part Two Intractable Problems Part Two Announcements Problem Set Five graded; will be returned at the end of lecture. Extra office hours today after lecture from 4PM 6PM in Clark S250. Reminder: Final project goes

More information

Submodular Maximization by Simulated Annealing

Submodular Maximization by Simulated Annealing Submodular Maximization by Simulated Annealing Shayan Oveis Gharan Jan Vondrák Abstract We consider the problem of maximizing a nonnegative (possibly non-monotone) submodular set function with or without

More information

Optimal Approximation for the Submodular Welfare Problem in the Value Oracle Model

Optimal Approximation for the Submodular Welfare Problem in the Value Oracle Model Optimal Approximation for the Submodular Welfare Problem in the Value Oracle Model Jan Vondrák Department of Mathematics Princeton University Princeton, NJ 08544, USA jvondrak@gmail.com ABSTRACT In the

More information

Approximating Submodular Functions. Nick Harvey University of British Columbia

Approximating Submodular Functions. Nick Harvey University of British Columbia Approximating Submodular Functions Nick Harvey University of British Columbia Approximating Submodular Functions Part 1 Nick Harvey University of British Columbia Department of Computer Science July 11th,

More information

1 Continuous extensions of submodular functions

1 Continuous extensions of submodular functions CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: November 18, 010 1 Continuous extensions of submodular functions Submodular functions are functions assigning

More information

Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization

Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization Daniel Golovin California Institute of Technology Pasadena, CA 91125 dgolovin@caltech.edu Andreas Krause California

More information

Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems

Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems Shabbir Ahmed and Jiajin Yu Georgia Institute of Technology A Motivating Problem [n]: Set of candidate investment

More information

CS 583: Approximation Algorithms: Introduction

CS 583: Approximation Algorithms: Introduction CS 583: Approximation Algorithms: Introduction Chandra Chekuri January 15, 2018 1 Introduction Course Objectives 1. To appreciate that not all intractable problems are the same. NP optimization problems,

More information

Limitations of Randomized Mechanisms for Combinatorial Auctions

Limitations of Randomized Mechanisms for Combinatorial Auctions Limitations of Randomized Mechanisms for Combinatorial Auctions Shaddin Dughmi Jan Vondrák January 9, 2014 Abstract We address the following fundamental question in the area of incentive-compatible mechanism

More information

On Two Class-Constrained Versions of the Multiple Knapsack Problem

On Two Class-Constrained Versions of the Multiple Knapsack Problem On Two Class-Constrained Versions of the Multiple Knapsack Problem Hadas Shachnai Tami Tamir Department of Computer Science The Technion, Haifa 32000, Israel Abstract We study two variants of the classic

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees Yoshimi Egawa Department of Mathematical Information Science, Tokyo University of

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

APPROXIMATION ALGORITHMS RESOLUTION OF SELECTED PROBLEMS 1

APPROXIMATION ALGORITHMS RESOLUTION OF SELECTED PROBLEMS 1 UNIVERSIDAD DE LA REPUBLICA ORIENTAL DEL URUGUAY IMERL, FACULTAD DE INGENIERIA LABORATORIO DE PROBABILIDAD Y ESTADISTICA APPROXIMATION ALGORITHMS RESOLUTION OF SELECTED PROBLEMS 1 STUDENT: PABLO ROMERO

More information

Lecture 2: Network Flows 1

Lecture 2: Network Flows 1 Comp 260: Advanced Algorithms Tufts University, Spring 2011 Lecture by: Prof. Cowen Scribe: Saeed Majidi Lecture 2: Network Flows 1 A wide variety of problems, including the matching problems discussed

More information

On Subset Selection with General Cost Constraints

On Subset Selection with General Cost Constraints On Subset Selection with General Cost Constraints Chao Qian, Jing-Cheng Shi 2, Yang Yu 2, Ke Tang UBRI, School of Computer Science and Technology, University of Science and Technology of China, Hefei 23002,

More information

Examples are not Enough, Learn to Criticize! Criticism for Interpretability

Examples are not Enough, Learn to Criticize! Criticism for Interpretability Examples are not Enough, Learn to Criticize! Criticism for Interpretability Been Kim, Rajiv Khanna, Oluwasanmi Koyejo Wittawat Jitkrittum Gatsby Machine Learning Journal Club 16 Jan 2017 1/20 Summary Examples

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

Structured Robust Submodular Maximization: Offline and Online Algorithms

Structured Robust Submodular Maximization: Offline and Online Algorithms Structured Robust Submodular Maximization: Offline and Online Algorithms Nima Anari Nika Haghtalab Joseph (Seffi) Naor Sebastian Pokutta Mohit Singh Alfredo Torrico Abstract Constrained submodular function

More information

A Submodular Framework for Graph Comparison

A Submodular Framework for Graph Comparison A Submodular Framework for Graph Comparison Pinar Yanardag Department of Computer Science Purdue University West Lafayette, IN, 47906, USA ypinar@purdue.edu S.V.N. Vishwanathan Department of Computer Science

More information

CO759: Algorithmic Game Theory Spring 2015

CO759: Algorithmic Game Theory Spring 2015 CO759: Algorithmic Game Theory Spring 2015 Instructor: Chaitanya Swamy Assignment 1 Due: By Jun 25, 2015 You may use anything proved in class directly. I will maintain a FAQ about the assignment on the

More information

Query and Computational Complexity of Combinatorial Auctions

Query and Computational Complexity of Combinatorial Auctions Query and Computational Complexity of Combinatorial Auctions Jan Vondrák IBM Almaden Research Center San Jose, CA Algorithmic Frontiers, EPFL, June 2012 Jan Vondrák (IBM Almaden) Combinatorial auctions

More information

Submodular Functions: Extensions, Distributions, and Algorithms A Survey

Submodular Functions: Extensions, Distributions, and Algorithms A Survey Submodular Functions: Extensions, Distributions, and Algorithms A Survey Shaddin Dughmi PhD Qualifying Exam Report, Department of Computer Science, Stanford University Exam Committee: Serge Plotkin, Tim

More information

Multi-level Facility Location as the Maximization of a Submodular Set Function

Multi-level Facility Location as the Maximization of a Submodular Set Function Multi-level Facility Location as the Maximization of a Submodular Set Function Camilo Ortiz-Astorquiza a, Ivan Contreras a, Gilbert Laporte b a Concordia University and Interuniversity Research Centre

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Bipartite Matching Computer Science & Engineering 423/823 Design and s Lecture 07 (Chapter 26) Stephen Scott (Adapted from Vinodchandran N. Variyam) 1 / 36 Spring 2010 Bipartite Matching 2 / 36 Can use

More information

Word Alignment via Submodular Maximization over Matroids

Word Alignment via Submodular Maximization over Matroids Word Alignment via Submodular Maximization over Matroids Hui Lin, Jeff Bilmes University of Washington, Seattle Dept. of Electrical Engineering June 21, 2011 Lin and Bilmes Submodular Word Alignment June

More information

Lecture 10: Mechanisms, Complexity, and Approximation

Lecture 10: Mechanisms, Complexity, and Approximation CS94 P9: Topics Algorithmic Game Theory November 8, 011 Lecture 10: Mechanisms, Complexity, and Approximation Lecturer: Christos Papadimitriou Scribe: Faraz Tavakoli It is possible to characterize a Mechanism

More information

Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Packing, MAX-SAT

Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Packing, MAX-SAT ,7 CMPUT 675: Approximation Algorithms Fall 2011 Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Pacing, MAX-SAT Lecturer: Mohammad R. Salavatipour Scribe: Weitian Tong 6.1 Bin Pacing Problem Recall the bin pacing

More information

arxiv: v2 [cs.ds] 28 Aug 2014

arxiv: v2 [cs.ds] 28 Aug 2014 Constrained Monotone Function Maximization and the Supermodular Degree Moran Feldman Rani Izsak arxiv:1407.6328v2 [cs.ds] 28 Aug 2014 August 29, 2014 Abstract The problem of maximizing a constrained monotone

More information

Submodularity and curvature: the optimal algorithm

Submodularity and curvature: the optimal algorithm RIMS Kôkyûroku Bessatsu Bx (200x), 000 000 Submodularity and curvature: the optimal algorithm By Jan Vondrák Abstract Let (X, I) be a matroid and let f : 2 X R + be a monotone submodular function. The

More information

On the Existence of Ideal Solutions in Multi-objective 0-1 Integer Programs

On the Existence of Ideal Solutions in Multi-objective 0-1 Integer Programs On the Existence of Ideal Solutions in Multi-objective -1 Integer Programs Natashia Boland a, Hadi Charkhgard b, and Martin Savelsbergh a a School of Industrial and Systems Engineering, Georgia Institute

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture 14 http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/ Prof. Jeff Bilmes University

More information

8 Knapsack Problem 8.1 (Knapsack)

8 Knapsack Problem 8.1 (Knapsack) 8 Knapsack In Chapter 1 we mentioned that some NP-hard optimization problems allow approximability to any required degree. In this chapter, we will formalize this notion and will show that the knapsack

More information

Maximum Coverage over a Matroid Constraint

Maximum Coverage over a Matroid Constraint Maximum Coverage over a Matroid Constraint Yuval Filmus Justin Ward University of Toronto STACS 2012, Paris Max Coverage: History Location of bank accounts: Cornuejols, Fisher & Nemhauser 1977, Management

More information

The Limitations of Optimization from Samples

The Limitations of Optimization from Samples The Limitations of Optimization from Samples Eric Balkanski Aviad Rubinstein Yaron Singer Abstract As we grow highly dependent on data for making predictions, we translate these predictions into models

More information

Efficient Approximation for Restricted Biclique Cover Problems

Efficient Approximation for Restricted Biclique Cover Problems algorithms Article Efficient Approximation for Restricted Biclique Cover Problems Alessandro Epasto 1, *, and Eli Upfal 2 ID 1 Google Research, New York, NY 10011, USA 2 Department of Computer Science,

More information

On the Tightness of an LP Relaxation for Rational Optimization and its Applications

On the Tightness of an LP Relaxation for Rational Optimization and its Applications OPERATIONS RESEARCH Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn 0030-364X eissn 526-5463 00 0000 000 INFORMS doi 0.287/xxxx.0000.0000 c 0000 INFORMS Authors are encouraged to submit new papers to INFORMS

More information

Efficiency, Fairness and Competitiveness in Nash Bargaining Games

Efficiency, Fairness and Competitiveness in Nash Bargaining Games Efficiency, Fairness and Competitiveness in Nash Bargaining Games Deeparnab Chakrabarty, Gagan Goel 2, Vijay V. Vazirani 2, Lei Wang 2 and Changyuan Yu 3 Department of Combinatorics and Optimization, University

More information

Subset Selection under Noise

Subset Selection under Noise Subset Selection under Noise Chao Qian 1 Jing-Cheng Shi 2 Yang Yu 2 Ke Tang 3,1 Zhi-Hua Zhou 2 1 Anhui Province Key Lab of Big Data Analysis and Application, USTC, China 2 National Key Lab for Novel Software

More information

Least cost influence propagation in (social) networks

Least cost influence propagation in (social) networks Least cost influence propagation in (social) networks Matteo Fischetti 1, Michael Kahr 2, Markus Leitner 2, Michele Monaci 3 and Mario Ruthmair 2 1 DEI, University of Padua, Italy. matteo.fischetti@unipd.it

More information

Fast Multi-Stage Submodular Maximization: Extended version

Fast Multi-Stage Submodular Maximization: Extended version : Extended version Kai Wei Rishabh Iyer Jeff Bilmes University of Washington, Seattle, WA 9895, USA Abstract Motivated by extremely large-scale machine learning problems, we introduce a new multistage

More information