Quantum Chemistry Energy Regression

Size: px
Start display at page:

Download "Quantum Chemistry Energy Regression"

Transcription

1 Quantum Chemistry Energy Regression with Scattering Transforms Matthew Hirn, Stéphane Mallat École Normale Supérieure Nicolas Poilvert Penn-State 1

2 Quantum Chemistry Regression 2

3 Linear Regression 3

4 Energy Properties Invariant to permutations of the index k. 4

5 Overview Coulomb kernel representations Density functional approach to representation From Fourier to wavelet energy regressions Wavelet scattering dictionaries: deep networks without learning Numerical energy regression results Relations with image classification and deep networks 5

6 Coulomb Kernel 6

7 Density Functional Theory Computes the energy of a molecule x from its electronic probability density x (u) for u 2 R 3 Organic molecules with Hydrogne, Carbon Nitrogen, Oxygen Sulfur, Chlorine H 4 C 6 OS H 9 C 7 NO H 9 C 8 N 7 H 3 C 6 NO 2

8 Density Functional Theory Kohn-Sham model: E( )=T ( )+ Z (u) V (u)+ 1 2 Z (u) (v) u v dudv + E xc( ) Molecular energy Kinetic energy electron-nuclei attraction electron-electron Coulomb repulsion Exchange correlat. energy At equilibrium: 8

9 Coulomb Interactions in Fourier Coulomb potential energy: Diagonalized in Fourier: 9

10 Coulomb in Fourier Dictionary

11 Large Scale Instabilities 11

12 Coulomb Multiscale Factorizations Multiscale regroupment of interactions: For an error, interactions can be reduced to O(log ) groups Fast multipoles (Rocklin, Greengard) 12

13 Scale separation with Wavelets rotated and dilated: real parts imaginary parts

14 Wavelet Interference for Densities 14

15 Sparse Wavelet Regression 2 1 Theorem: For any > 0 there exists wavelets with 15

16 Dictionaries for Quantum Energies 16

17 Atomization Density Electronic density x (u) Approximate density x (u) 17

18 Sparse Linear Regressions 18

19 xfourier and Wavelets Regressions Regression: Fourier Wavelet Scattering Coulomb Model Complexity log 19 (M) log 2 M

20 Energy Regression Results 20

21 Wavelet Dictionary Rotations 1 (u) j1, 1 (u) Scales j1 21

22 Wavelet Dictionary Rotations 1 Scales j1 j1, 1 (u) 22

23 Scattering Dictionary Rotations 1 Recover translation variability: j1, 1 j2, 2 (u) Recover rotation variability: Scales j1 j1, (u) ~ l2 ( 1 ) j1, 1 (u) 23

24 Scattering Dictionary Rotations 1 Recover translation variability: j1, 1 j2, 2 (u) Recover rotation variability: Scales j1 j1, (u) ~ l2 ( 1 ) Combine to recover roto-translation variabiltiy: j1, j2, 2 (u) ~ l2 ( 1 ) j1, 1 (u) 24

25 Scattering Second Order j1, 1 (u), j 1 fixed j1, j2, 2 (u) ~ l2 ( 1 ) j 1,l 2 fixed Scales j2 25 Rotations 2

26 Scattering Dictionary 26

27 x Scattering Regression Regression: Fourier Wavelet Scattering Coulomb Model Complexity log (M) log 2 M

28 Quantum Energy Regression ChemistryResults 28

29 From 2D to 3D Scattering

30 Reconstruction from Scattering Joan Bruna Original images of N 2 pixels: Order m =2 Reconstruction from {kxk 1, kx? 1 k 1, k x? 1? 2 k 1 } : O(log 2 2 N) coe.

31 Ergodic Texture Reconstructions Original Textures Joan Bruna m = 2, 2 J = N: reconstruction from O(log 2 2 N) scattering coe.

32 Digit Classification: MNIST Joan Bruna x SJ x Linear Classifier Classification Errors LeCun et. al. y = f (x)

33 Complex Image Classification Arbre de Joshua CalTech 101 data-basis: Ancre Metronome Castore Edouard Oyallon Nénuphare Bateau x S J x Rigid Mvt. Classification Accuracy Linear Classif. computes invariants Data Basis Deep-Net Scat.-2 CalTech % 80% CIFAR-10 90% 80% y

34 Conclusion Quantum energy regression involves generic invariants to rigid movements, stability to deformations, multiscale interactions These properties require scale separations, hence wavelets. Multilayer wavelet scattering create large number of invariants Equivalent to deep networks with predefined wavelet filters Knowing physics provides the invariants: can avoid learning representations 34

On the road to Affine Scattering Transform

On the road to Affine Scattering Transform 1 On the road to Affine Scattering Transform Edouard Oyallon with Stéphane Mallat following the work of Laurent Sifre, Joan Bruna, High Dimensional classification (x i,y i ) 2 R 5122 {1,...,100},i=1...10

More information

Image classification via Scattering Transform

Image classification via Scattering Transform 1 Image classification via Scattering Transform Edouard Oyallon under the supervision of Stéphane Mallat following the work of Laurent Sifre, Joan Bruna, Classification of signals Let n>0, (X, Y ) 2 R

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

c 2017 Society for Industrial and Applied Mathematics

c 2017 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 15, No. 2, pp. 827 863 c 2017 Society for Industrial and Applied Mathematics WAVELET SCATTERING REGRESSION OF QUANTUM CHEMICAL ENERGIES MATTHEW HIRN, STÉPHANE MALLAT, AND

More information

Wavelet Scattering Transforms

Wavelet Scattering Transforms Wavelet Scattering Transforms Haixia Liu Department of Mathematics The Hong Kong University of Science and Technology February 6, 2018 Outline 1 Problem Dataset Problem two subproblems outline of image

More information

Wavelet Scattering Regression of Quantum Chemical Energies arxiv: v3 [math.ca] 6 Jan 2017

Wavelet Scattering Regression of Quantum Chemical Energies arxiv: v3 [math.ca] 6 Jan 2017 Wavelet Scattering Regression of Quantum Chemical Energies arxiv:1605.04654v3 [math.ca] 6 Jan 2017 Matthew Hirn Stéphane Mallat Nicolas Poilvert January 10, 2017 Abstract We introduce multiscale invariant

More information

arxiv: v2 [cs.cv] 30 May 2015

arxiv: v2 [cs.cv] 30 May 2015 Deep Roto-Translation Scattering for Object Classification Edouard Oyallon and Stéphane Mallat Département Informatique, Ecole Normale Supérieure 45 rue d Ulm, 75005 Paris edouard.oyallon@ens.fr arxiv:1412.8659v2

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks 1 Invariant Scattering Convolution Networks Joan Bruna and Stéphane Mallat CMAP, Ecole Polytechnique, Palaiseau, France Abstract A wavelet scattering network computes a translation invariant image representation,

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 35: Artificial Intelligence through Deep Learning W&L Fall Term 27 Prof. Levy Convolutional Networks http://wernerstudio.typepad.com/.a/6ad83549adb53ef53629ccf97c-5wi Convolution: Convolution is

More information

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels Machine Learning: Basis and Wavelet 32 157 146 204 + + + + + - + - 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 7 22 38 191 17 83 188 211 71 167 194 207 135 46 40-17 18 42 20 44 31 7 13-32 + + - - +

More information

Deep Haar scattering networks

Deep Haar scattering networks Information and Inference: A Journal of the IMA (2016) 5, 105 133 doi:10.1093/imaiai/iaw007 Advance Access publication on 19 April 2016 Deep Haar scattering networks Xiuyuan Cheng Applied Mathematics Program,

More information

Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities

Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities Michael Eickenberg Department of computer science Ecole normale supérieure PSL

More information

Classification of Hand-Written Digits Using Scattering Convolutional Network

Classification of Hand-Written Digits Using Scattering Convolutional Network Mid-year Progress Report Classification of Hand-Written Digits Using Scattering Convolutional Network Dongmian Zou Advisor: Professor Radu Balan Co-Advisor: Dr. Maneesh Singh (SRI) Background Overview

More information

Harmonic Analysis of Deep Convolutional Neural Networks

Harmonic Analysis of Deep Convolutional Neural Networks Harmonic Analysis of Deep Convolutional Neural Networks Helmut Bőlcskei Department of Information Technology and Electrical Engineering October 2017 joint work with Thomas Wiatowski and Philipp Grohs ImageNet

More information

Topics in Harmonic Analysis, Sparse Representations, and Data Analysis

Topics in Harmonic Analysis, Sparse Representations, and Data Analysis Topics in Harmonic Analysis, Sparse Representations, and Data Analysis Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu Thesis Defense,

More information

A new future for finite-element methods in Quantum Chemistry?

A new future for finite-element methods in Quantum Chemistry? A new future for finite-element methods in Quantum Chemistry? Kenneth Ruud Department of Chemistry University of Tromsø 9037 Tromsø Norway Geilo, 29/1 2007 A new future for finite-element methods in Quantum

More information

Multiresolution analysis & wavelets (quick tutorial)

Multiresolution analysis & wavelets (quick tutorial) Multiresolution analysis & wavelets (quick tutorial) Application : image modeling André Jalobeanu Multiresolution analysis Set of closed nested subspaces of j = scale, resolution = 2 -j (dyadic wavelets)

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

CSC321 Lecture 5: Multilayer Perceptrons

CSC321 Lecture 5: Multilayer Perceptrons CSC321 Lecture 5: Multilayer Perceptrons Roger Grosse Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 1 / 21 Overview Recall the simple neuron-like unit: y output output bias i'th weight w 1 w2 w3

More information

Computational Harmonic Analysis (Wavelet Tutorial) Part II

Computational Harmonic Analysis (Wavelet Tutorial) Part II Computational Harmonic Analysis (Wavelet Tutorial) Part II Understanding Many Particle Systems with Machine Learning Tutorials Matthew Hirn Michigan State University Department of Computational Mathematics,

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

More information

Computational Nanoscience

Computational Nanoscience Computational Nanoscience Applications for Molecules, Clusters, and Solids KALMÄN VARGA AND JOSEPH A. DRISCOLL Vanderbilt University, Tennessee Щ CAMBRIDGE HP UNIVERSITY PRESS Preface Part I One-dimensional

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

Multiscale Geometric Analysis: Thoughts and Applications (a summary)

Multiscale Geometric Analysis: Thoughts and Applications (a summary) Multiscale Geometric Analysis: Thoughts and Applications (a summary) Anestis Antoniadis, University Joseph Fourier Assimage 2005,Chamrousse, February 2005 Classical Multiscale Analysis Wavelets: Enormous

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

MULTISCALE SCATTERING FOR AUDIO CLASSIFICATION

MULTISCALE SCATTERING FOR AUDIO CLASSIFICATION MULTISCALE SCATTERING FOR AUDIO CLASSIFICATION Joakim Andén CMAP, Ecole Polytechnique, 91128 Palaiseau anden@cmappolytechniquefr Stéphane Mallat CMAP, Ecole Polytechnique, 91128 Palaiseau ABSTRACT Mel-frequency

More information

Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties

Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties Solid Harmonic Scattering Invariants Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties Michael Eickenberg, 1, a) Georgios Exarchakis, 1, b) Matthew Hirn, 2, c) Stéphane Mallat, 3

More information

Satellite image deconvolution using complex wavelet packets

Satellite image deconvolution using complex wavelet packets Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Convolution and Pooling as an Infinitely Strong Prior

Convolution and Pooling as an Infinitely Strong Prior Convolution and Pooling as an Infinitely Strong Prior Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Convolutional

More information

Spatial Transformation

Spatial Transformation Spatial Transformation Presented by Liqun Chen June 30, 2017 1 Overview 2 Spatial Transformer Networks 3 STN experiments 4 Recurrent Models of Visual Attention (RAM) 5 Recurrent Models of Visual Attention

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

arxiv: v1 [physics.chem-ph] 1 May 2018

arxiv: v1 [physics.chem-ph] 1 May 2018 Solid Harmonic Scattering Invariants arxiv:1805.00571v1 [physics.chem-ph] 1 May 2018 Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties Michael Eickenberg, 1, a) Georgios Exarchakis,

More information

Convolutional Neural Network Architecture

Convolutional Neural Network Architecture Convolutional Neural Network Architecture Zhisheng Zhong Feburary 2nd, 2018 Zhisheng Zhong Convolutional Neural Network Architecture Feburary 2nd, 2018 1 / 55 Outline 1 Introduction of Convolution Motivation

More information

arxiv: v1 [cs.cv] 10 Feb 2016

arxiv: v1 [cs.cv] 10 Feb 2016 GABOR WAVELETS IN IMAGE PROCESSING David Bařina Doctoral Degree Programme (2), FIT BUT E-mail: xbarin2@stud.fit.vutbr.cz Supervised by: Pavel Zemčík E-mail: zemcik@fit.vutbr.cz arxiv:162.338v1 [cs.cv]

More information

Mathematical introduction to Compressed Sensing

Mathematical introduction to Compressed Sensing Mathematical introduction to Compressed Sensing Lesson 1 : measurements and sparsity Guillaume Lecué ENSAE Mardi 31 janvier 2016 Guillaume Lecué (ENSAE) Compressed Sensing Mardi 31 janvier 2016 1 / 31

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

Building Function Approximators on top of Haar Scattering Networks

Building Function Approximators on top of Haar Scattering Networks Building Function Approximators on top of Haar Scattering Networks Fernando Fernandes Neto Abstract In this article we propose building general-purpose function approximators on top of Haar Scattering

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 142 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. Volume of a 10'x10'x8' room 1) First, find the MOLES of gas using the ideal gas equation and the information given. 2) Convert

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

JOINT TIME-FREQUENCY SCATTERING FOR AUDIO CLASSIFICATION

JOINT TIME-FREQUENCY SCATTERING FOR AUDIO CLASSIFICATION 2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17 20, 2015, BOSTON, USA JOINT TIME-FREQUENCY SCATTERING FOR AUDIO CLASSIFICATION Joakim Andén PACM Princeton University,

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Sparse Approximation: from Image Restoration to High Dimensional Classification

Sparse Approximation: from Image Restoration to High Dimensional Classification Sparse Approximation: from Image Restoration to High Dimensional Classification Bin Dong Beijing International Center for Mathematical Research Beijing Institute of Big Data Research Peking University

More information

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract Scale-Invariance of Support Vector Machines based on the Triangular Kernel François Fleuret Hichem Sahbi IMEDIA Research Group INRIA Domaine de Voluceau 78150 Le Chesnay, France Abstract This paper focuses

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Molecular Bonding. Molecular Schrödinger equation. r - nuclei s - electrons. M j = mass of j th nucleus m 0 = mass of electron

Molecular Bonding. Molecular Schrödinger equation. r - nuclei s - electrons. M j = mass of j th nucleus m 0 = mass of electron Molecular onding Molecular Schrödinger equation r - nuclei s - electrons 1 1 W V r s j i j1 M j m i1 M j = mass of j th nucleus m = mass of electron j i Laplace operator for nuclei Laplace operator for

More information

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons.

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons. Topic review Using scientific language Design and construct a crossword using the following words: atom; proton; molecule; ion; lattice; shell; element; compound; bond; conductor; insulator; electrolysis;

More information

INVERSE PROBLEMS WITH INVARIANT MULTISCALE STATISTICS

INVERSE PROBLEMS WITH INVARIANT MULTISCALE STATISTICS INVERSE PROBLEMS WITH INVARIANT MULTISCALE STATISTICS Ivan Dokmanić 1, Joan Bruna 2, Stéphane Mallat 3, and Maarten de Hoop 4 1 Institut Langevin, CNRS, ESPCI, PSL, Paris, France 2 Courant Institute, NYU,

More information

Sketching for Large-Scale Learning of Mixture Models

Sketching for Large-Scale Learning of Mixture Models Sketching for Large-Scale Learning of Mixture Models Nicolas Keriven Université Rennes 1, Inria Rennes Bretagne-atlantique Adv. Rémi Gribonval Outline Introduction Practical Approach Results Theoretical

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 4 Molecular orbitals C.-K. Skylaris Learning outcomes Be able to manipulate expressions involving spin orbitals and molecular orbitals Be able to write down

More information

Deep Convolutional Neural Networks on Cartoon Functions

Deep Convolutional Neural Networks on Cartoon Functions Deep Convolutional Neural Networks on Cartoon Functions Philipp Grohs, Thomas Wiatowski, and Helmut Bölcskei Dept. Math., ETH Zurich, Switzerland, and Dept. Math., University of Vienna, Austria Dept. IT

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

1.1 Variational principle Variational calculations with Gaussian basis functions 5

1.1 Variational principle Variational calculations with Gaussian basis functions 5 Preface page xi Part I One-dimensional problems 1 1 Variational solution of the Schrödinger equation 3 1.1 Variational principle 3 1.2 Variational calculations with Gaussian basis functions 5 2 Solution

More information

States of matter Part 1

States of matter Part 1 Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy

States of matter Part 1. Lecture 1. University of Kerbala. Hamid Alghurabi Assistant Lecturer in Pharmaceutics. Physical Pharmacy Physical pharmacy I 1. States of matter (2 Lectures) 2. Thermodynamics (2 Lectures) 3. Solution of non-electrolyte 4. Solution of electrolyte 5. Ionic equilibria 6. Buffered and isotonic solution Physical

More information

Scattering.m Documentation

Scattering.m Documentation Scattering.m Documentation Release 0.3 Vincent Lostanlen Nov 04, 2018 Contents 1 Introduction 3 2 Filter bank specifications 5 3 Wavelets 7 Bibliography 9 i ii Scattering.m Documentation, Release 0.3

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Structured deep models: Deep learning on graphs and beyond

Structured deep models: Deep learning on graphs and beyond Structured deep models: Deep learning on graphs and beyond Hidden layer Hidden layer Input Output ReLU ReLU, 25 May 2018 CompBio Seminar, University of Cambridge In collaboration with Ethan Fetaya, Rianne

More information

Understanding KMT using Gas Properties and States of Matter

Understanding KMT using Gas Properties and States of Matter Understanding KMT using Gas Properties and States of Matter Learning Goals: Students will be able to describe matter in terms of particle motion. The description should include Diagrams to support the

More information

Building a Regular Decision Boundary with Deep Networks

Building a Regular Decision Boundary with Deep Networks Building a Regular Decision Boundary with Deep Networks Edouard Oyallon Département Informatique Ecole Normale Supérieure Paris, France edouard.oyallon@ens.fr Abstract In this work, we build a generic

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Part IV Compressed Sensing

Part IV Compressed Sensing Aisenstadt Chair Course CRM September 2009 Part IV Compressed Sensing Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Conclusion to Super-Resolution Sparse super-resolution is sometime

More information

Condensed matter physics FKA091

Condensed matter physics FKA091 Condensed matter physics FKA091 Ermin Malic Department of Physics Chalmers University of Technology Henrik Johannesson Department of Physics University of Gothenburg Teaching assistants: Roland Jago &

More information

Introduction to Deep Learning CMPT 733. Steven Bergner

Introduction to Deep Learning CMPT 733. Steven Bergner Introduction to Deep Learning CMPT 733 Steven Bergner Overview Renaissance of artificial neural networks Representation learning vs feature engineering Background Linear Algebra, Optimization Regularization

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux INRIA 8 Nov 2011 Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 1 / 80 1 Introduction 2 Linear classifier 3 Convolutional neural networks

More information

Nonparametric regression using deep neural networks with ReLU activation function

Nonparametric regression using deep neural networks with ReLU activation function Nonparametric regression using deep neural networks with ReLU activation function Johannes Schmidt-Hieber February 2018 Caltech 1 / 20 Many impressive results in applications... Lack of theoretical understanding...

More information

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K. An Introduction to Nuclear Physics Yatramohan Jana Alpha Science International Ltd. Oxford, U.K. Contents Preface Acknowledgement Part-1 Introduction vii ix Chapter-1 General Survey of Nuclear Properties

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols Chapter 8: Bonding Section 8.1: Lewis Dot Symbols The Lewis electron dot symbol is named after Gilbert Lewis. In the Lewis dot symbol, the element symbol represents the nucleus and the inner electrons.

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6.1: Introduction to Chemical Bonding Things That You Should Know What is a chemical bond? Why do atoms form chemical bonds? What is the difference between ionic and

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics CHAPTER 2 Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics Internal Energy and the First Law of Thermodynamics Internal Energy (U) Translational energy of molecules Potential

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley Collaborators Joint work with Samy Bengio, Moritz Hardt, Michael Jordan, Jason Lee, Max Simchowitz,

More information

THE GASEOUS STATE OF MATTER

THE GASEOUS STATE OF MATTER THE GASEOUS STATE OF MATTER The gaseous state of matter is a form of matter in which the particles are in a high state of energy, which causes them to vibrate rapidly, experiencing a strong repulsion among

More information

Multiresolution analysis

Multiresolution analysis Multiresolution analysis Analisi multirisoluzione G. Menegaz gloria.menegaz@univr.it The Fourier kingdom CTFT Continuous time signals + jωt F( ω) = f( t) e dt + f() t = F( ω) e jωt dt The amplitude F(ω),

More information

GAS-SURFACE INTERACTIONS

GAS-SURFACE INTERACTIONS Page 1 of 16 GAS-SURFACE INTERACTIONS In modern surface science, important technological processes often involve the adsorption of molecules in gaseous form onto a surface. We can treat this adsorption

More information

Pauli Deformation APPENDIX Y

Pauli Deformation APPENDIX Y APPENDIX Y Two molecules, when isolated say at infinite distance, are independent and the wave function of the total system might be taken as a product of the wave functions for the individual molecules.

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Review: Learning Bimodal Structures in Audio-Visual Data

Review: Learning Bimodal Structures in Audio-Visual Data Review: Learning Bimodal Structures in Audio-Visual Data CSE 704 : Readings in Joint Visual, Lingual and Physical Models and Inference Algorithms Suren Kumar Vision and Perceptual Machines Lab 106 Davis

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Multiclass Logistic Regression. Multilayer Perceptrons (MLPs)

TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter Multiclass Logistic Regression. Multilayer Perceptrons (MLPs) TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter 2018 Multiclass Logistic Regression Multilayer Perceptrons (MLPs) Stochastic Gradient Descent (SGD) 1 Multiclass Classification We consider

More information

Lecture 2: Haar Multiresolution analysis

Lecture 2: Haar Multiresolution analysis WAVELES AND MULIRAE DIGIAL SIGNAL PROCESSING Lecture 2: Haar Multiresolution analysis Prof.V. M. Gadre, EE, II Bombay 1 Introduction HAAR was a mathematician, who has given an idea that any continuous

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

arxiv: v1 [cs.cv] 7 Mar 2014

arxiv: v1 [cs.cv] 7 Mar 2014 Submitted to International Journal of Computer Vision manuscript No. (will be inserted by the editor) Rigid-Motion Scattering for Texture Classification Laurent Sifre Stéphane Mallat arxiv:1403.1687v1

More information

Deep learning on 3D geometries. Hope Yao Design Informatics Lab Department of Mechanical and Aerospace Engineering

Deep learning on 3D geometries. Hope Yao Design Informatics Lab Department of Mechanical and Aerospace Engineering Deep learning on 3D geometries Hope Yao Design Informatics Lab Department of Mechanical and Aerospace Engineering Overview Background Methods Numerical Result Future improvements Conclusion Background

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Multi-dimensional signal processing Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione

More information

Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction

Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction Xavier Brumwell Department of CMSE Michigan State University brumwel1@msu.edu Paul Sinz Department of CMSE

More information

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions 2018 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 18) Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions Authors: S. Scardapane, S. Van Vaerenbergh,

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione dei Segnali Multi-dimensionali e

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information

Maxout Networks. Hien Quoc Dang

Maxout Networks. Hien Quoc Dang Maxout Networks Hien Quoc Dang Outline Introduction Maxout Networks Description A Universal Approximator & Proof Experiments with Maxout Why does Maxout work? Conclusion 10/12/13 Hien Quoc Dang Machine

More information

Global Optimality in Matrix and Tensor Factorizations, Deep Learning and More

Global Optimality in Matrix and Tensor Factorizations, Deep Learning and More Global Optimality in Matrix and Tensor Factorizations, Deep Learning and More Ben Haeffele and René Vidal Center for Imaging Science Institute for Computational Medicine Learning Deep Image Feature Hierarchies

More information

CHEM 1305 Introductory Chemistry

CHEM 1305 Introductory Chemistry CHEM 1305 Introductory Chemistry Introductory Chemistry: Concepts and Critical Thinking 7 th Edition, Charles H. Corwin Chapter 12. Chemical Bonding Modified by: Dr. Violeta F. Coarfa 1 Chemical Bond Concept

More information