Image classification via Scattering Transform

Size: px
Start display at page:

Download "Image classification via Scattering Transform"

Transcription

1 1 Image classification via Scattering Transform Edouard Oyallon under the supervision of Stéphane Mallat following the work of Laurent Sifre, Joan Bruna,

2 Classification of signals Let n>0, (X, Y ) 2 R n Y random variables Problem: Estimate ŷ such that ŷ = arg infỹ E( ỹ(x) Y ) We are given a training set (x i,y i ) 2 R n Yto build ŷ Say one can write ŷ = Classifier( x), Classifier being built with ( x i,y i ) 3 ways to build : Supervised Unsupervised Predefined (x i,y i ) i (x i ) i Geometric priors Y = {, } n =2 Classifier w <latexit w<latexit sha1_base64="eqfykhkxp29jldl sha1_base64="o0lqj2xoqxj8acw

3 3 Research statement What are the mathematical foundations of signal classifications? Which mechanisms can give us state-of-the-art results on standard datasets? How much supervision is required? Is it a geometrical problem? How can we build? Rhino or cat? The variability is HUGE!

4 x y High-dimensional variabilities 4 Claim: In R n,n 1, the variance is huge. Ex.: E(X) =0 Claim: Small deformations (not parametric) can have huge effects: Ex.: X N(0,I n ) then 9C >0, 8n, P(kXk t)) apple 2e t2 x 2 L 2 (R n ), 2C 1 The variance is high, and the bias is difficult to estimate. There are also few available samples How to handle that? define L x(u) =x(u (u) =, C R 2, k1 C L 1 C k =2 (u)) Cn kx yk 2 =2

5 5 A metric for natural images? Claim: Images do not lie on a low-dimensional manifold: an image is only an element of Two kind of variabilities: Geometric A (E) Occlusion, L 2 Fix the metric, how to design an appropriate? Relatively to the variability L: k Lx Relatively to the class: L 2 (R 2 ) xk appleklk Classes Intra-class Extra-class y i 6= y j )k x i x j k 1 y i = y j )k x i x j k 1 Observe that the final dimensionality reduction is extreme. n 10 6, Y 100

6 Neural Networks get state-of-the-art results on many datasets since Yet it is a pure black box. Learning: DeepNet, an engineered solution 6 Classifier f(f 1 ) f(f 2 ) f(f J ) Engineers propose to use a cascade of operators (F j ) j followed by a pointwise nonlinearity f where each operator is learned. (Neural Networks) Ref.: Convolutional Networks and Applications in Vision, Y. Lecun et al. Parameters are supervisedly learned from the samples.

7 7 Dimensionality reduction Two interpretable mechanisms seem empirically implemented: Linearization: Only requires the use of a linear projection to totally handle the variability Theorem: sup x6=y k x kx yk yk < 1)9 ) (x + h) x x h Invariance: An averaging along the orbit L of a variability; however, we lose in discriminability X L2L Lx How could we take advantage of these strategies?

8 Geometric variability modelled as Lie Groups 8 The affine group A (E) is a good approximation of 3D variability, smoothly acting on images: 8x 2 L 2 (R 2 ) 8g 2 R 2 o SO 2 (R) R + g.x(u) =(v, r,s).x(u) =x(r ( u v )) s A Lie group G can be equipped with a Haar measure which is invariant by GZ : Z 8 g, 8A 2B(G), Invariance can Z be achieved via Z an averaging G Yet how do we recover the nonzero frequencies? G L g f(g)dg = 1 A (g)dg = G f(g)dg G 1 A ( g.g)dg

9 Wavelet Transform on Lie groups 9 A wavelet is defined by 2 L 2 (G), ˆ(e) =0and can be dilated via = L! 2 Theorem: Let G be a compact Lie group, for appropriate mother wavelet Z and then Wx = { is an isometry and covariant with the action of G Proposition: W almost commutes with deformations but is not invariant to translation k[w, L ]kappleck k Ex. : In the case of images, a wavelet is obtained via a mother wavelet dilated and rotated G Ref.: Stein, E. M. Topics in harmonic analysis related to the Littlewood-Paley theory. x, x? G } 2 j, = 1 2 2j (r ( u 2 j )) Ref.: Group Invariant Scattering, Mallat S Littlehood-Paley for images: Ŵ 2! 1

10 The Roto-translation Scattering Transform A Scattering Transform is the cascade of complex 10 wavelets transform and modulus, followed by a final averaging: Z Sx = { Theorem: Can be reformulated as a NeuralNet x Z Z x, x? G 1, x? G 1? G 2,...} G 1 G 2 G 3 Ex.: G 1 = R 2,G 2 = R 2 or R 2 o SO 2 (R).. Z Z Z Theorem: is invariant and linearizes deformation Issue: the averaging can absorb all the variability necessary to discrimination. Ref.: Invariant Convolutional Scattering Network, J. Bruna et Mallat S Ref.: Group Invariant Scattering, Mallat S Ref.: Group Invariant Scattering, Mallat S

11 Selecting variability 11 Discovering more complex groups is necessary to build more complex invariants: R 2,! SO 2 (R) or 2,!... The metrics defined by Translation or RotoTranslation are not equivalent.(recombining angles increase discriminability) Claim: Too much group invariance reduces the discriminability power. Some invariance is likely to be selected. vs Translation Scattering does not see the difference How competitive are we with learned representations?

12 How much learning is really required? Dataset Type Paper Accuracy Caltech101 Scattering 79.9 Unsupervised Ask the locals 77.3 Supervised DeepNet 91.4 CIFAR100 Scattering 56.8 images classes CALTECH color images Unsupervised RFL 54.2 Supervised DeepNet 65.4 CIFAR Group representations are competitive with representations learned from data without labels Ref.: Deep Roto-Translation Scattering for Object Classification. EO and S Mallat Identical Representation images classes color images

13 Explaining the dimensionality reduction in Neural Networks 13 Understanding NeuralNet is a problem of both exploration and experimentation. We need to measure variability reduction: Nonlinear Linear Sparsity as a measure Rank of the operators Linear separability kxk 0 =#{i, x i 6=0} Low dimensionality Low co-dimensionality The origin of dimension reduction could be either learning (contextual) or the architecture (structural), the correct reason is probably a mix.

14 14 Linearization: strategy A good measure is the ability of a linear classifier (SVM) to classify correctly. Linear SVM In a regular architecture, as we get deeper, more and more linearization occurs. F 1 F 2 Accuracy F 3 F 4 Ref.: Support-vector networks Cortes C., & Vapnik V. What is the nature of the linearized variabilities? Could they lead to a complex model on natural images?

15 15 Fill in the performance gap We used small datasets ( < with small or big images ) to perform our numerical experiments. Challenge: ImageNet( 10 6 large images) Requires the use of GPUs! Lots of engineering Typical computations take around 1s for an input size of But there are also a lot of maths to discover!

16 16 Conclusion We propose tools to analyse the deep networks, and to reduce variabilities in high-dimensional problems. State-of-the-arts with unsupervised learning. We provide software: (or send me an to get the latest!) Merci au DIM de la région Île de France!

On the road to Affine Scattering Transform

On the road to Affine Scattering Transform 1 On the road to Affine Scattering Transform Edouard Oyallon with Stéphane Mallat following the work of Laurent Sifre, Joan Bruna, High Dimensional classification (x i,y i ) 2 R 5122 {1,...,100},i=1...10

More information

Quantum Chemistry Energy Regression

Quantum Chemistry Energy Regression Quantum Chemistry Energy Regression with Scattering Transforms Matthew Hirn, Stéphane Mallat École Normale Supérieure Nicolas Poilvert Penn-State 1 Quantum Chemistry Regression 2 Linear Regression 3 Energy

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

Wavelet Scattering Transforms

Wavelet Scattering Transforms Wavelet Scattering Transforms Haixia Liu Department of Mathematics The Hong Kong University of Science and Technology February 6, 2018 Outline 1 Problem Dataset Problem two subproblems outline of image

More information

Building a Regular Decision Boundary with Deep Networks

Building a Regular Decision Boundary with Deep Networks Building a Regular Decision Boundary with Deep Networks Edouard Oyallon Département Informatique Ecole Normale Supérieure Paris, France edouard.oyallon@ens.fr Abstract In this work, we build a generic

More information

arxiv: v2 [cs.cv] 30 May 2015

arxiv: v2 [cs.cv] 30 May 2015 Deep Roto-Translation Scattering for Object Classification Edouard Oyallon and Stéphane Mallat Département Informatique, Ecole Normale Supérieure 45 rue d Ulm, 75005 Paris edouard.oyallon@ens.fr arxiv:1412.8659v2

More information

Harmonic Analysis of Deep Convolutional Neural Networks

Harmonic Analysis of Deep Convolutional Neural Networks Harmonic Analysis of Deep Convolutional Neural Networks Helmut Bőlcskei Department of Information Technology and Electrical Engineering October 2017 joint work with Thomas Wiatowski and Philipp Grohs ImageNet

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Statistical Learning Reading Assignments

Statistical Learning Reading Assignments Statistical Learning Reading Assignments S. Gong et al. Dynamic Vision: From Images to Face Recognition, Imperial College Press, 2001 (Chapt. 3, hard copy). T. Evgeniou, M. Pontil, and T. Poggio, "Statistical

More information

What is semi-supervised learning?

What is semi-supervised learning? What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing,

More information

Feature Design. Feature Design. Feature Design. & Deep Learning

Feature Design. Feature Design. Feature Design. & Deep Learning Artificial Intelligence and its applications Lecture 9 & Deep Learning Professor Daniel Yeung danyeung@ieee.org Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China Appropriately

More information

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Nicolas Thome Prenom.Nom@cnam.fr http://cedric.cnam.fr/vertigo/cours/ml2/ Département Informatique Conservatoire

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks 1 Invariant Scattering Convolution Networks Joan Bruna and Stéphane Mallat CMAP, Ecole Polytechnique, Palaiseau, France Abstract A wavelet scattering network computes a translation invariant image representation,

More information

ON THE STABILITY OF DEEP NETWORKS

ON THE STABILITY OF DEEP NETWORKS ON THE STABILITY OF DEEP NETWORKS AND THEIR RELATIONSHIP TO COMPRESSED SENSING AND METRIC LEARNING RAJA GIRYES AND GUILLERMO SAPIRO DUKE UNIVERSITY Mathematics of Deep Learning International Conference

More information

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Olga Kouropteva, Oleg Okun, Matti Pietikäinen Machine Vision Group, Infotech Oulu and

More information

Deep Convolutional Neural Networks on Cartoon Functions

Deep Convolutional Neural Networks on Cartoon Functions Deep Convolutional Neural Networks on Cartoon Functions Philipp Grohs, Thomas Wiatowski, and Helmut Bölcskei Dept. Math., ETH Zurich, Switzerland, and Dept. Math., University of Vienna, Austria Dept. IT

More information

arxiv: v1 [cs.cv] 7 Mar 2014

arxiv: v1 [cs.cv] 7 Mar 2014 Submitted to International Journal of Computer Vision manuscript No. (will be inserted by the editor) Rigid-Motion Scattering for Texture Classification Laurent Sifre Stéphane Mallat arxiv:1403.1687v1

More information

Classification of Hand-Written Digits Using Scattering Convolutional Network

Classification of Hand-Written Digits Using Scattering Convolutional Network Mid-year Progress Report Classification of Hand-Written Digits Using Scattering Convolutional Network Dongmian Zou Advisor: Professor Radu Balan Co-Advisor: Dr. Maneesh Singh (SRI) Background Overview

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

Optimization geometry and implicit regularization

Optimization geometry and implicit regularization Optimization geometry and implicit regularization Suriya Gunasekar Joint work with N. Srebro (TTIC), J. Lee (USC), D. Soudry (Technion), M.S. Nacson (Technion), B. Woodworth (TTIC), S. Bhojanapalli (TTIC),

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

IFT Lecture 7 Elements of statistical learning theory

IFT Lecture 7 Elements of statistical learning theory IFT 6085 - Lecture 7 Elements of statistical learning theory This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s): Brady Neal and

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Supervised Learning / Support Vector Machines

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 22: Nearest Neighbors, Kernels 4/18/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!)

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

A HYBRID NETWORK: SCATTERING AND CONVNET

A HYBRID NETWORK: SCATTERING AND CONVNET A HYBRID NETWORK: SCATTERING AND CONVNET Edouard Oyallon Département Informatique Ecole Normale Supérieure Paris, France edouard.oyallon@ens.fr ABSTRACT This paper shows how, by combining prior and supervised

More information

Dreem Challenge report (team Bussanati)

Dreem Challenge report (team Bussanati) Wavelet course, MVA 04-05 Simon Bussy, simon.bussy@gmail.com Antoine Recanati, arecanat@ens-cachan.fr Dreem Challenge report (team Bussanati) Description and specifics of the challenge We worked on the

More information

SGD and Deep Learning

SGD and Deep Learning SGD and Deep Learning Subgradients Lets make the gradient cheating more formal. Recall that the gradient is the slope of the tangent. f(w 1 )+rf(w 1 ) (w w 1 ) Non differentiable case? w 1 Subgradients

More information

Linear Classification and SVM. Dr. Xin Zhang

Linear Classification and SVM. Dr. Xin Zhang Linear Classification and SVM Dr. Xin Zhang Email: eexinzhang@scut.edu.cn What is linear classification? Classification is intrinsically non-linear It puts non-identical things in the same class, so a

More information

Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?

Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy? Deep Neural Networks with Gaussian Weights: A Universal Classification Strategy? Raja Giryes *, Guillermo Sapiro **, and Alex M. Bronstein * * School of Electrical Engineering, Faculty of Engineering,

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

Gradient-Based Learning. Sargur N. Srihari

Gradient-Based Learning. Sargur N. Srihari Gradient-Based Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation and Other Differentiation

More information

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning CS 188: Artificial Intelligence Spring 21 Lecture 22: Nearest Neighbors, Kernels 4/18/211 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!) Remaining

More information

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University PAC Learning Matt Gormley Lecture 14 March 5, 2018 1 ML Big Picture Learning Paradigms:

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 7 Unsupervised Learning Statistical Perspective Probability Models Discrete & Continuous: Gaussian, Bernoulli, Multinomial Maimum Likelihood Logistic

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Intelligence and statistics for rapid and robust earthquake detection, association and location

Intelligence and statistics for rapid and robust earthquake detection, association and location Intelligence and statistics for rapid and robust earthquake detection, association and location Anthony Lomax ALomax Scientific, Mouans-Sartoux, France anthony@alomax.net www.alomax.net @ALomaxNet Alberto

More information

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35 Neural Networks David Rosenberg New York University July 26, 2017 David Rosenberg (New York University) DS-GA 1003 July 26, 2017 1 / 35 Neural Networks Overview Objectives What are neural networks? How

More information

Exploiting k-nearest Neighbor Information with Many Data

Exploiting k-nearest Neighbor Information with Many Data Exploiting k-nearest Neighbor Information with Many Data 2017 TEST TECHNOLOGY WORKSHOP 2017. 10. 24 (Tue.) Yung-Kyun Noh Robotics Lab., Contents Nonparametric methods for estimating density functions Nearest

More information

Classification: The rest of the story

Classification: The rest of the story U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598 Machine Learning for Signal Processing Classification: The rest of the story 3 October 2017 Today s lecture Important things we haven t covered yet Fisher

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 1 Introduction, researchy course, latest papers Going beyond simple machine learning Perception, strange spaces, images, time, behavior

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

Stochastic Gradient Descent: The Workhorse of Machine Learning. CS6787 Lecture 1 Fall 2017

Stochastic Gradient Descent: The Workhorse of Machine Learning. CS6787 Lecture 1 Fall 2017 Stochastic Gradient Descent: The Workhorse of Machine Learning CS6787 Lecture 1 Fall 2017 Fundamentals of Machine Learning? Machine Learning in Practice this course What s missing in the basic stuff? Efficiency!

More information

LEC 3: Fisher Discriminant Analysis (FDA)

LEC 3: Fisher Discriminant Analysis (FDA) LEC 3: Fisher Discriminant Analysis (FDA) A Supervised Dimensionality Reduction Approach Dr. Guangliang Chen February 18, 2016 Outline Motivation: PCA is unsupervised which does not use training labels

More information

Deep Feedforward Networks. Han Shao, Hou Pong Chan, and Hongyi Zhang

Deep Feedforward Networks. Han Shao, Hou Pong Chan, and Hongyi Zhang Deep Feedforward Networks Han Shao, Hou Pong Chan, and Hongyi Zhang Deep Feedforward Networks Goal: approximate some function f e.g., a classifier, maps input to a class y = f (x) x y Defines a mapping

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Introduction to Deep Learning CMPT 733. Steven Bergner

Introduction to Deep Learning CMPT 733. Steven Bergner Introduction to Deep Learning CMPT 733 Steven Bergner Overview Renaissance of artificial neural networks Representation learning vs feature engineering Background Linear Algebra, Optimization Regularization

More information

Deep Haar scattering networks

Deep Haar scattering networks Information and Inference: A Journal of the IMA (2016) 5, 105 133 doi:10.1093/imaiai/iaw007 Advance Access publication on 19 April 2016 Deep Haar scattering networks Xiuyuan Cheng Applied Mathematics Program,

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 9 Administrativia Next class will be a summary Please email me questions

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels

Machine Learning: Basis and Wavelet 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 Haar DWT in 2 levels Machine Learning: Basis and Wavelet 32 157 146 204 + + + + + - + - 김화평 (CSE ) Medical Image computing lab 서진근교수연구실 7 22 38 191 17 83 188 211 71 167 194 207 135 46 40-17 18 42 20 44 31 7 13-32 + + - - +

More information

CSC321 Lecture 4 The Perceptron Algorithm

CSC321 Lecture 4 The Perceptron Algorithm CSC321 Lecture 4 The Perceptron Algorithm Roger Grosse and Nitish Srivastava January 17, 2017 Roger Grosse and Nitish Srivastava CSC321 Lecture 4 The Perceptron Algorithm January 17, 2017 1 / 1 Recap:

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

Tensor Methods for Feature Learning

Tensor Methods for Feature Learning Tensor Methods for Feature Learning Anima Anandkumar U.C. Irvine Feature Learning For Efficient Classification Find good transformations of input for improved classification Figures used attributed to

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation)

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation) Learning for Deep Neural Networks (Back-propagation) Outline Summary of Previous Standford Lecture Universal Approximation Theorem Inference vs Training Gradient Descent Back-Propagation

More information

Intelligent Systems Discriminative Learning, Neural Networks

Intelligent Systems Discriminative Learning, Neural Networks Intelligent Systems Discriminative Learning, Neural Networks Carsten Rother, Dmitrij Schlesinger WS2014/2015, Outline 1. Discriminative learning 2. Neurons and linear classifiers: 1) Perceptron-Algorithm

More information

Lecture 7: Kernels for Classification and Regression

Lecture 7: Kernels for Classification and Regression Lecture 7: Kernels for Classification and Regression CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 15, 2011 Outline Outline A linear regression problem Linear auto-regressive

More information

Ordinary Least Squares Linear Regression

Ordinary Least Squares Linear Regression Ordinary Least Squares Linear Regression Ryan P. Adams COS 324 Elements of Machine Learning Princeton University Linear regression is one of the simplest and most fundamental modeling ideas in statistics

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Stochastic optimization in Hilbert spaces

Stochastic optimization in Hilbert spaces Stochastic optimization in Hilbert spaces Aymeric Dieuleveut Aymeric Dieuleveut Stochastic optimization Hilbert spaces 1 / 48 Outline Learning vs Statistics Aymeric Dieuleveut Stochastic optimization Hilbert

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Neural Networks: A brief touch Yuejie Chi Department of Electrical and Computer Engineering Spring 2018 1/41 Outline

More information

Visual Object Detection

Visual Object Detection Visual Object Detection Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu 1 / 47 Visual Object

More information

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning Mark Schmidt University of British Columbia, May 2016 www.cs.ubc.ca/~schmidtm/svan16 Some images from this lecture are

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

Deep Neural Networks (1) Hidden layers; Back-propagation

Deep Neural Networks (1) Hidden layers; Back-propagation Deep Neural Networs (1) Hidden layers; Bac-propagation Steve Renals Machine Learning Practical MLP Lecture 3 2 October 2018 http://www.inf.ed.ac.u/teaching/courses/mlp/ MLP Lecture 3 / 2 October 2018 Deep

More information

Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations

Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations Alberto Bietti Julien Mairal Inria, Grenoble Journées SMAI-MODE 2018, Autrans Alberto Bietti Deep Convolutional

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

The role of dimensionality reduction in classification

The role of dimensionality reduction in classification The role of dimensionality reduction in classification Weiran Wang and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

Support Vector Machine & Its Applications

Support Vector Machine & Its Applications Support Vector Machine & Its Applications A portion (1/3) of the slides are taken from Prof. Andrew Moore s SVM tutorial at http://www.cs.cmu.edu/~awm/tutorials Mingyue Tan The University of British Columbia

More information

Sparse Kernel Machines - SVM

Sparse Kernel Machines - SVM Sparse Kernel Machines - SVM Henrik I. Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I. Christensen (RIM@GT) Support

More information

arxiv: v1 [cs.lg] 12 Mar 2017

arxiv: v1 [cs.lg] 12 Mar 2017 Jörn-Henrik Jacobsen 1 Edouard Oyallon 2 Stéphane Mallat 2 Arnold W.M. Smeulders 1 arxiv:1703.04140v1 [cs.lg] 12 Mar 2017 Abstract Deep neural network algorithms are difficult to analyze because they lack

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

Multi-Layer Boosting for Pattern Recognition

Multi-Layer Boosting for Pattern Recognition Multi-Layer Boosting for Pattern Recognition François Fleuret IDIAP Research Institute, Centre du Parc, P.O. Box 592 1920 Martigny, Switzerland fleuret@idiap.ch Abstract We extend the standard boosting

More information

Neural Networks in Structured Prediction. November 17, 2015

Neural Networks in Structured Prediction. November 17, 2015 Neural Networks in Structured Prediction November 17, 2015 HWs and Paper Last homework is going to be posted soon Neural net NER tagging model This is a new structured model Paper - Thursday after Thanksgiving

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

LECTURE NOTE #3 PROF. ALAN YUILLE

LECTURE NOTE #3 PROF. ALAN YUILLE LECTURE NOTE #3 PROF. ALAN YUILLE 1. Three Topics (1) Precision and Recall Curves. Receiver Operating Characteristic Curves (ROC). What to do if we do not fix the loss function? (2) The Curse of Dimensionality.

More information

Learning From Data: Modelling as an Optimisation Problem

Learning From Data: Modelling as an Optimisation Problem Learning From Data: Modelling as an Optimisation Problem Iman Shames April 2017 1 / 31 You should be able to... Identify and formulate a regression problem; Appreciate the utility of regularisation; Identify

More information

Do you like to be successful? Able to see the big picture

Do you like to be successful? Able to see the big picture Do you like to be successful? Able to see the big picture 1 Are you able to recognise a scientific GEM 2 How to recognise good work? suggestions please item#1 1st of its kind item#2 solve problem item#3

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information