Wavelet Scattering Transforms

Size: px
Start display at page:

Download "Wavelet Scattering Transforms"

Transcription

1 Wavelet Scattering Transforms Haixia Liu Department of Mathematics The Hong Kong University of Science and Technology February 6, 2018

2 Outline 1 Problem Dataset Problem two subproblems outline of image classification problem 2 Wavelet Scattering Transform Review of Multiscale Wavelet Transform Why Wavelets? Wavelet Convolutional Networks 3 Digit Classification: MNIST by Joan Bruna et al. 4 MATLAB code of Wavelet convolutional Networks

3 Digit classification

4 Digit classification Translation Deformation

5 Dataset (a) f249 (b) f371 (c) f522 (d) f752 Figure: van Gogh s paintings. (a) f253a (b) f418 (c) f687 (d) s205 (e) s206v Figure: Forgeries.

6 The Problem 79 paintings authenticated by experts 64 genuine paintings and 15 forgeries Forgeries are quite genuine with 6 historically wrongly attributed to van Gogh High-resolution professional images provided by van Gogh Museum and Kröller-Müller Museum Design an algorithm to determine if a painting is from van Gogh or NOT

7 Image classification can be contributed to the following two subproblems: Feature extraction (image processing), Fourier Transform, Wavelet, EMD, Tight frame...

8 Image classification can be contributed to the following two subproblems: Feature extraction (image processing), Fourier Transform, Wavelet, EMD, Tight frame... Clustering or classification (data analysis). SVM, HMM,...

9 Image Classification Feature Extraction Classification (classifiers)

10 Aims AIM: Classify correctly although translation and deformation, i.e., Globally invariant to the translation group Locally invariant to small deformation Wavelet Scattering Transform

11 Aims AIM: Classify correctly although translation and deformation, i.e., Globally invariant to the translation group Locally invariant to small deformation Wavelet Scattering Transform Some advantages of Wavelet Scattering Transform: Share hierarchical structure of DNNs replace data-driven filters by wavelets have strong theoretical support better performance for small-sample data

12 Haar wavelet transform

13 Haar Filtering Hx(u) = x h(2u) and Gx(u) = x g(2u) where h is a low frequency and g is a high frequency.

14 Review of Multiscale Wavelet Transform wavelet filters {ψ λ } λ Dilated Wavelets: ψ λ (t) = 2 j ψ(2 j t) with λ = 2 j. Multiscale and oritented wavelet filters ψ λ = 2 j ψ(2 j θx) where θ R(R 2 ) be a rotation matrix and λ = (2 j,θ). x ψ λ (ω) = x(u)ψ λ (ω u) x ψ λ (ω) = x ψ λ Wavelet transform: Wx = [ x φ2j (t) x ψ λ (t) ] λ 2 J

15 Advantages of Wavelets Wavelets separate multiscale information Wavelets provide sparse representation Wavelets are uniformly stable to deformations. If ψ λ,τ = ψ λ (t τ(t)), then Modulus improves invariance ψ λ ψ λ,τ C sup τ t Fourier transform on translated function, modulus lead to translation invariance [ ] x φ2j (t) W x = x ψ λ (t) λ 2 J

16

17 Scattering Coefficients first-layer scattering coefficients S 1,J ((λ 1 ),x) = X ψ λ1 φ J (x) second-layer scattering coefficients S 2,J ((λ 1,λ 2 ),x) = X ψ λ1 ψ λ2 φ J (x) m-th layer scattering coefficients S 2,J ((λ 1,λ 2,,λ m ),x) = X ψ λ1 ψ λm φ J (x)

18

19 Renormalization and S 1,J ((λ 1 )) = S 1,J ((λ 1 )) S 2,J ((λ 1,λ 2 )) = S 2,J((λ 1,λ 2 )) S 1,J ((λ 1 )) Paper Deep Scattering Spectrum points out second coefficients can be decorrelated to increase their invariance through a renormalization.

20 Features based on Scattering Coefficients One choice is to take spatial averages of scattering coefficients S m,j = S m,j ((λ 1,,λ m ),x). x dimension reduction destroy the spatial information contained in scattering coefficients

21 Classifiers There are a lot of classifiers can be used if features are extracted Logistic regression Random forest SVM LDA Sparse SVM Sparse LDA and so on

22 Numerical results Figure: Results from paper Invariant Scattering Convolution Networks

23 Software Code can be downloaded from

24 Thank you!!!

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

Quantum Chemistry Energy Regression

Quantum Chemistry Energy Regression Quantum Chemistry Energy Regression with Scattering Transforms Matthew Hirn, Stéphane Mallat École Normale Supérieure Nicolas Poilvert Penn-State 1 Quantum Chemistry Regression 2 Linear Regression 3 Energy

More information

Image classification via Scattering Transform

Image classification via Scattering Transform 1 Image classification via Scattering Transform Edouard Oyallon under the supervision of Stéphane Mallat following the work of Laurent Sifre, Joan Bruna, Classification of signals Let n>0, (X, Y ) 2 R

More information

Classification of Hand-Written Digits Using Scattering Convolutional Network

Classification of Hand-Written Digits Using Scattering Convolutional Network Mid-year Progress Report Classification of Hand-Written Digits Using Scattering Convolutional Network Dongmian Zou Advisor: Professor Radu Balan Co-Advisor: Dr. Maneesh Singh (SRI) Background Overview

More information

Harmonic Analysis of Deep Convolutional Neural Networks

Harmonic Analysis of Deep Convolutional Neural Networks Harmonic Analysis of Deep Convolutional Neural Networks Helmut Bőlcskei Department of Information Technology and Electrical Engineering October 2017 joint work with Thomas Wiatowski and Philipp Grohs ImageNet

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks 1 Invariant Scattering Convolution Networks Joan Bruna and Stéphane Mallat CMAP, Ecole Polytechnique, Palaiseau, France Abstract A wavelet scattering network computes a translation invariant image representation,

More information

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels Machine Learning: Basis and Wavelet 32 157 146 204 + + + + + - + - 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 7 22 38 191 17 83 188 211 71 167 194 207 135 46 40-17 18 42 20 44 31 7 13-32 + + - - +

More information

Sparse Approximation: from Image Restoration to High Dimensional Classification

Sparse Approximation: from Image Restoration to High Dimensional Classification Sparse Approximation: from Image Restoration to High Dimensional Classification Bin Dong Beijing International Center for Mathematical Research Beijing Institute of Big Data Research Peking University

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

MULTISCALE SCATTERING FOR AUDIO CLASSIFICATION

MULTISCALE SCATTERING FOR AUDIO CLASSIFICATION MULTISCALE SCATTERING FOR AUDIO CLASSIFICATION Joakim Andén CMAP, Ecole Polytechnique, 91128 Palaiseau anden@cmappolytechniquefr Stéphane Mallat CMAP, Ecole Polytechnique, 91128 Palaiseau ABSTRACT Mel-frequency

More information

Manual for a computer class in ML

Manual for a computer class in ML Manual for a computer class in ML November 3, 2015 Abstract This document describes a tour of Machine Learning (ML) techniques using tools in MATLAB. We point to the standard implementations, give example

More information

Deep Convolutional Neural Networks Based on Semi-Discrete Frames

Deep Convolutional Neural Networks Based on Semi-Discrete Frames Deep Convolutional Neural Networks Based on Semi-Discrete Frames Thomas Wiatowski and Helmut Bölcskei Dept. IT & EE, ETH Zurich, Switzerland Email: {withomas, boelcskei}@nari.ee.ethz.ch arxiv:504.05487v

More information

Multiscale Geometric Analysis: Thoughts and Applications (a summary)

Multiscale Geometric Analysis: Thoughts and Applications (a summary) Multiscale Geometric Analysis: Thoughts and Applications (a summary) Anestis Antoniadis, University Joseph Fourier Assimage 2005,Chamrousse, February 2005 Classical Multiscale Analysis Wavelets: Enormous

More information

Pulse characterization with Wavelet transforms combined with classification using binary arrays

Pulse characterization with Wavelet transforms combined with classification using binary arrays Pulse characterization with Wavelet transforms combined with classification using binary arrays Overview Wavelet Transformation Creating binary arrays out of and how to deal with them An estimator for

More information

Random Features for Large Scale Kernel Machines

Random Features for Large Scale Kernel Machines Random Features for Large Scale Kernel Machines Andrea Vedaldi From: A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Proc. NIPS, 2007. Explicit feature maps Fast algorithm for

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Deep Convolutional Neural Networks on Cartoon Functions

Deep Convolutional Neural Networks on Cartoon Functions Deep Convolutional Neural Networks on Cartoon Functions Philipp Grohs, Thomas Wiatowski, and Helmut Bölcskei Dept. Math., ETH Zurich, Switzerland, and Dept. Math., University of Vienna, Austria Dept. IT

More information

Topics in Harmonic Analysis, Sparse Representations, and Data Analysis

Topics in Harmonic Analysis, Sparse Representations, and Data Analysis Topics in Harmonic Analysis, Sparse Representations, and Data Analysis Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu Thesis Defense,

More information

Lecture 2: Haar Multiresolution analysis

Lecture 2: Haar Multiresolution analysis WAVELES AND MULIRAE DIGIAL SIGNAL PROCESSING Lecture 2: Haar Multiresolution analysis Prof.V. M. Gadre, EE, II Bombay 1 Introduction HAAR was a mathematician, who has given an idea that any continuous

More information

Why Deep Learning Needs Mathematical Theories?

Why Deep Learning Needs Mathematical Theories? Why Deep Learning Needs Mathematical Theories? Lionel Fillatre UCA / Laboratoire I3S Tech Workshop SophiaConf - 5 july 2018 1 Who am I? Full Professor, Université Côte d Azur Member of I3S (computer science

More information

ON THE STABILITY OF DEEP NETWORKS

ON THE STABILITY OF DEEP NETWORKS ON THE STABILITY OF DEEP NETWORKS AND THEIR RELATIONSHIP TO COMPRESSED SENSING AND METRIC LEARNING RAJA GIRYES AND GUILLERMO SAPIRO DUKE UNIVERSITY Mathematics of Deep Learning International Conference

More information

The Mathematics of Deep Learning Part 1: Continuous-time Theory

The Mathematics of Deep Learning Part 1: Continuous-time Theory The Mathematics of Deep Learning Part 1: Continuous-time Theory Helmut Bőlcskei Department of Information Technology and Electrical Engineering June 2016 joint work with Thomas Wiatowski, Philipp Grohs,

More information

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction. Thomas Wiatowski and Helmut Bölcskei, Fellow, IEEE

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction. Thomas Wiatowski and Helmut Bölcskei, Fellow, IEEE A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction Thomas Wiatowski and Helmut Bölcskei, Fellow, IEEE arxiv:52.06293v3 [cs.it] 24 Oct 207 Abstract Deep convolutional neural

More information

( nonlinear constraints)

( nonlinear constraints) Wavelet Design & Applications Basic requirements: Admissibility (single constraint) Orthogonality ( nonlinear constraints) Sparse Representation Smooth functions well approx. by Fourier High-frequency

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

On the road to Affine Scattering Transform

On the road to Affine Scattering Transform 1 On the road to Affine Scattering Transform Edouard Oyallon with Stéphane Mallat following the work of Laurent Sifre, Joan Bruna, High Dimensional classification (x i,y i ) 2 R 5122 {1,...,100},i=1...10

More information

Chapter 7 Wavelets and Multiresolution Processing

Chapter 7 Wavelets and Multiresolution Processing Chapter 7 Wavelets and Multiresolution Processing Background Multiresolution Expansions Wavelet Transforms in One Dimension Wavelet Transforms in Two Dimensions Image Pyramids Subband Coding The Haar

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Introduction to Deep Learning CMPT 733. Steven Bergner

Introduction to Deep Learning CMPT 733. Steven Bergner Introduction to Deep Learning CMPT 733 Steven Bergner Overview Renaissance of artificial neural networks Representation learning vs feature engineering Background Linear Algebra, Optimization Regularization

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Wavelets and Multiresolution Processing () Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science 2 Contents Image pyramids Subband coding

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Space-Frequency Atoms

Space-Frequency Atoms Space-Frequency Atoms FREQUENCY FREQUENCY SPACE SPACE FREQUENCY FREQUENCY SPACE SPACE Figure 1: Space-frequency atoms. Windowed Fourier Transform 1 line 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-1 0 100 200

More information

Multiresolution image processing

Multiresolution image processing Multiresolution image processing Laplacian pyramids Some applications of Laplacian pyramids Discrete Wavelet Transform (DWT) Wavelet theory Wavelet image compression Bernd Girod: EE368 Digital Image Processing

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

Recent developments on sparse representation

Recent developments on sparse representation Recent developments on sparse representation Zeng Tieyong Department of Mathematics, Hong Kong Baptist University Email: zeng@hkbu.edu.hk Hong Kong Baptist University Dec. 8, 2008 First Previous Next Last

More information

Block Coordinate Descent for Regularized Multi-convex Optimization

Block Coordinate Descent for Regularized Multi-convex Optimization Block Coordinate Descent for Regularized Multi-convex Optimization Yangyang Xu and Wotao Yin CAAM Department, Rice University February 15, 2013 Multi-convex optimization Model definition Applications Outline

More information

Digital Affine Shear Filter Banks with 2-Layer Structure

Digital Affine Shear Filter Banks with 2-Layer Structure Digital Affine Shear Filter Banks with -Layer Structure Zhihua Che and Xiaosheng Zhuang Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Email: zhihuache-c@my.cityu.edu.hk,

More information

A First Course in Wavelets with Fourier Analysis

A First Course in Wavelets with Fourier Analysis * A First Course in Wavelets with Fourier Analysis Albert Boggess Francis J. Narcowich Texas A& M University, Texas PRENTICE HALL, Upper Saddle River, NJ 07458 Contents Preface Acknowledgments xi xix 0

More information

JOINT TIME-FREQUENCY SCATTERING FOR AUDIO CLASSIFICATION

JOINT TIME-FREQUENCY SCATTERING FOR AUDIO CLASSIFICATION 2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17 20, 2015, BOSTON, USA JOINT TIME-FREQUENCY SCATTERING FOR AUDIO CLASSIFICATION Joakim Andén PACM Princeton University,

More information

ACM 126a Solutions for Homework Set 4

ACM 126a Solutions for Homework Set 4 ACM 26a Solutions for Homewor Set 4 Laurent Demanet March 2, 25 Problem. Problem 7.7 page 36 We need to recall a few standard facts about Fourier series. Convolution: Subsampling (see p. 26): Zero insertion

More information

Spatial Transformation

Spatial Transformation Spatial Transformation Presented by Liqun Chen June 30, 2017 1 Overview 2 Spatial Transformer Networks 3 STN experiments 4 Recurrent Models of Visual Attention (RAM) 5 Recurrent Models of Visual Attention

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

arxiv: v2 [cs.cv] 30 May 2015

arxiv: v2 [cs.cv] 30 May 2015 Deep Roto-Translation Scattering for Object Classification Edouard Oyallon and Stéphane Mallat Département Informatique, Ecole Normale Supérieure 45 rue d Ulm, 75005 Paris edouard.oyallon@ens.fr arxiv:1412.8659v2

More information

Multiresolution analysis & wavelets (quick tutorial)

Multiresolution analysis & wavelets (quick tutorial) Multiresolution analysis & wavelets (quick tutorial) Application : image modeling André Jalobeanu Multiresolution analysis Set of closed nested subspaces of j = scale, resolution = 2 -j (dyadic wavelets)

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 4, Issue 4, April 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Wavelet-based

More information

Applied Machine Learning for Biomedical Engineering. Enrico Grisan

Applied Machine Learning for Biomedical Engineering. Enrico Grisan Applied Machine Learning for Biomedical Engineering Enrico Grisan enrico.grisan@dei.unipd.it Data representation To find a representation that approximates elements of a signal class with a linear combination

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

Building Function Approximators on top of Haar Scattering Networks

Building Function Approximators on top of Haar Scattering Networks Building Function Approximators on top of Haar Scattering Networks Fernando Fernandes Neto Abstract In this article we propose building general-purpose function approximators on top of Haar Scattering

More information

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract Scale-Invariance of Support Vector Machines based on the Triangular Kernel François Fleuret Hichem Sahbi IMEDIA Research Group INRIA Domaine de Voluceau 78150 Le Chesnay, France Abstract This paper focuses

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

The role of dimensionality reduction in classification

The role of dimensionality reduction in classification The role of dimensionality reduction in classification Weiran Wang and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

arxiv: v1 [cs.cv] 7 Mar 2014

arxiv: v1 [cs.cv] 7 Mar 2014 Submitted to International Journal of Computer Vision manuscript No. (will be inserted by the editor) Rigid-Motion Scattering for Texture Classification Laurent Sifre Stéphane Mallat arxiv:1403.1687v1

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative Assignment 1 is released: http://cs231n.github.io/assignments2017/assignment1/ Due Thursday April 20, 11:59pm on Canvas (Extending

More information

Reliability of Seismic Data for Hydrocarbon Reservoir Characterization

Reliability of Seismic Data for Hydrocarbon Reservoir Characterization Reliability of Seismic Data for Hydrocarbon Reservoir Characterization Geetartha Dutta (gdutta@stanford.edu) December 10, 2015 Abstract Seismic data helps in better characterization of hydrocarbon reservoirs.

More information

Transform methods. and its inverse can be used to analyze certain time-dependent PDEs. f(x) sin(sxπ/(n + 1))

Transform methods. and its inverse can be used to analyze certain time-dependent PDEs. f(x) sin(sxπ/(n + 1)) AMSC/CMSC 661 Scientific Computing II Spring 2010 Transforms and Wavelets Dianne P. O Leary c 2005,2010 Some motivations: Transform methods The Fourier transform Fv(ξ) = ˆv(ξ) = v(x)e ix ξ dx, R d and

More information

Problem with Fourier. Wavelets: a preview. Fourier Gabor Wavelet. Gabor s proposal. in the transform domain. Sinusoid with a small discontinuity

Problem with Fourier. Wavelets: a preview. Fourier Gabor Wavelet. Gabor s proposal. in the transform domain. Sinusoid with a small discontinuity Problem with Fourier Wavelets: a preview February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG. Fourier analysis -- breaks down a signal into constituent sinusoids of

More information

Wavelets: a preview. February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG.

Wavelets: a preview. February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG. Wavelets: a preview February 6, 2003 Acknowledgements: Material compiled from the MATLAB Wavelet Toolbox UG. Problem with Fourier Fourier analysis -- breaks down a signal into constituent sinusoids of

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

Adapted Feature Extraction and Its Applications

Adapted Feature Extraction and Its Applications saito@math.ucdavis.edu 1 Adapted Feature Extraction and Its Applications Naoki Saito Department of Mathematics University of California Davis, CA 95616 email: saito@math.ucdavis.edu URL: http://www.math.ucdavis.edu/

More information

Introduction to Discrete-Time Wavelet Transform

Introduction to Discrete-Time Wavelet Transform Introduction to Discrete-Time Wavelet Transform Selin Aviyente Department of Electrical and Computer Engineering Michigan State University February 9, 2010 Definition of a Wavelet A wave is usually defined

More information

Space-Frequency Atoms

Space-Frequency Atoms Space-Frequency Atoms FREQUENCY FREQUENCY SPACE SPACE FREQUENCY FREQUENCY SPACE SPACE Figure 1: Space-frequency atoms. Windowed Fourier Transform 1 line 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-1 0 100 200

More information

Computational Harmonic Analysis (Wavelet Tutorial) Part II

Computational Harmonic Analysis (Wavelet Tutorial) Part II Computational Harmonic Analysis (Wavelet Tutorial) Part II Understanding Many Particle Systems with Machine Learning Tutorials Matthew Hirn Michigan State University Department of Computational Mathematics,

More information

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih Unsupervised Learning of Hierarchical Models Marc'Aurelio Ranzato Geoff Hinton in collaboration with Josh Susskind and Vlad Mnih Advanced Machine Learning, 9 March 2011 Example: facial expression recognition

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

Wasserstein Training of Boltzmann Machines

Wasserstein Training of Boltzmann Machines Wasserstein Training of Boltzmann Machines Grégoire Montavon, Klaus-Rober Muller, Marco Cuturi Presenter: Shiyu Liang December 1, 2016 Coordinated Science Laboratory Department of Electrical and Computer

More information

Vectorization. Yu Wu, Ishan Patil. October 13, 2017

Vectorization. Yu Wu, Ishan Patil. October 13, 2017 Vectorization Yu Wu, Ishan Patil October 13, 2017 Exercises to be covered We will implement some examples of image classification algorithms using a subset of the MNIST dataset logistic regression for

More information

Introduction to (Convolutional) Neural Networks

Introduction to (Convolutional) Neural Networks Introduction to (Convolutional) Neural Networks Philipp Grohs Summer School DL and Vis, Sept 2018 Syllabus 1 Motivation and Definition 2 Universal Approximation 3 Backpropagation 4 Stochastic Gradient

More information

COS 429: COMPUTER VISON Face Recognition

COS 429: COMPUTER VISON Face Recognition COS 429: COMPUTER VISON Face Recognition Intro to recognition PCA and Eigenfaces LDA and Fisherfaces Face detection: Viola & Jones (Optional) generic object models for faces: the Constellation Model Reading:

More information

SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

More information

Wavelet Scattering Regression of Quantum Chemical Energies arxiv: v3 [math.ca] 6 Jan 2017

Wavelet Scattering Regression of Quantum Chemical Energies arxiv: v3 [math.ca] 6 Jan 2017 Wavelet Scattering Regression of Quantum Chemical Energies arxiv:1605.04654v3 [math.ca] 6 Jan 2017 Matthew Hirn Stéphane Mallat Nicolas Poilvert January 10, 2017 Abstract We introduce multiscale invariant

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework Due Oct 15, 10.30 am Rules Please follow these guidelines. Failure to do so, will result in loss of credit. 1. Homework is due on the due date

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

c 2017 Society for Industrial and Applied Mathematics

c 2017 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 15, No. 2, pp. 827 863 c 2017 Society for Industrial and Applied Mathematics WAVELET SCATTERING REGRESSION OF QUANTUM CHEMICAL ENERGIES MATTHEW HIRN, STÉPHANE MALLAT, AND

More information

Dreem Challenge report (team Bussanati)

Dreem Challenge report (team Bussanati) Wavelet course, MVA 04-05 Simon Bussy, simon.bussy@gmail.com Antoine Recanati, arecanat@ens-cachan.fr Dreem Challenge report (team Bussanati) Description and specifics of the challenge We worked on the

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Image Recognition Using Modified Zernike Moments

Image Recognition Using Modified Zernike Moments Sensors & Transducers 204 by IFSA Publishing S. L. http://www.sensorsportal.com Image Recognition Using Modified ernike Moments Min HUANG Yaqiong MA and Qiuping GONG School of Computer and Communication

More information

Course content (will be adapted to the background knowledge of the class):

Course content (will be adapted to the background knowledge of the class): Biomedical Signal Processing and Signal Modeling Lucas C Parra, parra@ccny.cuny.edu Departamento the Fisica, UBA Synopsis This course introduces two fundamental concepts of signal processing: linear systems

More information

Power Supply Quality Analysis Using S-Transform and SVM Classifier

Power Supply Quality Analysis Using S-Transform and SVM Classifier Journal of Power and Energy Engineering, 2014, 2, 438-447 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/10.4236/jpee.2014.24059 Power Supply Quality Analysis

More information

12. Machine learning I. Regression Overfitting Classification Example: Handwritten digit recognition Support vector machines (SVMs)

12. Machine learning I. Regression Overfitting Classification Example: Handwritten digit recognition Support vector machines (SVMs) 12. Machine learning I Regression Overfitting Classification Example: Handwritten digit recognition Support vector machines (SVMs) 48 Regression Suppose we are given N pairs of a vector x and a scalar

More information

Multiscale Image Transforms

Multiscale Image Transforms Multiscale Image Transforms Goal: Develop filter-based representations to decompose images into component parts, to extract features/structures of interest, and to attenuate noise. Motivation: extract

More information

2D Wavelets. Hints on advanced Concepts

2D Wavelets. Hints on advanced Concepts 2D Wavelets Hints on advanced Concepts 1 Advanced concepts Wavelet packets Laplacian pyramid Overcomplete bases Discrete wavelet frames (DWF) Algorithme à trous Discrete dyadic wavelet frames (DDWF) Overview

More information

FACTORIZATION MACHINES AS A TOOL FOR HEALTHCARE CASE STUDY ON TYPE 2 DIABETES DETECTION

FACTORIZATION MACHINES AS A TOOL FOR HEALTHCARE CASE STUDY ON TYPE 2 DIABETES DETECTION SunLab Enlighten the World FACTORIZATION MACHINES AS A TOOL FOR HEALTHCARE CASE STUDY ON TYPE 2 DIABETES DETECTION Ioakeim (Kimis) Perros and Jimeng Sun perros@gatech.edu, jsun@cc.gatech.edu COMPUTATIONAL

More information

Multiresolution analysis

Multiresolution analysis Multiresolution analysis Analisi multirisoluzione G. Menegaz gloria.menegaz@univr.it The Fourier kingdom CTFT Continuous time signals + jωt F( ω) = f( t) e dt + f() t = F( ω) e jωt dt The amplitude F(ω),

More information

Introduction to Deep Learning

Introduction to Deep Learning Introduction to Deep Learning Some slides and images are taken from: David Wolfe Corne Wikipedia Geoffrey A. Hinton https://www.macs.hw.ac.uk/~dwcorne/teaching/introdl.ppt Feedforward networks for function

More information

The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks

The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks Jeff Irion & Naoki Saito Department of Mathematics University of California, Davis SIAM Annual Meeting 2014 Chicago,

More information

Designing Kernel Functions Using the Karhunen-Loève Expansion

Designing Kernel Functions Using the Karhunen-Loève Expansion July 7, 2004. Designing Kernel Functions Using the Karhunen-Loève Expansion 2 1 Fraunhofer FIRST, Germany Tokyo Institute of Technology, Japan 1,2 2 Masashi Sugiyama and Hidemitsu Ogawa Learning with Kernels

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 35: Artificial Intelligence through Deep Learning W&L Fall Term 27 Prof. Levy Convolutional Networks http://wernerstudio.typepad.com/.a/6ad83549adb53ef53629ccf97c-5wi Convolution: Convolution is

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition

COMP 408/508. Computer Vision Fall 2017 PCA for Recognition COMP 408/508 Computer Vision Fall 07 PCA or Recognition Recall: Color Gradient by PCA v λ ( G G, ) x x x R R v, v : eigenvectors o D D with v ^v (, ) x x λ, λ : eigenvalues o D D with λ >λ v λ ( B B, )

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 25 November 5, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 19 Table of Contents 1 Ming Zhong (JHU) AMS Fall 2018 2 / 19 Some Preliminaries: Fourier

More information

Multi-scale Geometric Summaries for Similarity-based Upstream S

Multi-scale Geometric Summaries for Similarity-based Upstream S Multi-scale Geometric Summaries for Similarity-based Upstream Sensor Fusion Duke University, ECE / Math 3/6/2019 Overall Goals / Design Choices Leverage multiple, heterogeneous modalities in identification

More information

Discovery Through Situational Awareness

Discovery Through Situational Awareness Discovery Through Situational Awareness BRETT AMIDAN JIM FOLLUM NICK BETZSOLD TIM YIN (UNIVERSITY OF WYOMING) SHIKHAR PANDEY (WASHINGTON STATE UNIVERSITY) Pacific Northwest National Laboratory February

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Supervised Learning / Support Vector Machines

More information